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ABSTRACT

Humans organize knowledge into compact categories that balance compression
with semantic meaning preservation. Large Language Models (LLMs) demon-
strate striking linguistic abilities, yet whether they achieve this same balance re-
mains unclear. We apply the Information Bottleneck principle to quantitatively
compare how LLMs and humans navigate this compression-meaning trade-off.
Analyzing embeddings from 40+ LLMs against classic human categorization
benchmarks (Rosch, 1973a; 1975; McCloskey & Glucksberg, 1978), we uncover
three key findings. First, LLMs broadly align with human categories but miss fine-
grained semantic distinctions crucial for human understanding. Second, LLMs
demonstrate aggressive statistical compression, achieving “optimal” information-
theoretic efficiency, while humans prioritize contextual richness and adaptive flex-
ibility. Third, encoder models surprisingly outperform decoder models in human
alignment, suggesting that generation and understanding rely on distinct mech-
anisms in current architectures. In addition, training dynamics analysis reveals
that conceptual structure develops in distinct phases: rapid initial formation fol-
lowed by architectural reorganization, with semantic processing migrating from
deeper to mid-network layers as models discover more efficient encoding. These
divergent strategies, where LLMs optimize for compression and humans for adap-
tive utility, reveal fundamental differences between artificial and biological intel-
ligence, guiding development toward more human-aligned AI.

1 THE ENIGMA OF MEANING IN LARGE LANGUAGE MODELS

“The categories defined by constructions in human languages may vary from one
language to the next, but they are mapped onto a common conceptual space,
which represents a common cognitive heritage, indeed the geography of the hu-
man mind.” –Croft (2001) p. 139

Humans excel at organizing knowledge into concepts which are compact categories that achieve
remarkable compression while preserving essential meaning (Murphy, 2004). A single word like
“bird” compresses information about thousands of species, yet maintains critical semantic properties
(can fly, has feathers, lays eggs). This hierarchical organization (robin → bird → animal; Rosch et al.
1976) represents a fundamental cognitive achievement: balancing efficiency with semantic fidelity.

Large Language Models (LLMs) demonstrate striking linguistic capabilities that suggest semantic
understanding (Singh et al., 2024; Li et al., 2024). Yet, a critical question remains unanswered: Do
LLMs navigate the compression-meaning trade-off similarly to humans, or do they employ funda-
mentally different representational strategies? This question matters because true understanding,
which goes beyond surface-level mimicry, requires representations that balance statistical efficiency
with semantic richness (Tversky, 1977; Rosch, 1973b).

To address this question, we apply Rate-Distortion Theory (Shannon, 1948) and Information Bottle-
neck principles (Tishby et al., 2000) to systematically compare LLM and human conceptual struc-
tures. We digitize and release seminal cognitive psychology datasets (Rosch, 1973b; 1975; Mc-
Closkey & Glucksberg, 1978), which are foundational studies that shaped our understanding of
human categorization but were previously unavailable in a machine-readable form. These bench-
marks, comprising 1,049 items across 34 categories with both membership and typicality ratings,
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offer unprecedented empirical grounding for evaluating whether LLMs truly understand concepts as
humans do. It also offers much better quality data than the current crowdsourcing paradigm.

Analyzing embeddings from 40+ diverse LLMs against these benchmarks, we uncover a fundamen-
tal divergence: LLMs and humans employ different strategies when balancing compression with
meaning. While LLMs achieve broad categorical alignment with human judgment, they optimize
for aggressive statistical compression at the expense of semantic nuance. Humans maintain “ineffi-
cient” representations that preserve rich, multidimensional structure essential for flexible reasoning.

This divergence manifests across three dimensions. First, LLMs capture categorical boundaries but
miss fine-grained semantic distinctions like item typicality central to human understanding. Second,
our information-theoretic analysis reveals LLMs achieve mathematically “optimal” compression-
distortion trade-offs, while human categories appear suboptimal. Third, encoder models surprisingly
outperform decoder models in human alignment despite smaller scales, indicating that understanding
and generation may require fundamentally different representational strategies.

Through analysis of OLMo-7B across 57 training checkpoints, we further uncover how these strate-
gies emerge during learning: conceptual structure develops via rapid initial formation followed by
architectural reorganization, with semantic processing migrating from deep to mid-network layers
as models discover increasingly efficient encodings.

These findings challenge the assumption that statistical optimality equals understanding. The appar-
ent “inefficiency” of human concepts may reflect optimization for adaptive flexibility. Our frame-
work and newly-digitized benchmarks provide essential tools for monitoring this critical balance,
guiding development toward AI systems that achieve not just compression, but comprehension.

2 RESEARCH QUESTIONS AND SCOPE

Prior work has explored LLM conceptual representations through multiple lenses: relational knowl-
edge (Shani et al., 2023; Misra et al., 2021), interpretable concept extraction (Hoang-Xuan et al.,
2024; Maeda et al., 2024), sparse activation patterns (Li et al., 2024), and embedding geometry in-
cluding hierarchical structures (Park et al., 2024). While insightful, these studies often lack deep,
quantitative comparison of the compression-meaning trade-off using information theory against rich
human cognitive benchmarks.

Separately, cognitive science has applied information theory to human concept learning (Imel &
Zaslavsky, 2024; Tucker et al., 2025; Zaslavsky et al., 2018; Sorscher et al., 2022). For example,
Zaslavsky et al. (2018) developed an Information Bottleneck framework for color naming efficiency,
later extended to animal taxonomies (Zaslavsky et al., 2019). Yet these cognitive studies typically
proceed without connecting to modern LLMs, and tend to focus on a specific domain. One notable
example is Wu et al. (2025), which examined abstraction transfer in humans and LLMs
using a behavioral and cognitive modeling level. Our work is different in the sense that it
analyzes how information is preserved or distorted inside LLM embedding spaces under
controlled clustering transformations.

These two streams, LLM conceptual analysis and cognitive information theory, rarely intersect. We
bridge this gap through rigorous comparison of how LLMs and humans navigate the compression-
meaning trade-off, grounding our analysis in established cognitive benchmarks. This leads to three
research questions:

[RQ1] To what extent do LLM-emergent concepts align with human-defined categories?

[RQ2] Do LLMs exhibit human-like internal structure, particularly item typicality?

[RQ3] How do humans and LLMs differ when balancing compression with semantic fidelity?

Our framework approaches each RQ through a unified lens. [RQ1] examines the categorical align-
ment, or how information is compressed into discrete groups. [RQ2] probes internal structure, which
means how semantic meaning is preserved within categories. [RQ3] employs our full L objective to
evaluate the integrated trade-off. This progression from compression to preservation to their balance
mirrors the fundamental challenge both systems face: creating representations that are simultane-
ously efficient and meaningful.
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Figure 1 overviews the data generation and analyses. Human data was collected by ask-
ing whether an item i (e.g., chair) is a good example of the category C (furniture). These
ratings are aggregated into ranked similarity profiles for each category. Models generate
analogous scores using their embeddings. We then compute three metrics: [RQ1] Mu-
tual Information to assess category recoverability, [RQ2] Spearman correlation to measure
alignment with human typicality structure, and [RQ3] a rate-distortion objective capturing
the trade-off between representation complexity and meaning preservation.

Figure 1: Overview of the data generation and analyses. Human data was collected by
asking whether an item i (e.g., chair) is a good example of the category C (furniture). These
ratings are aggregated into ranked similarity profiles for each category. Models generate
analogous scores using their embeddings. We then compute three metrics: [RQ1] Mu-
tual Information to assess category recoverability, [RQ2] Spearman correlation to measure
alignment with human typicality structure, and [RQ3] a rate-distortion objective capturing
the trade-off between representation complexity and meaning preservation.

3 BENCHMARKING AGAINST HUMAN COGNITION

Investigating LLM-human conceptual alignment requires robust benchmarks and diverse models.
This section details both components.

3.1 HUMAN BASELINES: EMPIRICAL DATA FROM SEMINAL COGNITIVE SCIENCE

We draw on three foundational studies that shaped our understanding of human categorization. Un-
like many noisy modern crowdsourced datasets, these classic benchmarks were carefully curated by
experts, capturing deep cognitive patterns. We focus on three influential works:

Rosch (1973): This foundational work (Rosch, 1973a) explored semantic categories as part of the
research program leading to prototype theory (Rosch, 1973b)1. The theory posits that categories
organize around ”prototypical” members rather than strict, equally shared features. The dataset
includes 48 items in eight common semantic categories (e.g., furniture, bird), with prototypicality
rankings (e.g., ‘robin’ as typical bird, ‘bat’ as atypical).

1Prototype theory is only one of several frameworks describing how humans form and use con-
cepts. Exemplar theory, for instance, posits that categories are represented via stored instances
rather than abstract prototypes. Our work does not attempt to resolve the longstanding debate on
human concept representation; rather, we adopt an existing framework because it provides struc-
tured data suitable for modeling. Crucially, the computational analysis we develop is compatible with
alternative theoretical accounts.
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Rosch (1975): Building on prototype theory, Rosch (1975) further detailed how semantic categories
are cognitively represented. This work provides typicality ratings for a larger set of 552 items across
ten categories (e.g., ‘orange‘ as a prototypical fruit, ‘squash‘ as less so).

McCloskey & Glucksberg (1978): Investigated the ”fuzzy” boundaries of natural categories, show-
ing membership is graded rather than absolute (McCloskey & Glucksberg, 1978). Covers 449 items
in 18 categories with both typicality scores and membership certainty ratings (e.g., ‘dress’ is typical
clothing, ‘bandaid’ less so).

While originating from different researchers, these datasets share rigorous experimental designs
and provide data on both category assignments and item typicality. We aggregated data from these
studies, creating a unified benchmark of 1,049 items across 34 categories. This data, which we have
digitized and made publicly available (Appendix C), offers a high-quality empirical foundation for
evaluating the human-likeness of LLMs.2

3.2 LARGE LANGUAGE MODELS UNDER STUDY

We analyze 40+ diverse LLMs spanning multiple architectures and scales (300M to 72B parameters)
to understand how conceptual representation varies across model design choices. We note that our
analysis relies on access to the internal representations (embeddings) of models, rather
than just output. Thus, we are unable to use any closed-source frontier models such as
GPT-5 and Claude.

Model Selection. Our study encompasses three architectural paradigms. Encoder models include
the BERT family (Devlin et al., 2019; He et al., 2020; Zhuang et al., 2021) and CLIP ViT text
encoders (Radford et al., 2021). Decoder models form the majority of our analysis: the Llama family
(1B-70B; Touvron et al., 2023a;b; Grattafiori et al., 2024), Gemma variants (2B-27B; Team et al.,
2024; 2025), Qwen models (0.5B-72B; Bai et al., 2023; Yang et al., 2024), Phi series (Javaheripi
et al., 2023; Abdin et al., 2024; Abouelenin et al., 2025), Mistral-7B (Karamcheti et al., 2021),
GPT-2 (Radford et al., 2019), and OLMo-7B (Groeneveld et al., 2024). We also include classic
embeddings Word2Vec (Mikolov et al., 2013a;b) and GloVe (Pennington et al., 2014) as baselines.

This diverse selection enables us to disentangle effects of architecture (encoder vs. decoder), scale
(300M to 72B), and training objectives (understanding vs. generation). We note that encoder-
only models are less represented (and are smaller) simply because recent LLM devel-
opment has prioritized decoder-only architectures. Complete model specifications appear in
Appendix D.

Embedding Extraction. We extract representations at two levels to capture different aspects of con-
ceptual knowledge: (1) static embeddings from input layers (E matrix), capturing context-free lexi-
cal knowledge directly comparable to isolated words in human categorization experiments; and (2)
contextual embeddings from hidden layers using controlled prompts, revealing how context shapes
conceptual structure across network depth.

This dual approach allows us to trace how concepts emerge from basic lexical knowledge to contex-
tualized understanding. Critically, our results prove robust to prompt templates and pooling strate-
gies (Appendix E). Moreover, despite substantial vocabulary overlap between model families, nei-
ther token count nor tokenization patterns correlate with our results (Appendix J).

4 A FRAMEWORK FOR COMPARING COMPRESSION AND MEANING

To quantitatively compare how LLMs and humans navigate the fundamental tension between com-
pact representation and semantic richness, we develop a framework that captures both aspects of
conceptual organization. Our approach draws on Rate-Distortion Theory (Shannon, 1948) and the
Information Bottleneck principle (Tishby et al., 2000), adapting them to measure the quality of con-
ceptual systems.

2Appendix I shows that polysemy is rare in our data and cannot account for our findings.
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4.1 THEORETICAL FOUNDATIONS

Human concepts achieve remarkable efficiency: the word ”bird” compresses knowledge about thou-
sands of species into a single category, yet preserves critical semantic information (can fly, has
feathers, lays eggs). This reflects a fundamental trade-off that any conceptual system must navigate:

• Compression: Grouping diverse items into manageable categories (fewer bits needed)
• Meaning Preservation: Maintaining semantic coherence within groups

Rate-Distortion Theory (RDT; Shannon, 1948) formalizes this trade-off for lossy compression.
Given data X and compressed representation X̂ , RDT seeks encodings that minimize:

R+ λD = I(X; X̂) + λE[d(X, X̂)] (1)

where R is the rate (bits required), D is distortion (information lost), and λ controls their trade-off.

Information Bottleneck (IB; Tishby et al., 2000) extends this by compressing X into Z while
preserving information about relevant variable Y :

min I(X;Z)− βI(Z;Y ) (2)

Our adaptation: For conceptual representation, we lack an external relevance variable Y . In-
stead,“relevance” becomes internal semantic coherence, which means how well categories pre-
serve within-group similarity. We thus combine RDT’s geometric distortion with IB’s information-
theoretic compression, yielding our framework where clustering C represents items X by mini-
mizing both the information needed to specify items (compression) and the semantic spread within
clusters (distortion).

4.2 THE L OBJECTIVE: QUANTIFYING THE TRADE-OFF

We formalize how clustering C represents items X through an objective that combines information-
theoretic compression with geometric coherence:

L(X,C;β) = I(X;C)︸ ︷︷ ︸
Complexity: bits needed

+β · 1

|X|
∑
c∈C

∑
ei∈c

∥ei − ēc∥2︸ ︷︷ ︸
Distortion: semantic spread

(3)

where β weights the relative importance of compression versus coherence.

4.2.1 THE COMPLEXITY TERM: MEASURING COMPRESSION

Complexity quantifies how much information the clustering preserves about individual items
through mutual information I(X;C). Intuitively, if knowing an item’s cluster tells us little about
which specific item it is, compression is high (low complexity).

Given |X| items partitioned into clusters of sizes {|Cc|}:

Complexity(X,C) = I(X;C) = log2 |X| − 1

|X|
∑
c∈C

|Cc| log2 |Cc| (4)

This equals the reduction in uncertainty about item identity when told its cluster. Uniform clusters
minimize complexity (one |X| cluster; maximum compression), while singleton clusters maximize
it (no compression).

4.2.2 THE DISTORTION TERM: MEASURING SEMANTIC COHERENCE

Distortion captures how well clusters preserve semantic relationships and meanings by measuring
the average squared distance between items and their cluster centroids in embedding space (spread):

Distortion(X,C) =
1

|X|
∑
c∈C

|Cc| · σ2
c (5)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where σ2
c = 1

|Cc|
∑

ei∈c ∥ei − ēc∥2 is the variance within cluster c, and ēc is its centroid.

Low distortion indicates tight, semantically coherent clusters with similar embeddings. This geo-
metric measure directly captures what we intuitively mean by “meaningful” categories: robins and
sparrows cluster tightly as similar birds, while bats would increase distortion on downstream tasks
if categorized with them.

4.3 CONNECTING FRAMEWORK TO RESEARCH QUESTIONS

Our framework provides unified metrics for all three research questions:

[RQ1] Categorical Alignment: How do LLMs and humans partition semantic space? The Com-
plexity term I(X;C) directly measures this by quantifies how many bits are needed to specify indi-
vidual items given their clusters. Comparing I(X;CHuman) with I(X;CLLM) reveals whether both
systems create similarly-sized groupings with comparable compression rates. Higher mutual infor-
mation means finer-grained categories; lower means broader, more compressed groupings.

[RQ2] Internal Semantic Structure: Do LLMs capture human-like typicality signal? The Distor-
tion term measures how well clusters preserve semantic coherence. In our typicality analysis, we
check whether typical items cluster tightly near centroids while atypical items lie farther away. Low
distortion with clear center-periphery structure indicates prototype organization that mirrors human
cognitive structure.

[RQ3] Compression-Meaning Trade-off: How do different systems balance efficiency against se-
mantic fidelity? The complete L objective reveals fundamental optimization strategies. By varying
K (number of clusters) and computing L curves, we uncover system priorities: aggressive compres-
sors rapidly achieve low L values by sacrificing nuance, while systems preserving semantic richness
maintain higher L to retain meaningful distinctions. The shape and level of these curves expose
whether a system optimizes for statistical efficiency or cognitive utility.

5 AN EMPIRICAL INVESTIGATION OF REPRESENTATIONAL STRATEGIES

Building on our information-theoretic framework (Section 4) and established benchmarks (Sec-
tion 3.1), we empirically investigate how LLMs and humans navigate the compression-meaning
trade-off. For each analysis, we examine both static embeddings and contextual embeddings (across
all hidden layers), revealing how and when context shapes conceptual organization.

5.1 [RQ1] THE BIG PICTURE: ALIGNMENT OF CONCEPTUAL CATEGORIES

We first investigate whether LLMs form conceptual categories aligned with humans, which ex-
amines how information is compressed into discrete groups (the complexity term in our framework).

Key Finding: Broad Alignment with Human Categories

LLM-derived clusters significantly align with human-defined conceptual categories, sug-
gesting they capture key aspects of human conceptual organization. Surprisingly certain
encoder models exhibit strong alignment, sometimes outperforming much larger models,
highlighting that factors beyond sheer scale influence human-like categorical abstraction.

Approach: We tested whether LLMs naturally organize our 1,049 items into categories resembling
human conceptual structure. Token embeddings were extracted at two levels: (i) static embeddings
from input layers (E matrix), representing context-free lexical knowledge; (ii) contextual embed-
dings from all hidden layers, measured layer-wise to identify peak conceptual alignment. These
were clustered using k-means (K matching human category counts) and evaluated against human
categories using Adjusted Mutual Information (AMI), Normalized Mutual Information (NMI), and
Adjusted Rand Index (ARI) metrics. NMI quantifies how much information is shared between
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Figure 2: LLMs capture categorical boundaries (RQ1 AMI scores) but miss internal geom-
etry (RQ2 Spearman correlations). Left: All 40+ models achieve above-chance AMI with
human categories, with encoder architectures (squares, circles, and Xs) matching or exceeding
decoder models 100× larger (stars). Results show the layer with peak AMI score per model (see
static and mean scores in Figure A.8). Right: Despite categorical success, models show weak
correlations (ρ < 0.2 for most) with human typicality judgments, revealing divergent representa-
tional strategies. This divergence between capturing boundaries (compression) while missing inter-
nal structure (meaning) reveals how LLMs and humans fundamentally differ in their representational
strategies. We note that encoder models align more than decoder models, but these correlations are
still modest. Computed using the static embeddings, see full results in Tables 3-4 in Appendix N.

the model-derived clusters and the human-labeled categories; AMI refines this measure by
correcting for the amount of overlap that would be expected by chance; and ARI assesses
the degree of agreement between the two partitions while explicitly accounting for random
assignments, providing a complementary view of clustering accuracy.

Broad Categorical Agreement: All 40+ models achieve significant above-chance alignment (Fig-
ure 2 (Left)). Even at baseline, static embeddings show substantial alignment (mean AMI ≈ 0.45),
which contextual processing enhances to peak AMI ≈ 0.55. This confirms that LLMs encode
human-like categorical boundaries. Full NMI and ARI results in Appendices K–M.

Architecture Matters More Than Scale: Surprisingly, BERT-large-uncased (340M parameters)
achieves AMI = 0.60, matching or exceeding models 100× larger. Classic Word2Vec and GloVe,
despite having only static embeddings and predating modern architectures by years, reach AMI
scores rivaling contemporary LLMs’ peak performance. This suggests that fundamental semantic
structure emerges from relatively simple distributional learning, with encoder architectures particu-
larly effective at capturing human-like categories regardless of scale.

5.2 [RQ2] ZOOMING IN: FIDELITY TO FINE-GRAINED SEMANTICS

Having established broad categorical alignment, we now examine whether LLMs capture the internal
semantic structure of categories. Specifically, we check how meaning is preserved within clusters.

Key Finding: Limited Capture of Semantic Nuance

While LLMs effectively form broad conceptual categories, their internal representations
demonstrate only modest alignment with human-perceived fine-grained semantic distinc-
tions, such as item typicality or psychological distance to category prototypes. This suggests
a divergence in how LLMs and humans structure information within concepts.

Approach: We test whether LLMs encode human-like typicality signals, i.e., whether robins are
more “birdy” than penguins. For each item, we compute the cosine similarity with its category name
using embeddings (e.g., ‘robin’ → ‘bird’; cosinesim(E(robin), E(bird)). We then compare these
similarities with human typicality ratings using Spearman’s correlation coefficient ρ (Wissler, 1905).

We employed two analysis approaches: (i) static-layer analysis using embeddings directly from the
input layer; (ii) peak AMI layer analysis using contextual embeddings from the layer that maxi-
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mized AMI in RQ1. For the peak AMI approach, we extracted category embeddings by replacing
items with category names in the same prompt template, ensuring consistent contextualization (see
Appendix F for template and pooling robustness analysis).

Weak Typicality Alignment: Correlations between LLM internal organization of concepts and
human typicality are modest at best (Figure 2 (Right); Tables 3-4 in Appendix N). Static embeddings
show weak correlations: BERT achieves ρ = 0.38 (p < 0.05), while most decoder models fall below
ρ = 0.15. Even when statistically significant, these correlations indicate limited correspondence
with human judgments. This shows that the internal concept geometries of models differ from those
of humans, with representation-focused models aligning more closely.

Architectural Patterns: Several clear patterns emerge in how different architectures capture typ-
icality. Representation-focused models (Word2Vec, GloVe) and most encoder models (both ViT
encoders, BERT-large) demonstrate stronger static-layer performance than decoder-only models
(Llama, Gemma, Qwen families). Static correlations range from ρ ≈ 0.25-0.40 for representation-
focused models versus ρ < 0.15 for most decoders.

This divergence likely stems from training objectives: models explicitly trained for representation
learning appear more effective at capturing semantic category relationships in their embeddings,
while modern decoder-only models, which optimized primarily for next-token prediction, show
consistently lower static-layer correlations. The pattern holds across model scales, suggesting archi-
tectural design matters more than size for capturing fine-grained semantic similarity.

Layer-wise Analysis Reveals a Trade-off: Comparing static and peak AMI layers exposes an archi-
tectural limitation. Peak AMI layers, which are optimal for clustering, show systematically weaker
typicality correlations than static layers. This pattern holds across model families: layers that best
separate categories (RQ1) poorly preserve within-category structure (RQ2). The implication is clear:
current architectures encode different aspects of meaning at different depths, forcing applications to
choose between broad categorization and semantic nuance.

Interpretation: The divergence between LLMs and humans reflects fundamentally different or-
ganizational principles. Humans judge typicality through rich, multidimensional criteria: robins
are typical birds due to size, flight ability, song, frequency of encounter, etc. This creates graded
categories with clear prototypes and cognitive structures that optimize flexible reasoning and gener-
alization.

LLMs, in contrast, appear to encode flatter statistical associations between items and category la-
bels. Although sufficient for categorization and fluent text generation, these representations miss
the prototype structure that makes categories cognitively useful. This difference suggests that LLMs
optimize for different objectives than human cognition, a hypothesis that we test directly in RQ3 by
examining how each system balances compression against semantic preservation.

5.3 [RQ3] THE EFFICIENCY ANGLE: THE COMPRESSION-MEANING TRADE-OFF

Having explored categorical alignment (RQ1) and internal semantic structure (RQ2), we now ad-
dress our central question: How do LLM and human representational strategies compare when
balancing compression against meaning preservation?

Key Finding: Divergent Efficiency Strategies

LLMs demonstrate markedly superior information-theoretic efficiency compared to human
conceptual structures. Evaluated via our L objective, LLM-derived clusters consistently
achieve more “optimal” compression-meaning balance. Human conceptualizations, while
richer, appear less statistically compact, suggesting optimization for cognitive flexibility
over pure statistical efficiency.

Approach: We analyzed human-defined categories and LLM-derived clusters using our L objective
function (Equation 3, β = 1) and mean cluster entropy (Sα). For LLMs, we performed k-means
clustering across various K values to trace the full compression-meaning frontier.

Results: Our analysis reveals three key patterns (Figure 3; full results in Appendix Q):
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(a) Complexity-distortion trade-offs. (b) L objective comparison with human cate-
gories.

Figure 3: Divergent optimization strategies: LLMs achieve superior information-theoretic ef-
ficiency while humans preserve semantic richness. (a) Encoder models (BERT, ViT, classic em-
beddings) consistently achieve lower distortion than decoder models at any given complexity level.
(b) All LLM-derived clusters achieve lower L values than human categories (dashed line), indicat-
ing more “optimal” compression-distortion balance. Data from Rosch (1975).

LLMs Achieve Superior Statistical Efficiency: Both measures reveal stark differences between
LLMs and humans (Figure 3; full results in Appendix Q):

Higher human entropy. Human concepts consistently exhibit higher cluster entropy than LLM clus-
ters at comparable K values, indicating less statistical compactness but greater internal diversity.

Lower LLM L scores. LLM-derived clusters achieve significantly lower L values than human cate-
gories across all tested K (Figure 3b). Since lower L signifies more optimal compression-distortion
balance, LLMs are demonstrably more “efficient” by this information-theoretic measure.

Architectural differences. The Complexity-Distortion plot (Figure 3a) reveals that encoder models
(BERT, ViT, classic models) achieve superior trade-offs. Their distortion at any given complexity is
lower compared to decoder models, across both static and contextual embeddings.

Statistical Optimality Versus Cognitive Utility: This divergence reveals fundamental differences
in optimization pressures. LLMs, trained on massive text corpora, develop maximally efficient
statistical representations that minimize redundancy and internal variance. Although human con-
ceptual systems may look suboptimal under information-theoretic measures, prior work in-
dicates that they are structured to support goals such as flexible generalization and causal
reasoning rather than maximal compression (Murphy, 2004). Thus, the differing pressures
shaping human and LLM representations help explain this apparent suboptimality.

Our analysis reveals that compression efficiency does not predict functional capability. We find no
correlation between L scores and downstream performance (r = −0.20, ρ = 0.51 on MMLU;
Appendix S). This suggests that apparent human “inefficiency” reflects optimization for cognitive
flexibility rather than statistical compression. While LLMs excel at compact representation, they
may sacrifice the semantic richness essential for human-like understanding.

The consistent architectural patterns observed raise fundamental questions: Do understanding and
generation require distinct computational strategies? The superiority of representation-focused mod-
els suggests that current architectures may be conflating two fundamentally different cognitive tasks.

5.4 EMERGENCE DURING TRAINING: HOW DIVERGENT STRATEGIES DEVELOP

Having established that LLMs and humans employ divergent representational strategies, we inves-
tigate how these strategies emerge. Analysis of OLMo-7B across 57 training checkpoints (1K to
557K steps, approximately 4B to 2.5T tokens) reveals how conceptual structure emerges.

Two-Phase Representational Development. Conceptual organization emerges via two phases
(Figure 15). First, rapid concept formation (1K-100K steps) establishes basic categorical struc-
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ture, with AMI rising from near zero to approximately 0.45, achieving 80% of final alignment
within just 10% of training. Second, architectural reorganization (100K-500K steps) systemati-
cally migrates semantic processing from deeper layers toward mid-network while AMI continues
to gradually improve. This migration from layer 29 to layer 23 occurs without sacrificing categor-
ical alignment, suggesting the model discovers more efficient internal representations. Moreover,
this double-phase dynamics occurs when testing attention sparsity, effective rank, and L
values. Meaning, all of which exhibit the same early rapid shift followed by a slower re-
structuring phase. This convergence across independent metrics indicates that the model
is not merely improving categorical alignment, but reorganizing its internal representations
toward increasingly efficient structure. See Appendix H.

Architectural Reorganization as Optimization. The upward migration of semantic processing
hints that the model discovers increasingly efficient encodings. Early training relies on deep,
memorization-heavy representations, but as training progresses, the model shifts to distributed mid-
network encoding. This reorganization may explain apparent “emergent” capabilities: they arise
not from learning fundamentally new information but from more efficient internal organization of
existing knowledge.

Implications. These dynamics demonstrate that the compression-oriented strategy observed in fully
trained models develops from the earliest stages of training. The rapid initial alignment followed
by efficiency-focused reorganization suggests models are inherently biased toward statistical com-
pression rather than semantic richness. Achieving human-like representations may require not just
different final objectives but fundamentally different learning dynamics that actively maintain se-
mantic diversity throughout development.

6 DISCUSSION AND CONCLUSION

We investigated how LLMs and humans navigate the compression-meaning trade-off in concep-
tual representation. Using information-theoretic analysis of 40+ models against classic cognitive
benchmarks, we reveal fundamental differences in their representational strategies.

Key Findings. LLMs achieve broad categorical alignment with humans (AMI ≈ 0.55), successfully
partitioning semantic space into recognizable categories. However, they fail to capture the inter-
nal structure that makes these categories cognitively useful, as typicality correlations remain weak
(ρ < 0.2) across model families. Most strikingly, when evaluated on the compression-meaning
trade-off, LLMs consistently achieve lower (better) L scores than human categories, indicating they
optimize for statistical efficiency over semantic richness. This pattern holds across architectures,
though encoder models surprisingly outperform decoder models in human alignment despite being
orders of magnitude smaller. Training dynamics analysis reveals rapid category formation followed
by architectural reorganization that shifts semantic processing from deep to mid-network layers,
suggesting efficiency optimization continues throughout training.

Implications. These findings challenge the assumption that statistical optimality equals understand-
ing. LLMs excel at their training objective, which is minimizing prediction error, but this drives them
toward representations that sacrifice semantic nuances. Encoder models’ superior alignment with
human representations questions the current paradigm of unified, scaled decoder models, suggest-
ing that language understanding and generation may require distinct architectures and rely
on different processes. Our framework provides quantitative tools for monitoring the compression-
meaning balance in future systems.

Conclusions. Our findings reveal an apparent paradox, showing that LLMs are simultaneously
better and worse than humans. This occurs because LLMs and humans employ divergent strate-
gies: statistical compression versus semantic richness, likely reflecting different optimization
pressures. While LLMs process billions of tokens efficiently, humans enable flexible reasoning and
generalization. Progress toward human-like AI may require preserving the apparent “inefficien-
cies” that support cognitive flexibility. We provide theoretical understanding, practical metrics, and
high-quality digital benchmarks to develop more human-aligned representations. We encourage the
community to utilize the data and metrics for future research towards making AI more human-like.
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7 ETHICS STATEMENT

Our study relies exclusively on publicly available LLMs and digitized datasets from classic cognitive
psychology experiments (Rosch, 1973a; 1975; McCloskey & Glucksberg, 1978). No new human
subject data was collected, and all benchmark data we release have been properly attributed and
curated to preserve research integrity.

We do not foresee privacy, security, or fairness risks arising from our analyses. Our contribution is
methodological and theoretical, focusing on representational trade-offs between humans and LLMs.
Nevertheless, we acknowledge that insights into model-human divergences could influence how
future systems are designed. We caution that optimizing solely for statistical efficiency without
considering semantic richness may exacerbate risks of misinterpretation or oversimplification in
socially sensitive applications.

We declare no conflicts of interest or external sponsorship that could bias the reported findings.

8 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility. All digitized human categorization datasets
used in our analyses are publicly released in machine-readable form (Appendix B.1). Detailed model
specifications, including architectures, scales, and hyperparameters, are provided in Appendix B.2,
and we document embedding extraction procedures, pooling strategies, and prompt templates in
Appendix B.3-B.4. Full experimental results, including layer-wise analyses, clustering metrics, and
training dynamics across checkpoints, are reported in the appendices (B.5-B.14). Our theoretical
framework and derivations are described in Section 4, with complete definitions and formulations
provided to enable replication. We will release the code for dataset processing, embedding extrac-
tion, and evaluation upon acceptance (to preserve anonymity).
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A COGNITIVE INTUITION

A.1 A COGNITIVE INTUITION OF THE COMPRESSION-MEANING TRADEOFF

The compression-meaning tradeoff refers to the cognitive tension between representing
concepts with maximal efficiency (i.e., minimal information) and preserving the semantic
richness needed for flexible generalization, inference, and communication. For instance,
upon hearing the sentence “There was a large brown Labrador barking loudly near the
playground,” a person will often encode a simplified memory, such as “big scary dog near
kids.” This is not to suggest that humans cannot recall the full sentence, but rather that we
typically retain the most meaningful elements to enable efficient reasoning and general-
ization; without such abstraction and simplification, leveraging past experience for learning
and prediction would be more difficult.

We acknowledge that our metrics, while capturing the information-compression trade-
off and geometric efficiency in embedding space, do not directly measure all aspects of
human-style conceptual abstraction or reasoning. Our aim is not to claim full equivalence
with human cognition (nor do we think anyone can or should make such claims), but rather
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to provide a quantitative, interpretable proxy that highlights where LLMs and humans con-
verge or diverge in how they compress and organize semantic information. We view these
metrics as one lens among many, and we are careful in the paper to frame our findings as
providing insights into human-like patterns rather than definitive evidence of human-style
conceptual processing.

A.2 COGNITIVELY-INSPIRED INDUCTIVE BIASES

Future models could more closely align with human conceptual structure by incorporat-
ing cognitively motivated inductive biases and representational mechanisms. Hierarchical
and compositional structure could enable models to capture nested relationships between
categories, reflecting the way humans organize knowledge from superordinate to basic-
level concepts (e.g., animal → mammal → dog → Labrador). Feature- and relation-based
biases could help models focus on meaningful perceptual or functional attributes and rela-
tional patterns, rather than relying solely on statistical co-occurrence.

Additionally, theory- or causally grounded priors that draw on humans’ intuitive understand-
ing of how objects interact or behave, could constrain learning in complex domains and
support more flexible generalization. Incorporating a hybrid exemplar-rule approach, com-
bining memory of specific examples with abstracted rules, would further approximate hu-
man category learning. Modular architectures, in which specialized sub-networks handle
different aspects of conceptual representation, could enhance generalization and reduce
interference between unrelated features. Finally, meta-learned priors distilled from sym-
bolic or program-based representations offer a way to embed structured, human-like con-
cept hypotheses directly into neural models, allowing them to generalize more like humans
across novel situations.

Together, these inductive biases offer a path for models that not only compress information
efficiently but also organize knowledge in a manner that mirrors human conceptual rich-
ness, capturing graded typicality, family resemblance, and hierarchical relationships. While
integrating these biases may trade some compression for fidelity, they provide an exciting
opportunity to reduce meaning distortion and bridge the gap between statistical efficiency
and human-like conceptual understanding.

B LIMITATIONS

While this study offers valuable insights, several limitations should be considered.

• Our analysis primarily focuses on English; generalizability across languages with different
structures is an open question.

• Human categorization data as a benchmark may not fully capture cognitive complexity and
could introduce biases.

• Our IB-RDT objective is applied to specific LLMs; other models or representations might
behave differently.

• Our analysis is limited to textual input and does not explore image-based representations.

Future work could address these by expanding to other languages, exploring alternative cognitive
models, and testing these principles on different architectures or in real-world applications.

C DATASET ACCESS DETAILS

The aggregated and digitized human categorization datasets from Rosch (1973a; 1975); McCloskey
& Glucksberg (1978) are made available in CSV format at: [URL deduced for anonymity; Data is
attached as Supplementary Material].

D LLM DETAILS

• BERT family: deberta-large, bert-large-uncased, roberta-large (Devlin et al., 2019; He
et al., 2020; Zhuang et al., 2021).
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• QWEN family: qwen2-0.5b, qwen2.5-0.5b, qwen1.5-0.5b, qwen2.5-1.5b, qwen2-1.5b,
qwen1.5-1.5b, qwen1.5-4b, qwen2.5-4b, qwen2-7b, qwen1.5-14b, qwen1.5-32b, qwen1.5-
72b, qwen2.5-72b (Bai et al., 2023; Yang et al., 2024).

• Llama family: llama-3.2-1b, llama-3.1-8b, llama-3-8b, llama-3-70b, llama-3.1-70b (Tou-
vron et al., 2023a;b; Grattafiori et al., 2024).

• Phi family: phi-1.5, phi-1, phi-2, phi-4 (Javaheripi et al., 2023; Abdin et al., 2024; Aboue-
lenin et al., 2025).

• Gemma family: gemma-2b, gemma-2-2b, gemma-7b, gemma-2-9b (Team et al., 2024;
2025).

• Mistral family: mistral-7b-v0.3 (Karamcheti et al., 2021).
• GPT family: gpt2, gpt2-medium (Radford et al., 2019).
• DeepSeek family: DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-

7B, DeepSeek-R1-Distill-Qwen-14B, DeepSeek-R1-Distill-Qwen-32B, DeepSeek-
R1-Distill-Llama-8B (DeepSeek-AI, 2025).

• OLMo family: Olmo-7b (Groeneveld et al., 2024).
• ViT family: Clip ViT-B/32, Clip ViT-B/16 (Radford et al., 2021).
• Classic static embeddings: GloVe, Word2Vec (Pennington et al., 2014; Mikolov et al.,

2013a;b).

E CONTEXTUAL PROMPTS AND POOLING STRATEGIES

Contextual embeddings of LLMs require feeding words into the model through a prompt. Because
tokenizers often split a word into multiple tokens, and since some items in our datasets consist of
two or more words, we face a design choice regarding how to aggregate token representations. In
our methodology, we adopt average pooling over the actual tokens, ensuring that all subword pieces
contribute equally. Figures 4 and 5 reveal that the average pooling strategy achieves consistent
performance and demonstrates the tightest distribution, making it the most reliable choice for our
research.

For prompts, we selected a neutral template, "This is a {word}. " (with a trailing space),
designed to minimize any additional semantic bias on the target item. Figures 6 and 7 show this
prompt to balance performance and consistency, making it ideal for baseline comparisons.

In this section, we explore alternative pooling strategies and evaluate a diverse set of prompt tem-
plates across multiple models.

Pooling Strategies. We compare four common approaches:

• Avg - mean over all tokens representing the word
• First - representation of the first token
• Last - representation of the last token
• Sentence Avg - mean over the full sentence embedding

Prompt Templates. To test robustness, we design eight templates spanning different linguistic
framings:

• "This is a {word}."
• "This is a {word}. " (with trailing space)
• "The concept of {word} is"

• "When we think of {word}, we consider"

• "A typical {word} would be"

• "Examples of {word} include"

• "The category {word} contains"

• "One kind of {word} is"
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Figure 4: Average pooling demonstrates consistent performance across different models, mak-
ing it the most reliable choice for future research. Each point corresponds to a prompt template
applied to a model.

Models. We evaluate eight representative LLMs covering major architectures:

• bert-large-uncased (BERT family)
• deberta-large (DeBERTa family)
• gemma-2-2b (Gemma family)
• Llama-3.2-1B (Llama family)
• Mistral-7B-v0.3 (Mistral family)
• phi-2 (Phi family)
• Qwen2.5-1.5B (Qwen family)
• roberta-large (RoBERTa family)

F STATIC VS. CONTEXTUAL AMI EXPLORATION

To understand how LLMs develop conceptual alignment with human categories, we examine the
progression from static to contextual embeddings. Figure 8 presents three complementary views of
this progression across different model scales and architectures.

The left subplot shows Static AMI scores, which represent the conceptual alignment achieved by
models’ input embeddings before any contextual processing (i.e., the E matrix embeddings of the tar-
get word). These scores reveal that even at the most basic level, LLMs encode semantic information
that supports human-like categorical grouping. Remarkably, classic static models like Word2Vec
and GloVe achieve static AMI scores that rival the peak contextual performance of modern LLMs,
suggesting that fundamental conceptual structure is captured early in the learning process.

The middle subplot displays Average AMI across all layers, providing a measure of overall se-
mantic representation quality throughout the network. This metric shows the typical performance a
model achieves across its entire depth, offering insight into how consistently different layers main-
tain conceptual alignment. The improvement from static to average AMI demonstrates that contex-
tual processing generally enhances rather than diminishes semantic understanding.

The right subplot reveals Peak AMI, representing the optimal conceptual alignment achieved by any
single layer. This metric identifies where in the network conceptual understanding is maximized,
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Figure 5: Average pooling demonstrates the tightest distribution, indicating the highest consis-
tency and reliability across different conditions. Performance Distribution by Pooling Strategy -
Box plots showing AMI distribution for each pooling strategy

Figure 6: The neutral prompt template ”This is a word. ” demonstrates balanced performance
and moderate consistency, making it ideal for baseline comparisons. Performance Distribution
across various prompts.

typically occurring in middle-to-late layers before declining in the final layers. The progression from
static to peak AMI shows that contextual processing not only preserves but significantly enhances
the conceptual alignment present in static embeddings.

Several key insights emerge from this multi-metric analysis. First, all models demonstrate above-
chance alignment even in their static embeddings, confirming that basic semantic structure is a
fundamental property of learned representations. Second, the consistent improvement from static to
peak AMI across all model types suggests that contextual processing universally enhances concep-
tual understanding rather than creating it de novo. Third, encoder architectures of different types

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 7: The neutral template "This is a {word}. " remains a stable choice across
families. Heatmap showing template performance per model.

(BERT, ViT encoders, and classic models) achieve comparable or superior performance to much
larger decoder models, highlighting that architectural factors and pre-training objectives signifi-
cantly influence conceptual alignment quality beyond mere model scale.

This analysis complements the main text findings by showing that LLMs do not simply achieve
above-chance alignment with human categories but rather so through a systematic progression from
basic to sophisticated conceptual representations, with contextual processing serving as an amplifier
rather than a generator of semantic understanding.

Figure 8: LLMs begin with basic conceptual alignment in static embeddings and achieve pro-
gressively stronger alignment through contextual processing. Three subplots showing model size
(log scale) versus different AMI metrics. Left: Static AMI reveals baseline categorical structure.
Middle: Average AMI across layers shows overall semantic quality. Right: Peak AMI demonstrates
high conceptual alignment. The consistent improvement from static to peak AMI across all model
types reveals that contextual processing enhances rather than creates conceptual understanding, with
encoders (BERT, ViT encoders and classic models) achieving comparable or superior performance
to much larger decoder models.

We also tested the robustness of our results to different clustering seeds (Figure 9). We
found AMI to be highly stable across seeds, with negligible variation in the peak values
and layer-wise profiles, indicating that our conclusions are not sensitive to the choice of
clustering initialization.
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Figure 9: AMI Scores are Robust Across Clustering Seeds. Peak AMI between model
representations and human categories remains highly stable across multiple random clus-
tering initializations. Peaks in each plot are consistent, indicating that the observed align-
ment patterns are not sensitive to the choice of clustering seed.
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Lastly, we plot the peak AMI against the number of FLOPS per token and find no system-
atic correlation, suggesting that computational cost alone does not predict human-aligned
conceptual representations (Figure 10.)

Figure 10: Peak AMI versus computational cost. We plot each model’s peak AMI against
its FLOPS per token. There is no systematic correlation, indicating that higher computa-
tional cost does not necessarily lead to better alignment with human conceptual structure.

G MULTILINGUAL ANALYSIS

To further explore conceptual understanding across languages, we translated our dataset
into Spanish, German, Italian, and Russian using Google Translate’s API and repeated our
analyses with the same LLMs and methods. In RQ1, a clear scale effect emerges for all
non-English languages, while English shows no such trend (Figures 11, 12). We interpret
this as a consequence of limited non-English training data: larger models are more likely to
have been exposed to sufficient multilingual data, improving their conceptual alignment. In
RQ2, all models struggle to preserve the internal geometry of human concepts across lan-
guages (Figure 13). RQ3 shows that non-English languages exhibit greater compression
(Figure 14), consistent with our explanation for RQ1: smaller exposure to non-English data
leads to more compressed representations, reducing flexibility and interpretability.

H TRAINING DYNAMICS

The OLMo analysis examines how semantic structure develops during training by analyzing 57
intermediate checkpoints from the OLMo-7B model, representing evenly spaced sampling (every
10K training steps) spanning from 1K to 557K steps (covering approximately 4B to 2.5T tokens).

The analysis employs two complementary sampling strategies: representative sampling (6 check-
points) captures major developmental phases at 1K, 101K, 201K, 301K, 401K, and 501K steps,
while high-resolution sampling (57 checkpoints) reveals the inherent noise and fluctuations in
training. Despite significant training noise, the overall semantic development follows a stable, pre-
dictable pattern captured by the representative sampling, as shown in Figure 16. The complete
training trajectory with all 57 checkpoints is presented in Figure 17.

Moreover, this double-phase dynamics occurs when testing attention sparsity, effective
rank, and L values (Figures 18, 19). Meaning, all of which exhibit the same early rapid
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Figure 11: Scale effect emerges for non-English languages. We compute peak AMI as
a function of model size across different languages: English (red), Spanish (blue), Italian
(purple), German (yellow), and Russian (pink). While English shows no systematic scal-
ing effect, the other languages exhibit a clear positive relationship between model size and
AMI. We interpret this as a consequence of limited non-English training data: larger models
are more likely to have been exposed to sufficient multilingual data, improving their concep-
tual alignment. Additional analyses across other RQs using the multilingual data support
this hypothesis.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 12: Scale effect emerges for non-English languages. We compute peak AMI as
a function of model size across different languages: English (red), Spanish (blue), Italian
(purple), German (yellow), and Russian (pink). While English shows no systematic scal-
ing effect, the other languages exhibit a clear positive relationship between model size and
AMI. We interpret this as a consequence of limited non-English training data: larger models
are more likely to have been exposed to sufficient multilingual data, improving their concep-
tual alignment. Additional analyses across other RQs using the multilingual data support
this hypothesis.

Figure 13: Preservation of internal conceptual geometry across languages. Models
struggle to maintain the internal structure of human concepts in all tested languages, with
similar patterns observed across English, Spanish, German, Italian, and Russian.
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shift followed by a slower restructuring phase. This convergence across independent met-
rics indicates that the model is not merely improving categorical alignment, but reorganizing
its internal representations toward increasingly efficient structure.

I DATASETS POLYSEMY

Scope. We quantify lexical ambiguity in our psycholinguistic stimuli by counting the distinct Word-
Net synsets associated with each lemma. This polysemy score lets us estimate how many alternative
senses a model must implicitly conflate when it produces a single embedding for a word.

Why it matters. Consider bat, which can denote either a flying mammal or a piece of sports
equipment. The same vector must account for both senses. Aggregating semantically distant senses
can blur the representation and thus confound model-human comparisons, especially in tasks that
rely on fine-grained semantic similarity. Explicitly tracking polysemy allows us to verify that any
performance effects we observe are not artefacts of lexical ambiguity.

Results Figure 20 shows the distribution of polysemy scores. The majority of items are unambigu-
ous (1-2 senses), but a heavy-tailed minority (e.g. Running (52 senses), Saw (28), Block (28)) is
highly polysemous. This suggests that our findings are due to real differences between the mod-
els rather than polysemy-related artifacts. An additional 141 lemmas that are not in WordNet were
omitted.

J TOKENIZER ANALYSIS

Rational. The tokenizer of a model has a significant influence over the representations: segmen-
tation rules (WordPiece vs. BPE), vocabulary size and special control tokens can inflate sequence
length, skew frequency statistics, and shape error patterns. To ensure fair cross-model comparisons,
we therefore (i) cluster checkpoints by the tokenizer they use and (ii) quantify how much those
tokenizers overlap when applied to our datasets.

Procedure. Before computing overlap, we normalize the vocabulary, stripping tokenizer-specific
characters; SentencePiece prefixes ( ), GPT-style BPE space prefixes (_G/_g) and newline markers
(_C), WordPiece continuations markers (##), and related block characters. After this cleanup, tokens
differing only by such prefixes collapse to a shared canonical form (e.g. house, _Ghouse, and
##house all become house). We then compute pair-wise Jaccard similarity on these cleaned
vocabularies.

Table 1 summarizes the core statistics and information regarding the tokenizer types, while Figure 21
visualizes the resulting pairwise vocabulary overlap.

Findings. We find that most tokenizer families share substantial lexical overlap, often exceed-
ing 60%, suggesting a de-facto common token inventory across recent open-source models. First-
generation BERT WordPiece (bert-large-uncased and bert-base-uncased) are an outlier, sharing un-
der 16% of tokens with any other group.

Model Family Mean Tokens / Item Vocabulary Size Tokenizer Type
BERT 1.65 30K WordPiece
DeBERTa & RoBERTa 2.30 50K WordPiece
GPT 2.30 50K BPE
Gemma 1.65 256K SentencePiece (subword)
Llama 2.19 128K BPE (SentencePiece/Tiktoken)
Mistral 2.35 32K BPE + control tokens
Phi 2.30 32K BPE (SentencePiece/Tiktoken)
Qwen 2.19 151.6K BPE

Table 1: Tokenizer statistics by tokenizer family. Mean Tokens/Items refer to the average of the
tokens per item in our datasets. The columns Vocabulary Size and Tokenizer Type are properties of
the tokenizer.
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Model Clustering By Tokenizer Family

• Llama: Llama-3.2-1B (representative), Llama-3.1-8B, Meta-Llama-3-8B, Llama-3.1-70B,
Meta-Llama-3-70B

• Gemma: gemma-2-9b (representative), gemma-7b, gemma-2b, gemma-2-2b
• Mistral: Mistral-7B-v0.3 (unique)
• Phi: phi-2 (representative), phi-1, phi-1.5
• RoBERTa: roberta-large (unique)
• DeBERTa: deberta-large (unique)
• GPT: gpt2-medium (representative), gpt2
• BERT: bert-large-uncased (representative), bert-base-uncased
• Qwen: Qwen1.5-0.5B (representative), Qwen1.5-1.8B, Qwen1.5-14B, Qwen2-0.5B,

Qwen2-7B, Qwen2.5-0.5B, Qwen2.5-1.5B, Qwen2.5-32B, Qwen1.5-32B, phi-43

K ADDITIONAL CLUSTERING METRICS

To further validate our cluster alignment findings (Section 5.1), in addition to Adjusted Mutual
Information (AMI) and the Normalized Mutual Information (NMI), we also computed the Adjusted
Rand Index (ARI) for the k-means clusters derived from LLM embeddings against human-defined
categories. ARI measures the similarity between two data clusterings, correcting for chance. Like
AMI, a score of 1 indicates perfect agreement and 0 indicates chance agreement.

Across all tested LLMs, the ARI and NMI scores largely mirrored the trends observed with AMI,
showing significantly above-chance alignment with human categories and similar relative model per-
formances. Silhouette scores, while more variable, generally indicated reasonable cluster cohesion
for both LLM-derived and human categories. Detailed tables of these scores are provided below.

These supplementary metrics reinforce the conclusion that LLMs capture broad human-like concep-
tual groupings.

L MINI-CONTROLLED EXPERIMENT (MATCHED TRAINING DATA)

To evaluate the extent to which dataset differences might account for the architectural pat-
terns we report, we conducted matched-family analyses involving the only model families
that can be aligned in both training data: GPT, Pythia, Cerebras, and T5. While these com-
parisons cannot rule out all confounds, they substantially reduce the influence of dataset
variation. Across all matched settings, encoder models continue to outperform decoder
models, yielding higher AMI and lower L. This indicates that the architectural effects ob-
served throughout the paper cannot be explained by differences in training data alone.

M DETAILED AMI SCORES PER MODEL AND DATASET

Table 2 provides a more granular view of the static AMI scores for each LLM across the three
individual psychological datasets.

Dataset Model NMI AMI ARI
(Rosch, 1973c) bert-large-uncased 0.19453 0.2011 0.11336
(Rosch, 1975) bert-large-uncased 0.16547 0.27324 0.2216
(McCloskey & Glucksberg, 1978) bert-large-uncased 0.12003 0.15934 0.06306
(Rosch, 1973c) FacebookAI/roberta-large 0.1021 0.10666 0.03393
(Rosch, 1975) FacebookAI/roberta-large 0.12138 0.23938 0.14165
(McCloskey & Glucksberg, 1978) FacebookAI/roberta-large 0.06271 0.08873 0.03173

3phi-4 has a different tokenizer than the rest of Phi family. The results of its tokenizer match the tokenizer
of the Qwen family.
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(Rosch, 1973c) google-t5/t5-large 0.16583 0.16855 0.03676
(Rosch, 1975) google-t5/t5-large -0.03799 0.04179 0.00758
(McCloskey & Glucksberg, 1978) google-t5/t5-large 0.06146 0.08825 0.0082
(Rosch, 1973c) google/gemma-2-27b 0.08523 0.09065 0.04158
(Rosch, 1975) google/gemma-2-27b 0.04276 0.10062 0.06244
(McCloskey & Glucksberg, 1978) google/gemma-2-27b 0.07814 0.10274 0.04364
(Rosch, 1973c) google/gemma-2-2b 0.04029 0.04107 0.01212
(Rosch, 1975) google/gemma-2-2b 0.04529 0.14844 0.07596
(McCloskey & Glucksberg, 1978) google/gemma-2-2b 0.09953 0.13593 0.06326
(Rosch, 1973c) google/gemma-2-9b 0.1222 0.12757 0.06053
(Rosch, 1975) google/gemma-2-9b 0.07841 0.16126 0.09617
(McCloskey & Glucksberg, 1978) google/gemma-2-9b 0.10879 0.13997 0.06439
(Rosch, 1973c) google/gemma-2b 0.04336 0.04616 0.01593
(Rosch, 1975) google/gemma-2b -0.00353 0.04483 0.01577
(McCloskey & Glucksberg, 1978) google/gemma-2b 0.03472 0.05484 0.02142
(Rosch, 1973c) google/gemma-7b 0.04459 0.04547 0.01052
(Rosch, 1975) google/gemma-7b -0.03055 0.02644 0.01506
(McCloskey & Glucksberg, 1978) google/gemma-7b 0.03338 0.05724 0.02176
(Rosch, 1973c) meta-llama/Llama-3.1-70B 0.03008 0.03528 0.01936
(Rosch, 1975) meta-llama/Llama-3.1-70B -0.07026 0.02636 0.00392
(McCloskey & Glucksberg, 1978) meta-llama/Llama-3.1-70B -0.04773 0.00972 0.00236
(Rosch, 1973c) meta-llama/Llama-3.1-8B 0.00473 0.00393 0.00023
(Rosch, 1975) meta-llama/Llama-3.1-8B -0.03928 0.05489 0.01884
(McCloskey & Glucksberg, 1978) meta-llama/Llama-3.1-8B -0.02671 0.02208 6.00E-05
(Rosch, 1973c) meta-llama/Llama-3.2-1B 0.01936 0.01567 0.00246
(Rosch, 1975) meta-llama/Llama-3.2-1B -0.01876 0.05663 0.00782
(McCloskey & Glucksberg, 1978) meta-llama/Llama-3.2-1B 0.03625 0.06798 0.01352
(Rosch, 1973c) meta-llama/Llama-3.2-3B 0.03757 0.03537 0.00876
(Rosch, 1975) meta-llama/Llama-3.2-3B 0.01893 0.09619 0.03193
(McCloskey & Glucksberg, 1978) meta-llama/Llama-3.2-3B 0.03914 0.07395 0.0202
(Rosch, 1973c) meta-llama/Meta-Llama-3-70B 0.02289 0.03133 0.01514
(Rosch, 1975) meta-llama/Meta-Llama-3-70B -0.06428 0.0185 0.00554
(McCloskey & Glucksberg, 1978) meta-llama/Meta-Llama-3-70B -0.04595 0.01068 0.00272
(Rosch, 1973c) meta-llama/Meta-Llama-3-8B 0.03512 0.02852 0.00225
(Rosch, 1975) meta-llama/Meta-Llama-3-8B -0.06011 0.03694 0.00676
(McCloskey & Glucksberg, 1978) meta-llama/Meta-Llama-3-8B -0.0355 0.0219 0.00676
(Rosch, 1973c) microsoft/deberta-large 0.03748 0.03909 0.01467
(Rosch, 1975) microsoft/deberta-large 0.16568 0.28993 0.20527
(McCloskey & Glucksberg, 1978) microsoft/deberta-large 0.03217 0.06175 0.03019
(Rosch, 1973c) microsoft/phi-1 5 0.02102 0.01786 0.0075
(Rosch, 1975) microsoft/phi-1 5 0.03989 0.13887 0.04305
(McCloskey & Glucksberg, 1978) microsoft/phi-1 5 0.00895 0.05215 0.00639
(Rosch, 1973c) microsoft/phi-1 0.0249 0.01698 0.00133
(Rosch, 1975) microsoft/phi-1 -0.03625 0.02811 0.00217
(McCloskey & Glucksberg, 1978) microsoft/phi-1 -0.01148 0.03085 0.00371
(Rosch, 1973c) microsoft/phi-2 0.03703 0.02968 0.00404
(Rosch, 1975) microsoft/phi-2 -0.03654 0.04227 0.03942
(McCloskey & Glucksberg, 1978) microsoft/phi-2 -0.00254 0.02531 0.00533
(Rosch, 1973c) microsoft/phi-4 0.03075 0.03043 0.01076
(Rosch, 1975) microsoft/phi-4 -0.06737 0.00092 -0.01361
(McCloskey & Glucksberg, 1978) microsoft/phi-4 -0.01789 0.02705 0.00066
(Rosch, 1973c) mistralai/Mistral-7B-v0.3 0.0425 0.03507 0.00357
(Rosch, 1975) mistralai/Mistral-7B-v0.3 -0.05018 0.01217 0.0177
(McCloskey & Glucksberg, 1978) mistralai/Mistral-7B-v0.3 -0.01264 0.03902 0.00931
(Rosch, 1973c) Qwen/Qwen1.5-0.5B 0.00148 -0.00225 0.00399
(Rosch, 1975) Qwen/Qwen1.5-0.5B -0.01538 0.04833 0.0095
(McCloskey & Glucksberg, 1978) Qwen/Qwen1.5-0.5B 0.02559 0.06023 0.00771
(Rosch, 1973c) Qwen/Qwen1.5-1.8B 0.03397 0.03232 0.01034
(Rosch, 1975) Qwen/Qwen1.5-1.8B -0.01129 0.05803 0.00683
(McCloskey & Glucksberg, 1978) Qwen/Qwen1.5-1.8B -0.00541 0.03614 0.00538
(Rosch, 1973c) Qwen/Qwen1.5-14B 0.0372 0.02738 0.0028
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(Rosch, 1975) Qwen/Qwen1.5-14B -0.02604 0.05153 0.01211
(McCloskey & Glucksberg, 1978) Qwen/Qwen1.5-14B 0.00124 0.04136 0.00338
(Rosch, 1973c) Qwen/Qwen1.5-32B 0.02638 0.02436 0.00409
(Rosch, 1975) Qwen/Qwen1.5-32B -0.03413 0.02526 -0.00665
(McCloskey & Glucksberg, 1978) Qwen/Qwen1.5-32B -0.01991 0.02124 -0.00059
(Rosch, 1973c) Qwen/Qwen1.5-4B 0.03803 0.04058 0.01742
(Rosch, 1975) Qwen/Qwen1.5-4B -0.03309 0.03988 0.01678
(McCloskey & Glucksberg, 1978) Qwen/Qwen1.5-4B -0.03997 0.00548 -0.00028
(Rosch, 1973c) Qwen/Qwen1.5-72B 0.03697 0.02892 0.00144
(Rosch, 1975) Qwen/Qwen1.5-72B -0.06184 0.02213 0.0017
(McCloskey & Glucksberg, 1978) Qwen/Qwen1.5-72B -0.02022 0.02918 0.00297
(Rosch, 1973c) Qwen/Qwen2-0.5B 0.02266 0.01923 0.00662
(Rosch, 1975) Qwen/Qwen2-0.5B 0.0515 0.14571 0.04999
(McCloskey & Glucksberg, 1978) Qwen/Qwen2-0.5B 0.01508 0.04357 0.00643
(Rosch, 1973c) Qwen/Qwen2-1.5B 0.02956 0.02779 0.00544
(Rosch, 1975) Qwen/Qwen2-1.5B -0.03595 0.03443 -0.01099
(McCloskey & Glucksberg, 1978) Qwen/Qwen2-1.5B 0.01768 0.05407 0.01604
(Rosch, 1973c) Qwen/Qwen2-7B 0.06424 0.06439 0.02067
(Rosch, 1975) Qwen/Qwen2-7B 0.0333 0.09155 0.02832
(McCloskey & Glucksberg, 1978) Qwen/Qwen2-7B 0.05329 0.07599 0.01977
(Rosch, 1973c) Qwen/Qwen2.5-0.5B 0.03165 0.03291 0.01029
(Rosch, 1975) Qwen/Qwen2.5-0.5B -0.06534 -0.0196 -0.01165
(McCloskey & Glucksberg, 1978) Qwen/Qwen2.5-0.5B 0.0062 0.04191 0.0054
(Rosch, 1973c) Qwen/Qwen2.5-1.5B 0.04838 0.0489 0.0129
(Rosch, 1975) Qwen/Qwen2.5-1.5B 0.03785 0.113 0.02761
(McCloskey & Glucksberg, 1978) Qwen/Qwen2.5-1.5B 0.06166 0.08675 0.03162
(Rosch, 1973c) Qwen/Qwen2.5-3B 0.03882 0.0348 0.00465
(Rosch, 1975) Qwen/Qwen2.5-3B 0.03977 0.10821 0.04302
(McCloskey & Glucksberg, 1978) Qwen/Qwen2.5-3B 0.03416 0.07307 0.02959
(Rosch, 1973c) Qwen/Qwen2.5-7B 0.0529 0.05051 0.01605
(Rosch, 1975) Qwen/Qwen2.5-7B -0.00905 0.03227 0.01044
(McCloskey & Glucksberg, 1978) Qwen/Qwen2.5-7B 0.00222 0.02759 0.00551

Table 2: Mutual information measures (normalized mutual information, adjusted mutual informa-
tion, adjusted rand index) per model per dataset. Aggregated results are shown in the main paper
and the Figures in the Appendix.

N CORRELATION BETWEEN HUMAN TYPICALITY JUDGMENTS AND LLM
INTERNAL CLUSTER GEOMETRY

The following tables present the Spearman correlation coefficients (ρ) between human typicality judgments and
LLM internal representations across different analysis approaches:

Table 3: Static analysis correlations using embeddings from the E matrix. This approach captures the baseline
semantic relationships between items and categories without contextual processing.

Table 4: Peak AMI layer analysis correlations using contextual embeddings from the layer that maximized
AMI scores (as identified in RQ1). This approach leverages the optimal layer for semantic clustering to assess
fine-grained semantic fidelity.

Both tables present correlations across three cognitive science datasets: Rosch (1973), Rosch (1975), and
McCloskey (1978), with asterisks (*) indicating statistically significant correlations (p < 0.05). The modest
correlation values across most models suggest limited alignment between LLM internal representations and
human-perceived semantic nuances.

O TYPICALITY AND COSINE SIMILARITY [RQ2]

Figure 25 shows representative scatter plots illustrating the relationship between human typicality scores (or
psychological distances) and the LLM-derived item-centroid cosine similarities for selected categories and
models. These plots visually demonstrate the often modest correlations discussed in Section 5.2.
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Model Dataset Correlation (Spearman ρ) - Static Layer
Rosch (1973) Rosch (1975) McCloskey (1978)

Deberta large (304M) 0.144 0.107* 0.075
Bert large (340M) 0.378* 0.275* 0.250*
Roberta large (355M) 0.005 0.038 -0.029
Gemma (2B) 0.069 0.078 0.007
Gemma 2 (2B) 0.236 0.119* 0.147*
Gemma (7B) 0.131 0.100* 0.007
Gemma 2 (9B) 0.280 0.135* 0.199*
Gemma 2 (27B) 0.112 0.122* 0.161*
Qwen1.5 (0.5B) 0.175 0.076 0.096*
Qwen2 (0.5B) 0.238 0.041 0.040
Qwen2.5 (0.5B) 0.212 0.027 0.037
Qwen2.5 (1.5B) 0.141 0.086* 0.078
Qwen1.5 (1.8B) 0.172 0.134* 0.154*
Qwen2 (7B) 0.036 0.087* 0.040
Qwen1.5 (14B) 0.154 0.086* 0.108*
Qwen1.5 (32B) -0.032 0.100* 0.081
Qwen2.5 (32B) 0.035 0.105* 0.084
Mistral v0.3 (7B) 0.076 0.152* -0.009
Llama 3.2 (1B) 0.301* 0.056 0.039
Llama 3 (8B) -0.002 0.099* 0.080
Llama 3.1 (8B) 0.004 0.108* 0.081
Llama 3 (70B) 0.148 0.161* 0.155*
Llama 3.1 (70B) 0.122 0.161* 0.155*
Phi 1 (1.42B) 0.071 0.052 0.054
Phi 1.5 (1.42B) -0.088 0.079 0.018
Phi 2 (2.78B) -0.056 0.044 0.024
Phi 4 (14.7B) 0.079 0.086* 0.097*
T5 Large (770M) 0.235 0.259* 0.178*
GPT-2 Medium (355M) -0.032 0.063 -0.017
ViT-B/32 Text (63.1M) 0.527* 0.315* 0.286*
ViT-B/16 Text (63.1M) 0.528* 0.289* 0.278*
Word2Vec (300D) 0.442* 0.349* 0.437*
Glove (300D) 0.315* 0.333* 0.350*

Table 3: Correlation between Human Typicality Judgments and LLM Internal Cluster Geome-
try. Spearman static-layer rank correlations between human-rated psychological typicality/distance
(higher human scores = less typical/more distant) and item-to-centroid cosine similarity (higher sim-
ilarity = more central to LLM cluster). ∗p < 0.05.

Figure 26 shows the aggregated Spearman correlation across model families and datasets. These correlations
are very weak and mostly non-significant.

P THEORETICAL EXTREME CASE EXPLORATION FOR L

In the case where |C| = |X| (each data point is a cluster of size 1, so |Cc| = 1 ∀c ∈ C), then H(X|C) =
1

|X|
∑

c∈C 1 · log2 1 = 0. The distortion term σ2
c = 0 for each cluster as the item is its own centroid. Thus,

L = I(X;C) + β · 0 = H(X) −H(X|C) = H(X) = log2 |X|. This represents the cost of encoding each
item perfectly without any compression via clustering, and zero distortion.

In the case where |C| = 1 (one cluster CX contains all |X| data points, so |CCX | = |X|), then H(X|C) =
1

|X| |X| log2 |X| = log2 |X|. Thus, I(X;C) = H(X)−H(X|C) = log2 |X|−log2 |X| = 0. This represents
maximum compression (all items are treated as one). The distortion term becomes β · 1

|X| |X| · σ2
X = β · σ2

X ,
where σ2

X is the variance of all items X with respect to the global centroid of X . So, L = 0+β ·σ2
X = β ·σ2

X .
This represents the scenario of maximum compression where the cost is purely the distortion incurred by
representing all items by a single prototype.
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Model Dataset Correlation (Spearman ρ) - Peak AMI Layer
Rosch (1973) Rosch (1975) McCloskey (1978)

Deberta large (304M) 0.277 0.107* 0.126*
Bert large (340M) -0.120 0.148* 0.026
Roberta large (355M) -0.011 0.038 -0.022
Gemma (2B) 0.127 0.092* 0.039
Gemma 2 (2B) 0.034 0.139* 0.103*
Gemma (7B) 0.004 -0.050 0.088
Gemma 2 (9B) 0.047 0.110* 0.098*
Gemma 2 (27B) -0.135 0.090* -0.101*
Qwen1.5 (0.5B) -0.025 -0.064 0.122*
Qwen2 (0.5B) 0.090 0.064 -0.077
Qwen2.5 (0.5B) -0.012 0.121* 0.072
Qwen2.5 (1.5B) -0.114 0.084* -0.028
Qwen1.5 (1.8B) 0.092 -0.044 -0.004
Qwen2 (7B) 0.004 0.049 -0.087
Qwen1.5 (14B) 0.032 0.091* 0.043
Qwen1.5 (32B) 0.026 0.082 0.111*
Qwen2.5 (32B) 0.045 0.079 -0.060
Mistral v0.3 (7B) 0.013 0.039 0.107*
Llama 3.2 (1B) 0.063 0.094* 0.070
Llama 3 (8B) -0.045 0.138* 0.084
Llama 3.1 (8B) -0.096 0.130* 0.087
Llama 3 (70B) -0.108 0.023 0.050
Phi 1 (1.42B) 0.216 0.185* -0.029
Phi 1.5 (1.42B) 0.162 0.098* 0.015
Phi 2 (2.78B) 0.325* 0.142* -0.033
Phi 4 (14.7B) 0.079 0.129* 0.007
T5 Large (770M) 0.219 0.226* 0.282*
GPT-2 Small (117M) -0.046 0.118* 0.010
GPT-2 Medium (355M) 0.077 0.109* -0.029
ViT-B/32 Text (63.1M) 0.128 0.055 0.152*
ViT-B/16 Text (63.1M) 0.089 0.086* 0.127*
Word2Vec (300D) 0.442* 0.349* 0.437*
Glove (300D) 0.315* 0.333* 0.350*

Table 4: Correlation between Human Typicality Judgments and LLM Internal Cluster Ge-
ometry. Spearman peak-AMI layer rank correlations between human-rated psychological typical-
ity/distance (higher human scores = less typical/more distant) and item-to-centroid cosine similarity
(higher similarity = more central to LLM cluster). ∗p < 0.05.

Q COMPRESSION FIGURES

Figure 28 depicts the IB-RDT objective (L) vs. K. Lower L indicates a more optimal balance between
compression (I(X;C)) and semantic fidelity (distortion). Human categories (fixed K) show higher L values.

R COMPLEXITY-DISTORTION RATIO (ON THE IMPORTANCE OF β)

Figure 29 provides an additional sensitivity analysis in which we examine the ratio between the dis-
tortion and complexity components of L as β varies. Across all three datasets, encoder models
maintain flat profiles, indicating stable conceptual structure under compression, whereas decoder
models exhibit stronger shifts, reflecting greater reallocation of representational capacity.
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S L OBJECTIVE VS. DOWNSTREAM TASK PERFORMANCE

Analysis of 13 instruction-tuned models across 5 families (Qwen, Llama, Gemma, Phi, Mistral; see Table 5 for
results) indicates no statistical significance (r = −0.202, p = 0.508). This finding suggests that while the L
objective successfully identifies models that compress semantic categories more effectively, this compression
ability does not directly translate to improved performance on standard NLP benchmarks. The lack of correla-
tion implies that concept compression and benchmark accuracy represent distinct aspects of model capability,
with the former capturing semantic organization efficiency and the latter measuring general knowledge and
reasoning abilities. We specifically chose instruction-tuned models to ensure fair comparison on MMLU, as
base models would likely perform poorly on this instruction-following benchmark. While our analysis covers
a diverse range of model families and sizes, this represents a subset of available models due to the limited
availability of instruction-tuned variants.

Model Size L Score MMLU Score
Qwen2-0.5B-Instruct 494M 1.930 0.433
Qwen2.5-0.5B-Instruct 494M 1.982 0.469
Llama-3.2-1B-Instruct 1.2B 1.876 0.454
Qwen2.5-1.5B-Instruct 1.5B 2.071 0.597
Gemma-2B-IT 2.5B 2.382 0.366
Gemma-2-2B-IT 2.6B 2.263 0.565
Phi-4-mini-instruct 3.8B 1.905 0.678
Mistral-7B-Instruct-v0.3 7.2B 1.714 0.603
Qwen2-7B-Instruct 7.6B 2.319 0.700
Meta-Llama-3-8B-Instruct 8.0B 1.348 0.647
Llama-3.1-8B-Instruct 8.0B 1.320 0.679
Gemma-7B-IT 8.5B 2.372 0.512
Gemma-2-9B-IT 9.2B 2.467 0.723

Table 5: No correlation between L objective scores and MMLU scores across different sizes
and families. Table displays L objective values vs. MMLU scores for 13 instruction-tuned models.
Correlation measured (r = −0.202, p = 0.508).
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(a) L as a function of K for Rosch (1973a).

(b) L as a function of K for Rosch (1975).

(c) L as a function of K for McCloskey & Glucksberg (1978).

Figure 14: Compression of non-English representations. All non-English languages
(Spanish, German, Italian, Russian) exhibit higher compression than English, with smaller
models showing the greatest compression. This supports the interpretation that limited
non-English training data leads to less flexible and less interpretable representations.
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Figure 15: OLMo-7B develops conceptual structure through two-phase dynamics. Left: AMI
with human categories rises rapidly in early training then refines gradually. Right: Peak seman-
tic processing migrates from deep (layer 28) toward mid-network layers during training, revealing
architectural reorganization for efficiency. Representative checkpoints shown; full 57-checkpoint
analysis in Appendix B.5.

Figure 16: Left: OLMo-7B representations steadily strengthen during training: Concept rep-
resentations develop rapidly at early steps, then refine more gradually over time. Right: Semantic
processing shifts from deep to mid-network layers: The model undergoes a two-phase dynamic
- initially moving semantic processing upward during rapid learning, then reorganizing to opti-
mize efficiency while preserving performance. To improve readability, we present six representative
checkpoints that capture the trend.
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Figure 17: Complete OLMo-7B training trajectory across 57 checkpoints: This high-resolution
view reveals the inherent noise and fluctuations in training, with individual checkpoint measure-
ments varying throughout the process. Despite this variability, the overall trend aligns with the
stable pattern shown in Figure 16, demonstrating that representative sampling effectively captures
the underlying semantic development trajectory while filtering out training noise.

(a) Effective rank across network layers. (b) Gini coefficient across network layers.

(c) Hoyer sparsity across network layers.

Figure 18: Network-level measures of representational structure across training. Each
panel shows a different metric: (a) effective rank, (b) Gini coefficient, and (c) Hoyer sparsity
computed across network layers. All three measures reveal the same two-phase develop-
mental pattern observed in Figure 15: an early rapid change followed by slower restructur-
ing, indicating coordinated reorganization of internal representations.
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Figure 19: L across training. Across all three human benchmarks, Olmo training check-
points reveal the same two-phase developmental pattern observed in Figure 15: an early
rapid change followed by slower restructuring, indicating coordinated reorganization of in-
ternal representations.

][t]

Figure 20: Polysemy is not likely to influence our results as most of the words in our dataset
are concrete nouns, which tend to be less polysemous. Histogram of WordNet sense counts for
the 943 lemmas in our benchmark. The dashed lines indicate the median and mean (2 senses, 3.47
senses, respectively).
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Figure 21: Substantial lexical overlap suggests that tokenization differences alone cannot ex-
plain the observed performance variations in our experiments. Vocabulary overlap between
different tokenizers; most tokenizer families share substantial lexical overlap.

Figure 22: LLM-derived Clusters Show Above-Chance Alignment with Human Conceptual
Categories. Normalized Mutual Information (NMI) between human-defined categories and clusters
from static LLM embeddings. Results are averaged over three psychological datasets. All models
perform significantly better than random clustering. BERT’s performance is notably strong.
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Figure 23: LLM-derived Clusters Show Above-Chance Alignment with Human Conceptual
Categories. Adjusted Rand Index (ARI) between human-defined categories and clusters from LLM
static embeddings. Results are averaged over three psychological datasets. All models perform
significantly better than random clustering. BERT’s performance is notably strong.

(a) Peak AMI as a function of model size. (b) Layer-wise Spearman correlation structure.

Figure 24: Evidence that encoder–decoder differences are not driven by dataset ar-
tifacts. We compare the only model families that can be matched in training data GPT,
Pythia, Cerebras, and T5. While these comparisons cannot eliminate all possible con-
founds, they show that the architectural patterns we report are robust: encoder models
consistently achieve higher AMI and lower L, suggesting that the observed differences
cannot be explained by dataset variation alone.
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Figure 25: Weak-to-No Correlation Between LLM Embedding Distance and Human Typicality
Judgments. Scatter plot examples of the cosine similarity versus the human typicality of items
belonging to the category compared to items from other categories.

Figure 26: Weak and Mostly Non-Significant Spearman Correlation Values Between Human
Typicality Judgments and LLM Cosine Similarity Indicating Different Structure Representing
Concepts. Mean Static Layer Spearman correlation values across the models belonging to the same
family and across the three datasets.
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Figure 27: Static Embeddings Achieve a more “Optimal” Compression-Meaning Trade-off by
the L Measure. IB-RDT objective (L) vs. K across all datasets. Lower L indicates a more optimal
balance between compression (I(X;C)) and semantic fidelity (distortion). Static embeddings con-
sistently achieve lower L values than both human categories and contextual embeddings. The plots
correspond to the three datasets in the following order: Rosch (1973a), Rosch (1975), McCloskey
& Glucksberg (1978).

Figure 28: Contextual Embeddings Achieve Better-than-Human Compression-Meaning
Trade-off by the L Measure. IB-RDT objective (L) vs. K across all datasets. Lower L indi-
cates a more optimal balance between compression (I(X;C)) and semantic fidelity (distortion).
Contextual embeddings outperform human categories but achieve higher L values than static em-
beddings. The plots correspond to the three datasets in the following order: Rosch (1973a), Rosch
(1975), McCloskey & Glucksberg (1978).
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(a) Complexity-distortion ratio for
Rosch (1973a).

(b) Complexity-distortion ratio for
Rosch (1975).

(c) Complexity-distortion ratio for
McCloskey & Glucksberg (1978).

Figure 29: Complexity-Distortion Ratios Show That Encoder-Models are Less Sensi-
tive to Variations in β. For each dataset, we compute the ratio between distortion (loss
of human-aligned conceptual information) and complexity (representation size) across val-
ues of the rate-distortion tradeoff parameter β. Encoder models yield consistently flatter
profiles, indicating that their token embeddings preserve conceptual structure even under
increasing compression. Decoder models exhibit more pronounced shifts, suggesting that
they redistribute representational capacity more aggressively as β increases, leading to
higher sensitivity in this tradeoff.
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