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ABSTRACT

Deep generative models have been successfully used to learn representations for
high-dimensional discrete spaces by representing discrete objects as sequences and
employing powerful sequence-based deep models. Unfortunately, these sequence-
based models often produce invalid sequences: sequences which do not represent
any underlying discrete structure; invalid sequences hinder the utility of such mod-
els. As a step towards solving this problem, we propose to learn a deep recurrent
validator model, which can estimate whether a partial sequence can function as
the beginning of a full, valid sequence. This validator provides insight as to how
individual sequence elements influence the validity of the overall sequence, and can
be used to constrain sequence based models to generate valid sequences – and thus
faithfully model discrete objects. Our approach is inspired by reinforcement learn-
ing, where an oracle which can evaluate validity of complete sequences provides a
sparse reward signal. We demonstrate its effectiveness as a generative model of
Python 3 source code for mathematical expressions, and in improving the ability
of a variational autoencoder trained on SMILES strings to decode valid molecular
structures.

1 INTRODUCTION

Deep generative modeling has seen many successful recent developments, such as producing realistic
images from noise (Radford et al., 2015) and creating artwork (Gatys et al., 2016). We find particularly
promising the opportunity to leverage deep generative models for search in high-dimensional discrete
spaces (Gómez-Bombarelli et al., 2016b; Kusner et al., 2017). Discrete search is at the heart of
problems in drug discovery (Gómez-Bombarelli et al., 2016a), natural language processing (Bowman
et al., 2016; Guimaraes et al., 2017), and symbolic regression (Kusner et al., 2017).

The application of deep modeling to search involves ‘lifting’ the search from the discrete space to a
continuous space, via an autoencoder (Rumelhart et al., 1985). An autoencoder learns two mappings:
1) a mapping from discrete space to continuous space called an encoder; and 2) a reverse mapping
from continuous space back to discrete space called a decoder. The discrete space is presented
to the autoencoder as a sequence in some formal language — for example, in Gómez-Bombarelli
et al. (2016b) molecules are encoded as SMILES strings — and powerful sequential models (e.g.,
LSTMs (Hochreiter & Schmidhuber, 1997) GRUs (Cho et al., 2014), DCNNs (Kalchbrenner et al.,
2014)) are applied to the string representation. When employing these models as encoders and
decoders, generation of invalid sequences is however possible, and using current techniques this
happens frequently. Kusner et al. (2017) aimed to fix this by basing the sequential models on parse
tree representations of the discrete structures, where externally specified grammatical rules assist the
model in the decoding process. This work boosted the ability of the model to produce valid sequences
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Figure 1: The recurrent model used to approx-
imate the Q-function. A hypothetical logistic
function activation is shown for each char-
acter in C. Here the set of characters is the
SMILES alphabet and we use the first 3 char-
acters of the molecule in figure 3 as the input
example. The initial character is predicted
from the first hidden state, and the LSTM
continues until the end of the sequence.

during decoding, but its performance achieved by this method leaves scope for improvement, and the
method requires hand-crafted grammatical rules for each application domain.

In this paper, we propose a generative approach to modeling validity that can learn the validity
constraints of a given discrete space. We show how concepts from reinforcement learning may be
used to define a suitable generative model and how this model can be approximated using sequence-
based deep learning techniques. To assist in training this generative model we propose two data
augmentation techniques. Where no labeled data set of valid and invalid sequences is available,
we propose a novel approach to active learning for sequential tasks inspired by classic mutual-
information-based approaches (Houlsby et al., 2011; Hernández-Lobato et al., 2014). In the context
of molecules, where data sets containing valid molecule examples do exist, we propose an effective
data augmentation process based on applying minimal perturbations to known-valid sequences. These
two techniques allow us to rapidly learn sequence validity models that can be used as a) generative
models, which we demonstrate in the context of Python 3 mathematical expressions and b) a grammar
model for character-based sequences, that can drastically improve the ability of deep models to
decode valid discrete structures from continuous representations. We demonstrate the latter in the
context of molecules represented as SMILES strings.

2 A MODEL FOR SEQUENCE VALIDITY

To formalise the problem we denote the set of discrete sequences of length T by X = {(x1, . . . , xT ) :
xt ∈ C} using an alphabet C = {1, . . . , C} of size C. Individual sequences in X are denoted x1:T .
We assume the availability of a validator v : X → {0, 1}, an oracle which can tell us whether a given
sequence is valid. It is important to note that such a validator gives very sparse feedback: it can only
be evaluated on a complete sequence. Examples of such validators are compilers for programming
languages (which can identify syntax and type errors) and chemo-informatics software for parsing
SMILES strings (which identify violations of valence constraints). Running the standard validity
checker v(x1:T ) on a partial sequence or subsequence (e.g., the first t < T characters of a computer
program) does not in general provide any indication as to whether the complete sequence of length T
is valid.

We aim to obtain a generative model for the sequence set X+ = {x1:T ∈ X : v(x1:T ) = 1},
the subset of valid sequences in X . To achieve this, we would ideally like to be able to query a
more-informative function ṽ(x1:t) which operates on prefixes x1:t of a hypothetical longer sequence
x1:T and outputs

ṽ(x1:t) =

{
1 if there exists a suffix xt+1:T such that v([x1:t, xt+1:T ]) = 1,

0 otherwise
(1)

where [x1:t, xt+1:T ] concatenates a prefix and a suffix to form a complete sequence. The function
ṽ(x1:t) can be used to determine whether a given prefix can ever successfully yield a valid outcome.
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Note that we are indifferent to how many suffixes yield valid sequences. With access to ṽ(x1:t),
we could create a generative model for X+ which constructs sequences from left to right, a single
character at a time, using ṽ(x1:t) to provide early feedback as to which of the next character choices
will surely not lead to a “dead end” from which no valid sequence can be produced.

We frame the problem of modeling X+ as a Markov decision process (Sutton & Barto, 1998) for
which we train a reinforcement learning agent to select characters sequentially in a manner that avoids
producing invalid sequences. At time t = 1, . . . , T , the agent is in state x<t = x1:t−1 and can take
actions xt ∈ C. At the end of an episode, following action xT , the agent receives a reward of v(x1:T ).
Since in practice we are only able to evaluate v(x1:T ) in a meaningful way on complete sequences,
the agent does not receive any reward at any of the intermediate steps t < T . The optimal Q-function
Q?(s, a) (Watkins, 1989), a function of a state s and an action a, represents the expected reward
of an agent following an optimal policy which takes action a at state s. This optimal Q-function
assigns value 1 to actions a = xt in state s = x<t for which there exists a suffix xt+1:T such that
[x1:t, xt+1:T ] ∈ X+, and value 0 to all other state/action pairs. This behaviour exactly matches the
desired prefix validator in (1), that is, Q?(x<t, xt) = ṽ(x1:t), and so for the reinforcement learning
environment as specified, learning ṽ(x1:t) corresponds to learning the Q-function.

Having access to Q? would allow us to obtain a generative model for X+. In particular, an agent
following any optimal policy π?(x<t) = argmaxxt∈C Q

?(x<t, xt) will always generate valid se-
quences. If we sample uniformly at random across all optimal actions at each time t = 1, . . . , T , we
obtain the joint distribution given by

p(x1:T ) =

T∏
t=1

Q?(x<t, xt)

Z(x<t)
, (2)

where Z(x<t) =
∑
xt
Q?(x<t, xt) are the per-timestep normalisation constants. This distribution

allows us to sample sequences x1:T in a straightforward manner by sequentially selecting characters
xt ∈ C given the previously selected ones in x<t.

In this work we focus on learning an approximation to (2). For this, we use recurrent neural networks,
which have recently shown remarkable empirical success in the modeling of sequential data, e.g., in
natural language processing applications (Sutskever et al., 2014). We approximate the optimal Q-
function with a long-short term memory (LSTM) model (Hochreiter & Schmidhuber, 1997) that has
one output unit per character in C, with each output unit using a logistic activation function (see figure
1), such that the output is in the closed interval [0, 1]. We denote by y(xt|x<t, w) the value at time t
of the LSTM output unit corresponding to character xt when the network weights are w the input is
the sequence x<t. We interpret the neural network output y(xt|x<t, w) as p(Q?(x<t, xt) = 1), that
is, as the probability that action xt can yield a valid sequence given that the current state is x<t.

Within our framing a sequence x1:T will be valid according to our model if every action during the
sequence generation process is permissible, that is, if Q?(x<t, xt) = 1 for t = 1, . . . , T . Similarly,
we consider that the sequence x1:T will be invalid if at least one action during the sequence generation
process is not valid1, that is, if Q?(x<t, xt) = 0 at least once for t = 1, . . . , T . This specifies the
following log-likelihood function given a training set D = {(xn1:T , yn)}Nn=1 of sequences xn1:T ∈ X
and corresponding labels yn = v(x1:T ):

L(w|D) =
N∑
n=1

{yn log p(yn = 1|xn1:T , w) + (1− yn) log p(yn = 0|xn1:T , w)} , (3)

where, following from the above characterisation of valid and invalid sequences, we define

p(yn = 1|xn1:T , w) =
T∏
t=1

y(xt|x<t, w) , p(yn = 0|xn1:T , w) = 1−
T∏
t=1

y(xt|x<t, w) , (4)

according to our model’s predictions. The log-likelihood (3) can be optimised using backpropagation
and stochastic gradient descent and, given sufficient model capacity, results in a maximiser ŵ such
that y(xt|x<t, ŵ) ≈ Q?(x<t, xt).

1 Note that, once Q?(x<t, xt) is zero, all the following values of Q?(x<t, xt) in that sequence will be
irrelevant to us. Therefore, we can safely assume that a sequence is invalid if Q?(x<t, xt) is zero at least once
in the sequence.
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Instead of directly maximising (3), we can follow a Bayesian approach to obtain estimates of
uncertainty in the predictions of our LSTM model. For this, we can introduce dropout layers which
stochastically zero-out units in the input and hidden layers of the LSTM model according to a
Bernoulli distribution (Gal & Ghahramani, 2016). Under the assumption of a Gaussian prior p(w)
over weights, the resulting stochastic process yields an implicit approximation q(w) to the posterior
distribution p(w|D) ∝ exp(L(w|D))p(w). We do this to obtain uncertainty estimates, allowing us to
perform efficient active learning, as described in section 3.1.

3 ONLINE GENERATION OF SYNTHETIC TRAINING DATA

One critical aspect of learning w as described above is how to generate the training set D in a sensible
manner. A naı̈ve approach could be to draw elements from X uniformly at random. However, in
many cases, X contains only a tiny fraction of valid sequences and the uniform sampling approach
produces extremely unbalanced sets which contain very little information about the structure of valid
sequences. While rejection sampling can be used to increase the number of positive samples, the
resulting additional cost makes such an alternative infeasible in most practical cases. The problem
gets worse as the length of the sequences considered T increases since |X | will always grow as |C|T ,
while |X+| will typically grow at a lower rate.

We employ two approaches for artificially constructing balanced sets that permit learning these models
in far fewer samples than |C|T . In settings where we do not have a corpus of known valid sequences,
Bayesian active learning can automatically construct the training set D. This method works by
iteratively selecting sequences in X that are maximally informative about the model parameters w
given the data collected so far (MacKay, 1992). When we do have a set of known valid sequences,
we use these to seed a process for generating balanced sets by applying random perturbations to valid
sequences.

3.1 ACTIVE LEARNING

Let x1:T denote an arbitrary sequence and let y be the unknown binary label indicating whether x1:T
is valid or not. Our model’s predictive distribution for y, that is, p(y|x1:T , w) is given by (4). The
amount of information on w that we expect to gain by labeling and adding x1:T toD can be measured
in terms of the expected reduction in the entropy of the posterior distribution p(w|D). That is,

α(x1:T ) = H[p(w|D)]− Ep(y|x1:T ,w)H[p(w|D ∪ (x1:T , y)] , (5)

where H(·) computes the entropy of a distribution. This formulation of the entropy-based active
learning criterion is, however, difficult to approximate, because it requires us to condition on x1:T –
effectively . To obtain a simpler expression we follow Houlsby et al. (2011) and note that α(x1:T ) is
equal to the mutual information between y and w given x1:T and D

α(x1:T ) = H{Ep(w|D)[p(y|x1:T , w)]} − Ep(w|D){H[p(y|x1:T , w)]} , (6)

which is easier to work with as the required entropy is now that of Bernoulli predictive distributions,
an analytic quantity. Let B(p) denote a Bernoulli distribution with probability p, and with probability
mass pz(1− p)1−z for values z ∈ {0, 1}. The entropy of B(p) can be easily obtained as

H[B(p)] = −p log p− (1− p) log(1− p) ≡ g(p) . (7)

The expectation with respect to p(w|D) can be easily approximated by Monte Carlo. We could
attempt to sequentially construct D by optimising (6). However, this optimisation process would still
be difficult, as it would require evaluating α(x1:T ) exhaustively on all the elements of X . To avoid
this, we follow a greedy approach and construct our informative sequence in a sequential manner. In
particular, at each time step t = 1, . . . , T , we select xt by optimising the mutual information between
w and Q?(x<t, xt), where x<t denotes here the prefix already selected at previous steps of the
optimisation process. This mutual information quantity is denoted by α(xt|x<t) and its expression is
given by

α(xt|x<t) = H{Ep(w|D)[B(y(xt|x<t, w))]} − Ep(w|D){H[B(y(xt|x<t, w))]}. (8)

The generation of an informative sequence can then be performed efficiently by sequentially optimis-
ing (8), an operation that requires only |C| × T evaluations of α(xt|x<t).
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To obtain an approximation to (8), we first approximate the posterior distribution p(w|D) with q(w)
and then estimate the expectations in (8) by Monte Carlo using K samples drawn from q(w). The
resulting estimator is given by

α̂(xt | x<t) = g

[
1

K

K∑
k=1

y(xt|x<t, wk)
]
− 1

K

K∑
k=1

g [y(xt|x<t, wk)] , (9)

where w1, . . . , wK ∼ q(w) and g(·) is defined in (7). The nonlinearity of g(·) means that our Monte
Carlo approximation is biased, but still consistent. We found that reasonable estimates can be obtained
even for small K. In our experiments we use K = 16.

The iterative procedure just described is designed to produce a single informative sequence. In
practice, we would like to generate a batch of informative and diverse sequences. The reason for
this is that, when training neural networks, processing a batch of data is computationally more
efficient than individually processing multiple data points. To construct a batch with L informative
sequences, we propose to repeat the previous iterative procedure L times. To introduce diversity in
the batch-generation process, we “soften” the greedy maximisation operation at each step by injecting
a small amount of noise in the evaluation of the objective function (Finkel et al., 2006). Besides
introducing diversity, this can also lead to better overall solutions than those produced by the noiseless
greedy approach (Cho, 2016). We introduce noise into the greedy selection process by sampling from

p(xt|x<t, θ) =
exp{α(xt|x<t)/θ}∑
x′
t∈C

exp{α(x′t|x<t)/θ}
(10)

for each t = 1, . . . , T , which is a Boltzmann distribution with sampling temperature θ. By adjusting
this temperature parameter, we can trade off the diversity of samples in the batch vs. their similarity.

3.2 DATA AUGMENTATION

In some settings, such as the molecule domain we will consider later, we have databases of known-
valid examples (e.g. collections of known drug-like molecules), but rarely are sets of invalid examples
available. Obtaining invalid sequences may seem trivial, as invalid samples may be obtained by
sampling uniformly from X , however these are almost always so far from any valid sequence that
they carry little information about the boundary of valid and invalid sequences. Using just a known
data set also carries the danger of overfitting to the subset of X+ covered by the data.

We address this by perturbing sequences from a database of valid sequences, such that approximately
half of the thus generated sequences are invalid. These perturbed sequences x′1:T are constructed by
setting each x′t to be a symbol selected independently from C with probability γ, while remaining
the original xt with probability 1− γ. In expectation this changes γT entries in the sequence. We
choose γ = 0.05, which results in synthetic data that is approximately 50% valid.

4 EXPERIMENTS

We test the proposed validity checker in two environments. First, we look at fixed length Python 3
mathematical expressions, where we derive lower bounds for the support of our model and compare
the performance of active learning with that achieved by a simple passive approach. Secondly, we
look at molecular structures encoded into string representation, where we utilise existing molecule
data sets together with our proposed data augmentation method to learn the rules governing molecule
string validity. We test the efficacy of our validity checker on the downstream task of decoding valid
molecules from a continuous latent representation given by a variational autoencoder.

4.1 MATHEMATICAL EXPRESSIONS

We illustrate the utility of the proposed validity model and sequential Bayesian active learning in the
context of Python 3 mathematical expressions. Here, X consists of all length 25 sequences that can
be constructed from the alphabet of numbers and symbols shown in table 1. The validity of any given
expression is determined using the Python 3 eval function: a valid expression is one that does not
raise an exception when evaluated.
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Figure 2: Experiments with length 25 Python expressions. (Left) Area under validity-entropy curve
as training progresses, 10-90 percentiles shaded. Active learning converges faster and reaches a
higher maximum. (Right) Entropy versus validity for median active and median passive model after
200k training sequences. Both models have learnt a high entropy distribution over valid sequences.

Measuring model performance Within this problem domain we do not assume the existence of a
data set of positive examples. Without a validation data set to measure performance on, we compare
the models in terms of their capability to provide high entropy distributions over valid sequences.
We define a generative procedure to sample from the model and measure the validity and entropy of
the samples. To sample stochastically, we use a Boltzmann policy, i.e. a policy which samples next
actions according to

π(xt = c|x<t, w, τ) =
exp(y(c|x<t, w)/τ)∑
j∈C exp(y(j|x<t, w)/τ)

(11)

where τ is a temperature constant that governs the trade-off between exploration and exploitation.
Note that this is not the same as the Boltzmann distribution used as a proposal generation scheme
during active learning, which was defined not onQ-function values but rather on the estimated mutual
information.

We obtain samples {x(1), . . . , x(N)}τi for a range of temperatures τi and compute the validity fraction
and entropy of each set of samples. These points now plot a curve of the trade-off between validity
and entropy that a given model provides. Without a preferred level of sequence validity, the area
under this validity-entropy curve (V-H AUC) can be utilised as a metric of model quality. To provide
some context for the entropy values, we estimate an information theoretic lower bound for the fraction
of the set X+ that our model is able to generate. This translates to upper bounding the false negative
rate for our model.

Experimental setup and results We train two models using our proposed Q-function method:
passive, where training sequences are sampled from a uniform distribution over X , and active, where
we use the procedure described in section 3.1 to select training sequences. The two models are
otherwise identical.

Both trained models give a diverse output distribution over valid sequences (figure 2). However, as
expected, we find that the active method is able to learn a model of sequence validity much more
rapidly than sampling uniformly from X , and the corresponding converged model is capable of
generating many more distinct valid sequences than that trained using the passive method. In table 2

Table 1: Python 3 expression alphabet

digits operators comparisons brackets

1234567890 +-*/%! =<> ()
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Table 2: Estimated lower bound of coverage N for passive and active models, defined as the size
of the set of Python expressions on which the respective model places positive probability mass.
Evaluation is on models trained until convergence (800, 000 training points, beyond the scope of
figure 2). The lower bound estimation method is detailed in Appendix A.

temperature τ passive model active model
validity N validity N

0.100 0.850 9.7× 1027 0.841 8.2× 1028

0.025 0.969 2.9× 1025 0.995 4.3× 1027

0.005 1.000 1.1× 1022 1.000 1.3× 1027

we present lower bounds on the support of the two respective models. The details of how this lower
bound is computed can be found in appendix A. Note that the overhead of the active learning data
generating procedure is minimal: processing 10,000 takes 31s with passive versus 37s with active.

4.2 SMILES MOLECULES

SMILES strings (Weininger, 1970) are one of the most common representations for molecules,
consisting of an ordering of atoms and bonds. It is attractive for many applications because it
maps the graphical representation of a molecule to a sequential representation, capturing not just
its chemical composition but also structure. This structural information is captured by intricate
dependencies in SMILES strings based on chemical properties of individual atoms and valid atom
connectivities. For instance, the atom Bromine can only bond with a single other atom, meaning
that it may only occur at the beginning or end of a SMILES string, or within a so-called ‘branch’,
denoted by a bracketed expression (Br). We illustrate some of these rules, including a Bromine
branch, in figure 3, with a graphical representation of a molecule alongside its corresponding SMILES
string. There, we also show examples of how a string may fail to form a valid SMILES molecule
representation. The full SMILES alphabet is presented in table 3.

Table 3: SMILES alphabet

atoms/chirality bonds/ringbonds charges branches/brackets

B C N O S P F I H Cl Br @ =#/\12345678 -+ ()[]

The intricacy of SMILES strings makes them a suitable testing ground for our method. There are two
technical distinctions to make between this experimental setup and the previously considered Python
3 mathematical expressions. As there exist databases of SMILES strings, we leverage those by using
the data augmentation technique described in section 3.2. The main data source considered is the
ZINC data set Irwin & Shoichet (2005), as used in Kusner et al. (2017). We also use the USPTO
15k reaction products data (Lowe, 2014) and a set of molecule solubility information (Huuskonen,
2000) as withheld test data. Secondly, whereas we used fixed length Python 3 expressions in order to
obtain coverage bounds, molecules are inherently of variable length. We deal with this by padding all
molecules to fixed length.

Validating grammar model accuracy As a first test of the suitability of our proposed validity
model, we train it on augmented ZINC data and examine the accuracy of its predictions on a withheld
test partition of that same data set as well as the two unseen molecule data sets. Accuracy is the ability
of the model to accurately recognise which perturbations make a certain SMILES string invalid,
and which leave it valid – effectively how well the model has captured the grammar of SMILES
strings in the vicinity of the data manifold. Recalling that a sequence is invalid if ṽ(x1:t) = 0 at
any t ≤ T , we consider the model prediction for molecule x1:T to be

∏T
t=1 I [y(xt|x<t, w) ≥ 0.5],

and compare this to its true label as given by rdkit, a chemical informatics software. The results are
encouraging, with the model achieving 0.998 accuracy on perturbed ZINC (test) and 1.000 accuracy
on both perturbed USPTO and perturbed Solubility withheld data. Perturbation rate was selected
such that approximately half of the perturbed strings are valid.
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'CC1CN(C(=O)C2=F'

example invalid sequences:
'CC1CN(C(=OC'

'CC1CN(C()'

']'

reason:

O has too many bonds

F cannot have double bond

cannot have empty branch ()

cannot have ] before [

'CC1CN(C(=O)C2=CC(BrC'

'CC1CN(C(=O)C2=CC(BrF'

'CC1CN(C(=)'

Br has too many bonds

Br, F have too many bonds

branch must have atoms

SMILES: 'CC1CN(C(=O)C2=CC(Br)=CN2C)CCC1[NH3+]'

Figure 3: Predictions y(xt|x<t, w) of the agent at each step t for the valid test molecule shown in
the top left figure, for a subset of possible actions (selecting as next character C, F, ), or ]). Each
column shows which actions the trained agent believes are valid at each t, given the characters x<t
preceding it. We see that the validity model has learned basic valence constraints: for example the
oxygen atom O at position 10 can form at most 2 bonds, and since it is preceded by a double bond,
the model knows that neither carbon C nor fluorine F can immediately follow it at position 11; we
see the same after the bromine Br at position 18, which can only form a single bond. The model
also correctly identifies that closing branch symbols ) cannot immediately follow opening branches
(after positions 6, 8, and 17), as well as that closing brackets ] cannot occur until an open bracket has
been followed by at least one atom (at positions 32–35). The full output heatmap for this example
molecule is shown in Figure 4 in the appendix.

Integrating with Character VAE To demonstrate the models capability of improving preexisting
generative models for discrete structures, we show how it can be used to improve the results of
previous work, a character variational autoencoder (CVAE) applied to SMILES strings (Gómez-
Bombarelli et al., 2016b; Kingma & Welling, 2013). Therein, an encoder maps points in X+

to a continuous latent representation Z and a paired decoder maps points in Z back to X+. A
reconstruction based loss is minimised such that training points mapped to the latent space decode
back into the same SMILES strings. The fraction of test points that do is termed reconstruction
accuracy. The loss also features a term that encourages the posterior over Z to be close to some prior,
typically a normal distribution. A key metric for the performance of variational autoencoder models
for discrete structures is the fraction of points sampled from the prior over Z that decode into valid
molecules. If many points do not correspond to valid molecules, any sort of predictive modeling on
that space will likely also mostly output invalid SMILES strings.

The decoder functions by outputting a set of weights f(xt|z) for each character xt in the reconstructed
sequence conditioned on a latent point z ∈ Z; the sequence is recovered by sampling from a
multinomial according to these weights. To integrate our validity model into this framework, we take
the decoder output for each step t and mask out choices that we predict cannot give valid sequence
continuations. We thus sample characters with weights given by f(xt|z) · I [y(xt|x<t, w) ≥ 0.5].

Autoencoding benchmarks Table 4 contains a comparison of our work to a plain CVAE and to
the Grammar VAE approach. We use a Kekulé format of the ZINC data in our experiments, a specific
representation of aromatic bonds that our model handled particularly well. Note that the results we
quote for Grammar VAE are taken directly from Kusner et al. (2017) and on non-Kekulé format
data. The CVAE model is trained for 100 epochs, as per previous work – further training improves
reconstruction accuracy.

We note that the binary nature of the proposed grammar model means that it does not affect the
reconstruction accuracy. In fact, some modest gains are present. The addition of our grammar model
to the character VAE significantly improves its ability to decode discrete structures, as seen by the
order of magnitude increase in latent sample validity. The action of our model is completely post-hoc
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and thus can be applied to any pre-trained character-based VAE model where elements of the latent
space correspond to a structured discrete sequence.

Model reconstruction accuracy sample validity

CVAE + Validity Model 50.2% 22.3%
Grammar VAE 53.7% 7.2%

Plain CVAE 49.7% 0.5%

Table 4: Performance metrics for VAE-based molecule model trained for 100 epochs on ZINC (train)
data, with and without the proposed validity model overlaid at test time, and the Grammar VAE
method. Sample validity is the fraction of samples from the prior over Z that decode into valid
molecules.

5 DISCUSSION

In this work we proposed a modeling technique for learning the validity constraints of discrete
spaces. The proposed likelihood makes the model easy to train, is unaffected by the introduction of
padding for variable length sequences and, as its optimum is largely independent of the training data
distribution, it allows for the utilisation of active learning techniques. Through experiments we found
that it is vital to show the model informative examples of validity constraints being validated. Thus,
where no informative data sets exist, we proposed a mutual-information-based active learning scheme
that uses model uncertainty to select training sequences. We used principled approximations to make
that learning scheme computationally feasible. Where data sets of positive examples are available,
we proposed a simple method of perturbations to create informative examples of validity constraints
being broken.

The model showed promise on the Python mathematical expressions problem, especially when
combined with active learning. In the context of SMILES molecules, the model was able to learn
near-perfectly the validity of independently perturbed molecules. When applied to the variational
autoencoder benchmark on SMILES strings, the proposed method beat the previous results by a
large margin on prior sample validity – the relevant metric for the downstream utility of the latent
space. The model is simple to apply to existing character-based models and is easy to train using
data produced through our augmentation method. The perturbations used do not, however, capture
every way in which a molecule may be mis-constructed. Correlated changes such as the insertion
of matching brackets into expressions are missing from our scheme. Applying the model to a
more structured representation of molecules, for example, sequences of parse rules as used in the
Grammar VAE, and performing perturbations in that structured space is likely to deliver even greater
improvements in performance.
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Figure 4: Full heatmap showing predictions y(xt|x<t, w) for the molecule in Figure 3.

A COVERAGE ESTIMATION

Ideally, we would like to check that the learned model y(xt|x<t, w) assigns positive probability to
exactly those points which may lead to valid sequences, but for large discrete spaces this is impossible
to compute or even accurately estimate. A simple check for accuracy could be to evaluate whether
the model correctly identifies points as valid in a known, held-out validation or test set of real data,
relative to randomly sampled sequences (which are nearly always invalid). However, if the validation
set is too “similar” to the training data, even showing 100% accuracy in classifying these as valid may
simply indicate having overfit to the training data: a discriminator which identifies data as similar to
the training data needs to be accurate over a much smaller space than a discriminator which estimates
validity over all of X .

Instead, we propose to evaluate the trade-off between accuracy on a validation set, and an approx-
imation to the size of the effective support of

∏
t y(xt|x<t, w) over X . Let X+ denote the valid

subset of X . Suppose we estimate the valid fraction f+ = |X+|/|X | by simple Monte Carlo, sampling
uniformly from X . We can then estimate N+ = |X+| by f+|X |, where |X | = CT , a known quantity.
A uniform distribution over N+ sequences would have an entropy of logN+. We denote the entropy
of output from the model H . If our model was perfectly uniform over the sequences it can generate,
it would then be capable of generating Nmodel = eH . As our model at its optimum is extremely not
uniform over sequences x ∈ X , this is very much a lower bound a coverage.
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