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ABSTRACT

Due to often limited communication bandwidth of edge devices, most existing
federated learning (FL) methods randomly select only a subset of devices to
participate in training in each communication round. Compared with engaging all
the available clients, such random-selection mechanism could lead to significant
performance degradation on non-IID (independent and identically distributed)
data. In this paper, we present our key observation that the essential reason
resulting in such performance degradation is the class-imbalance of the grouped
data from randomly selected clients. Based on this observation, we design an
efficient heterogeneity-aware client sampling mechanism, namely, Federated Class-
balanced Sampling (Fed-CBS), which can effectively reduce class-imbalance of
the grouped dataset from the intentionally selected clients. We first propose a
measure of class-imbalance and then employ homomorphic encryption to derive
this measure in a privacy-preserving way. Based on this measure, we design a
computation-efficient client sampling strategy such that the actively selected clients
will generate a more class-balanced grouped dataset with theoretical guarantees.
Experimental results show that Fed-CBS outperforms the status quo approaches in
terms of test accuracy and the rate of convergence, while achieving comparable
or even better performance than the ideal setting where all the available clients
participate in the FL training.

1 INTRODUCTION

With the booming of IoT devices, a huge amount of data is generated at the network edge, providing
valuable resources for learning insightful information and enabling intelligent applications such as
self-driving, video analytics, anomaly detection, etc. The traditional wisdom is to train machine
learning models by collecting data from edge devices and performing centralized training. The data
migration between the edge and the center server, however, raises serious privacy concerns. Federated
learning (FL) (Konečnỳ et al., 2016; McMahan et al., 2017a; Kairouz et al., 2019) is a popular
technique to mitigate such privacy concerns which allows a large number of clients to collaboratively
learn a shared model. The learning process is orchestrated by a central server: the participating clients
download a global model from the central server and then compute local model updates using their
local data. The clients then transmit the local updates to the central server where the local updates are
aggregated and the global model is updated accordingly.

In practice, due to limited communication and computing capabilities, one usually can not engage all
the available clients in FL training to fully utilize all the local data. Therefore, most FL methods only
randomly select a subset of the available clients to participate in the training in each communication
round. However, in practice, the data held by different clients are often typically non-IID (independent
and identically distributed) due to various user preferences and usage patterns. This leads to a serious
problem that the random client selection strategy often fails to learn a global model that can generalize
well for most of the participating clients under non-IID settings. This has been identified by many
recent studies (Cho et al., 2020; Goetz et al., 2019; Nishio & Yonetani, 2019; Yang et al., 2020).
Several heuristic client selection mechanisms have been proposed to tackle this challenge. For
example, the method in Goetz et al. (2019) makes the clients with larger local loss have a higher
probability to be selected in the training . Power-of-Choice (Cho et al., 2020) selects several clients
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(a) Global Balanced & One-class
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(b) Global Balanced & Two-class
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(c) Global Imbalanced & One-class
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(d) Global Imbalanced & Two-class

Figure 1: Three different FL client selection strategies on MNIST. In Figure (a) and (b), the global dataset of all
the clients’ training data is class-balanced. In Figure (c) and (d), the global dataset is class-imbalanced. Each
client has only one class of data in (a) and (c) and each client has two classes of data in (b) and (d). The results
show significant performance degradation with imbalanced data from random client selection.

with the largest loss from a randomly sampled subset of all the available clients. However, selecting
the clients with the larger local loss may not guarantee that the final model can have a smaller global
loss. Another limitation of previous research on client selection is the comparison between their
strategy and the ideal settings, where all the available clients participate in the training, is ignored.
In general, existing works not only miss an important criterion that can measure their performance,
but also fail to investigate the essential reason why random client selection leads to performance
degradation on non-IID data compared with engaging all the available clients.

In this paper, we focus on the image classification tasks. First, we demonstrate our key observation
for the essential reason why random client selection results in performance degradation on non-IID
data, which is the class-imbalance of the grouped dataset from randomly selected clients. Based
on our observation, we design an efficient heterogeneity-aware client sampling mechanism, i.e.,
Federated Class-Balanced Sampling (Fed-CBS), which effectively reduces the class-imbalance in FL.
Fed-CBS is orthogonal to numerous existing techniques to improve the performance of FL (Wang
et al., 2020a;b; Chen et al., 2020; Karimireddy et al., 2019) on non-IID data, meaning Fed-CBS can
be integrated with these methods to further improve their performance. Our major contributions are
summarized as follows:

• We reveal that the class-imbalance is the essential reason why random client selection leads
to performance degradation on non-IID data in Section 2 .

• To effectively reduce the class-imbalance, we design an efficient heterogeneity-aware client
sampling mechanism, i.e., Fed-CBS, based on our proposed class-imbalance metric in
Section 3. Besides, we provide theoretical analysis on its convergence in Section 4.

• We empirically evaluate Fed-CBS on FL benchmark non-IID datasets in Section 5. The
results demonstrate that Fed-CBS can improve the accuracy of FL models on CIFAR-10
by 2% ∼ 7% and accelerate the convergence time by 1.3× ∼ 2.8×, compared with the
state-of-the-art method (Yang et al., 2020) that also aims to reduce class-imbalance via
client selection. Furthermore, our Fed-CBS achieves comparable or even better performance
than the ideal setting where all the available devices are involved in the training.

2 PRELIMINARY AND RELATED WORK

2.1 PITFALL OF CLASS-IMBALANCE IN CLIENT SELECTION

We first clarify three definitions. Local dataset is the client’s own dataset, which is not accessible
to other clients and the sever. Due to the heterogeneity of local data distribution, the phenomenon
of class-imbalance happens frequently in most of the clients’ local dataset. Global dataset is the
union of all the available client local datasets in FL, which can be class-balanced or class-imbalanced.
Grouped dataset is the union of several clients’ local datasets, which have been selected to participate
in the training in one communication round of FL. Grouped dataset is a subset of the global dataset.

Some recent works (Duan et al., 2019; Wang et al., 2020b; Yang et al., 2020) have identified the issue
of class-imbalance in the grouped dataset by random selection under non-IID settings. Since class-
imbalance degrades the classification accuracy on minority classes (Huang et al., 2016) and leads to
low training efficiency, this motivates us to verify whether the class-imbalance of the grouped dataset,
caused by random selection, is the essential reason accounting for the performance degradation. We
conduct experiments on MNIST (LeCun & Cortes, 2010) to verify our presumption1. As Figure 1a

1Detailed experiment settings are listed in the Appendix D.1
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Exact Local Label Distribution Estimated Local Label Distribution
#1 [0.00, 0.00, 0.00, 0.28, 0.00, 0.00, 0.36, 0.00, 0.00, 0.36] [0.02, 0.01, 0.02, 0.13, 0.02, 0.02, 0.20, 0.02, 0.02, 0.54]
#2 [0.00, 0.00, 0.22, 0.16, 0.00, 0.00, 0.20, 0.00, 0.22, 0.20] [0.05, 0.03, 0.14, 0.10, 0.04, 0.03, 0.17, 0.03, 0.16, 0.25]
#3 [0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00] [0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00]
#4 [0.00, 0.00, 0.00, 0.20, 0.00, 0.00, 0.27, 0.00, 0.28, 0.25] [0.03, 0.02, 0.03, 0.16, 0.03, 0.02, 0.30, 0.02, 0.20, 0.19]
#5 [0.00, 0.00, 0.00, 0.29, 0.00, 0.00, 0.36, 0.00, 0.00, 0.35] [0.02, 0.01, 0.02, 0.14, 0.02, 0.01, 0.15, 0.01, 0.02, 0.60]

Table 1: The exact local label distributions and the estimated ones of the first 5 clients in the experiment of Yang
et al. (2020).

(a) Greedy method (b) Our method

Figure 2: An example demonstrating the weakness of greedy method to deal with class imbalance. Supposing
we work on a 6-class classification task and aim to select 3 clients from 4 available clients C1, C2, C3, C4.
Each of them has 30 images. The compositions of their local datasets are [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 0],
[0, 0, 0, 10, 10, 10] and [10, 10, 10, 0, 0, 0] respectively. The greedy method in Yang et al. (2020) is deterministic.
It can only derive one result {C1, C2, C3} instead of the optimal solution {C1, C3, C4} (see the text description).
But our method is based on probability modeling, which directly models the distribution of the optimal solution
{C1, C3, C4}. Thus when sampling from it, the optimal solution can be returned with high probability.

and Figure 1b show, the random client selection gets the worst performance when the global label
distribution is class-balanced. If we keep the grouped dataset class-balanced by manually selecting
the clients based on their local label distributions, we can achieve the accuracy comparable to the
case of fully engaging all the clients in training.

Another corollary which comes naturally is that when the global dataset is inherently class-imbalanced,
engaging all clients in the training may lead to worse performance than manually keeping class
balanced in the grouped dataset. The results in Figure 1c and Figure 1d validate our hypothesis and
verify the importance of class-imbalance reduction. This also indicates that only keeping diversity
in the data and fairness for clients is not enough, which was ignored in the previous literature
(Balakrishnan et al., 2021; Huang et al., 2021; Wang et al., 2020b; Yang et al., 2020).

2.2 RELATED WORK

Some effort has been made to improve client selection for FL in previous literature. Cho et al.
(2020); Goetz et al. (2019) select clients with larger local loss, which cannot guarantee that the final
global model has a smaller global loss. Focusing on the diversity in client selection, the authors of
Balakrishnan et al. (2021) select clients by maximizing a submodular facility location function defined
over gradient space. A fairness guaranteed algorithm termed RBCS-F was proposed in Huang et al.
(2021), which models the fairness guaranteed client selection as a Lyapunov optimization problem.
Although diversity and fairness are important, the experimental results in Section 2.1 demonstrate
that they are not enough for client selection if class-imbalance issue is not considered. The authors in
Ribero & Vikalo (2020) model the progression of model weights by an Ornstein-Uhlenbeck process
and design a sampling strategy for selecting clients with significant weight updates. However, the
work only considers identical data distribution. Following the existing works (Cho et al., 2020; Goetz
et al., 2019), we only focus on the data heterogeneity caused by non-IID data across clients. The
system heterogeneity considered in (Lai et al., 2021; Nishio & Yonetani, 2019; Reisizadeh et al.,
2020) is beyond the scope of this paper and we leave it as future work.

To the best of our knowledge, Duan et al. (2019) and Yang et al. (2020) are the first two attempts to
improve client selection by reducing the class-imbalance. An extra virtual component called mediator
is introduced in Astraea of Duan et al. (2019), which has access to the local label distributions of the
clients. With these distributions, Astraea will conduct client selection in a greedy way. The method
of Yang et al. (2020) first estimates the local label distribution of each client based on the gradient
of model parameters and adopts the same greedy way to select clients as Astraea. Since directly
knowing the exact value of local label distributions of clients in Astraea will cause severe concerns
on privacy leakage, we consider the method in Yang et al. (2020) as the state-of-the-art work aiming
to improve client selection through class-imbalance reduction.
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The weakness of the attempt in Yang et al. (2020) is threefold. First, their method requires a class-
balanced auxiliary dataset that consists of all classes of data at server. However, that is not always
available in some large scale FL systems since it requires the server to collect raw data from clients,
which breaches privacy. Second, their estimations of the clients’ local label distribution are not
accurate as shown in Table 1. Theorem 1 in Yang et al. (2020), which supports their estimations,
can not be generalized to multi-class classification tasks since it has only been proved in the original
paper (Anand et al., 1993) for two-class classification problems. Finally, the performance of greedily
conducting the client selection is not guaranteed due to the nature of greedy algorithm. We provide
an example in Figure 2 to show its weakness. Their method will select C1 as the first client since it is
the most class-balanced one. Then C2 will be selected because the grouped dataset of C1 ∪ C2 is the
most class-balanced among the ones of C1 ∪ C2, C1 ∪ C3 and C1 ∪ C4. Similarly, it will choose C3

since the grouped dataset of C1 ∪ C2 ∪ C3 is more class-balanced than C1 ∪ C2 ∪ C4. Their method
is deterministic and thus only one combination {C1, C2, C3} is obtained. However, this is clearly
not the optimal solution since {C1, C3, C4} is more class-balanced than {C1, C2, C3}. The above
weaknesses motivate us to design a more efficient sampling method to deal with this task.

3 METHODOLOGY

We first propose a metric to measure class-imbalance in Section 3.1. Then we present a method to
calculate it in a privacy-preserving way in Section 3.2. Based on this measurement, we then design
our client sampling mechanism and show its superiority in Section 3.3.

3.1 CLASS-IMBALANCE MEASUREMENT

Assume there are B classes of data in an image classification task, where B ≥ 2. In the k-th
communication round, we assume there are Nk available clients and we select M clients from them.
To make the notation concise, we ignore the index “k” and assume the set of indices for the available
clients is {1, 2, 3, ..., N} and the n-th available client has its own training dataset Dn. We adopt the
following vector, αn =

[
α(n,1), α(n,2), ..., α(n,b), ..., α(n,B)

]
to represent the local label distribution

of Dn, where α(n,b) ≥ 0 and
∑B

b=1 α(n,b) = 1. We aim to find a subsetM of {1, 2, 3, .., N} of size
M , such that the grouped dataset Dg

M =
⋃

n∈M
Dn is class-balanced. Assuming the n-th client’s local

dataset has qn training data in total, one can derive the following vector αg
M which represents the

label distribution of the grouped dataset Dg
M,

αg
M =

∑
n∈M qnαn∑

n∈M qn
=

[∑
n∈M qnα(n,1)∑

n∈M qn
, ...,

∑
n∈M qnα(n,b)∑

n∈M qn
, ...,

∑
n∈M qnα(n,B)∑

n∈M qn

]
.

We propose the following function to measure the magnitude of class-imbalance ofM, which we
call Quadratic Class-Imbalance Degree (QCID):

QCID(M) ≜
B∑

b=1

(

∑
n∈M qnα(n,b)∑

n∈M qn
− 1

B
)2.

3.2 PRIVACY-PRESERVING QCID DERIVATION

Expanding the the expression of QCID allows us to explore how the pairwise relationships of the
clients’ local label distributions {αm} affects the class-imbalance degree ofM, where m ∈M. In
the meantime, we must conduct this while keeping clients’ local distributions hidden from the server
for privacy reasons. Based on Theorem 3.1, there are several ways to achieve the privacy goal.

Theorem 3.1 The QCID value is decided by the sum of inner products between each two vectors
αm,αm′ ∈ {αm} with m ∈M, i.e.,

QCID(M) =

∑
n∈M,n′∈M qnq

′
nαnα

T
n′

(
∑

n∈M qn)2
− 1

B

Theorem 3.1 reveals the fact that there is no need to know the local label distribution of each client
to calculate the QCID, as long as we have access to the inner products between each other. To
derive the QCID for any subset M ⊆ {1, 2, 3, .., N}, we only need to know the N × N matrix
S with element sn,n′ being αnα

T
n′ , which is the inner product between the label distributions of
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clients n and n′. For our privacy goal, Fully Homomorphic Encryption (FHE) (Brakerski et al.,
2014; Chen et al., 2017; Fan & Vercauteren, 2012) in one option since it enables an untrusted party
to perform computation (addition and multiplication) on encrypted data. Alternatively, server-side
trusted execution environments (TEEs), e.g., Intel SGX (Anati et al., 2013), can be used.

Client 1

������ ������ ������

��
−�

Client 2 Client N

������

������

������

�����

�

Selector

Client 
Selection

FL Aggregation 

Server

�����Inner
Product

Figure 3: An example of FHE to securely transmit S.

In Figure 3, we provide an example of the
framework to illustrate how to derive S with-
out knowing the local label distributions {αi}
using FHE. Our framework can be implemented
using off-the-shelf FHE libraries such as Chen
et al. (2017); Halevi & Shoup (2014). There
is a selector in our framework. It is usually
from third party and keeps a unique private key,
denoted by K−1

1 . The corresponding public
key is denoted as K1. In the confidential trans-
mission between server and clients, each client
first uses K1 to encrypt their label distribution
vector αk as K1(αk), and then transmits it to
server. Since only the server has access to K1(αk), no one else including the selector can de-
crypt αk. When the server gets all K1(αk), it will conduct FHE computation to get the matrix
K1(S) = K1({αT

i αj}ij) = {K1(αi)
TK1(αj)}ij . Then the server transmits the K1(S) to selector

where K−1
1 is used to access the final result S. Since only the selector has K−1

1 , only it knows S.
After that, the selector will conduct client selection following some strategy to derive the resultM
and transmit it back to the server. At last, the server will conduct FL aggregation.

The server, selector or any other clients except client n can not get αn, which protects the privacy
of the clients. Furthermore, only the clients have no access to the inner product results S, which
prevents malicious clients or server inferring the label distributions of the other clients. We also prove
that it is impossible even for the selector to derive {αi} from S in Section B.

3.3 A CLIENT SAMPLING MECHANISM

To select the most class-balanced grouped dataset Dg
M, we need to find the optimal subsetM∗ that

has the lowest QCID value, which is defined as follows:

M∗ ≜ argmin
M⊆{1,2,3,..,N}

∑
n∈M,n′∈M qnqn′αnα

T
n′

(
∑

n∈M qn)2
− 1

B
.

The main challenge is the computational complexity. To find the exact optimalM∗, we need to
loop through all the possible cases and find the lowest QCID value. The computational complexity
thereafter will be O

((
N
M

)
×M2

)
, which is unacceptable when N is extremely large.

A probability approach To overcome the computational bottleneck, instead of treatingM as a
determined set, we consider it as a sequence of random variables, i.e.M = {C1, C2, ..., Cm, ..., CM}
and assign it with some probability. Our expectation is thatM should have higher probability to be
sampled with if it is more class-balanced. This means P (C1 = c1, C2 = c2, ..., Cm = cm, ..., CM =
cM ) should be larger ifM = {c1, c2, ..., cM} has a lower QCID value.

Our sampling strategy generates the elements inM in a sequential manner, i.e., we first sample
M1 = {c1} according to the probability of P (C1 = c1), then sample c2 to formM2 = {c1, c2}
according to the conditional probability P (C2 = c2|C1 = c1). The same procedure applies for the
following clients until we finally obtainM = {c1, c2, ..., cM}. In the following, we will design proper
conditional probabilities such that the joint distribution of client selection satisfies our expectation.

Let Tn denote the number of times that client n has been selected. Once client n has been selected
in a communication round, Tn → Tn+ 1, otherwise, Tn → Tn. Inspired by combinatorial upper
confidence bounds (CUCB) algorithm (Chen et al., 2013) and previous work in Yang et al. (2020),
in the k-th communication round, the first element is designed to be sampled with the following
probability:
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P (C1 = c1) ∝
1

[QCID(M1)]β1
+ λ

√
3 ln k

2Tc1

, β1 > 0,

where λ above is the exploration factor to balance the trade-off between exploitation and exploration.
The second term will add higher probability to the clients that have never been sampled before in the
following communication rounds. After C1, the second client C2 will be sampled with probability

P (C2 = c2|C1 = c1) ∝
1

[QCID(M2)]β2

1
[QCID(M1)]β1

+ α
√

3 ln k
2Tc1

, β2 > 0.

For the m-th client, where 2 < m ≤M , we define

P (Cm = cm|Cm−1 = cm−1, ..., C2 = c2, C1 = c1) ∝
[QCID(Mm−1)]

βm−1

[QCID(Mm)]βm
, βm−1, βm > 0.

With the above sampling process, the final probability to sample M is P (C1 = c1, C2 =
c1, ..., CM = cM ) = P (C1 = c1) × P (C2 = c2|C1 = c1) · · · × P (CM = cM |CM−1 =
cM−1, ..., C2 = c2, C1 = c1) ∝ 1/[QCID(M)]βM . Since βM > 0, this matches our goal that the
M with lower QCID value should have higher probability to be sampled with. Our mechanism,
Fed-CBS, is summarized in the Algorithm 1 in Appendix (Section A).

Details and analysis For any 1 < m < M , we have

P (C1 = c1, C2 = c1, ..., Cm = cm) ∝ 1

[QCID(Mm)]βm
.

This means when we generate the first m elements ofM, we expect theMm could be more class-
balanced since theMm with lower QCID value has higher probability to be sampled. This is differ-
ent from the greedy algorithm in Yang et al. (2020), which chooses the cm from {1, 2, .., N}/Mm−1

that can make theMm the most class-balanced one. Instead, our method can generate the global
optimal set of clients in the sense of probability. An example has been provided in Figure 2 to show
our superiority. After selecting the first two clients, {C1, C3} of our method is less class-balanced
than {C1, C2} of greedy method. However, after making the last choice, our method has the chance
to derive a perfectly class-balanced set {C1, C3, C4}. In contrast, greedy method can only get one
result {C1, C2, C3}, which is less class-balanced.

We require the distribution of P (C1 = c1, C2 = c1, ..., Cm = cm) to be more dispersed when m
is small. This is because we expect our sampling strategy to explore more possible cases of client
composition at the beginning. We require the distribution of P (C1 = c1, C2 = c1, ..., Cm = cm)
to be less dispersed when m is large. This is because as we approach the end of our sampling
process, we expect our sampling strategy can find theMm that is more class-balanced. We can set
0 < β1 < β2 < ... < βM to satisfy the above requirements.

Remark: We set a lower bound for QCID(Mm) as Lb since QCID(Mm) = 0 in some special
cases will cause P (Cm = cm|Cm−1 = cm−1, ..., C1 = c1)→∞.

Below we present two theorems to show the superiority of our proposed sampling strategy.

Theorem 3.2 (Class-Imbalance Reduction) We denote the probability of selecting M with our
strategy with βM as PβM

and probability of selectingM with the random selection as Prand. Our
method can reduce the expectation of QCID compared to the randomly selection mechanism. In
other words, we have

EM∼PβM
QCID(M) < EM∼Prand

QCID(M).

Furthermore, if increasing the value βM , the expectation of QCID can be further reduced, i.e., for
β′
M > βM , we have

EM∼Pβ′
M

QCID(M) < EM∼PβM
QCID(M).

Theorem 3.3 (Computation Complexity Reduction) The computation complexity of our method
is O

(
N ×M2

)
, which is much smaller than the exhaustive search of O

((
N
M

)
×M2

)
.

Theorem 3.3 shows that the computation complexity of our method is independent of the number of
classes. Since the dimension of neural networks is typically much larger than the class distribution
vector αn, the additional communication cost is almost negligible.
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4 CONVERGENCE ANALYSIS

To analyze the convergence of our method, as well as quantify the relationship between the class-
imbalance and the convergence, we first define our objective functions and adopt some general
assumptions. Our global objective function F̃ > 0 can be decomposed as F̃ = 1

B

∑B
b=1 F̃b, where

F̃b is the averaged loss function with respect to all the data of the b-th class in global dataset. Similarly,
the n-th client’s local objective function Fn can decomposed as Fn =

∑B
b=1 α(n,b)Fn,b, where Fn,b

is the averaged loss function with respect to all the data of the b-th class in the n-th client’s local
dataset and α(n,b) is defined in Equation 3.1. Besides, let w(k) denote the global model parameter at
the k-th communication round and and w(0) denote the initial global model parameter.

Assumption 4.1 (Smoothness) The global objective function F̃ and each client’s averaged
loss function Fn,b are Lipschitz smooth, i.e.

∥∥∥∇F̃ (w)−∇F̃ (w′)
∥∥∥ ≤ LF̃ ∥w − w′∥ and

∥∇Fn,b(w)−∇Fn,b(w
′)∥ ≤ Ln,b∥w −w′∥,∀n, b,w,w′.

Assumption 4.2 (Unbiased Gradient and Bounded Variance) The stochastic gradient gn at each
client is an unbiased estimator of the local gradient: Eξ [gn(w | ξ)] = ∇Fn(w), with bounded

variance Eξ

[
∥gn(w | ξ)−∇Fn(w)∥2

]
≤ σ2,∀w, where σ2 ≥ 0.

Assumption 4.3 (Bounded Dissimilarity) There exists two non-negative constants δ ≥ 1, γ2 ≥ 0

such that
∑B

b=1
1
B

∥∥∥∇F̃b(w)
∥∥∥2 ≤ δ

∥∥∥∑B
b=1

1
B∇F̃b(w)

∥∥∥2 + γ2,∀w.

Assumption 4.4 (Class-wise Similarity) For each class b, the discrepancy between the gradient of
global averaged loss function and the local one has been bounded by some constant in l2 norm. That

means, for every n and b, we have
∥∥∥∇F̃b(w)−∇Fn,b(w)

∥∥∥2 ≤ κ2
n,b, ∀w.

Assumption 4.1, 4.2 and 4.3 have been widely adopted in the previous literature on the theoretical
analysis of FL such as Cho et al. (2020); Li et al. (2019); Wang et al. (2020a). Assumption 4.4 is
based on the similarity among the data from the same class. Similar to the standard setting (Wang
et al., 2020a), the convergence is measured by the norm of the gradients, stated in Theorem 4.5.

Theorem 4.5 Under Assumption 4.1 to 4.4, if the total communication rounds K is pre-determined
and the learning rate is set as η = s

10L
√

τ(τ−1)K
, where s < 1, L = max{n,b} Ln,b and τ is the

number of local update iterations, the minimal gradient norm of F̃ is bounded as:

min
k≤K

E
∥∥∥∇F̃

(
w(k)

)∥∥∥2

≤ 1

V

 σ2s2

25τK
+

sLF̃σ
2

10L
√

τ(τ − 1)K
+

10L
√

τ(τ − 1)F̃
(
w(0)

)
s
√
K

+ ρ

 ,

where V = 1
3
− δBE[QCID], ρ = 5κ2 + γ2E[QCID] and κ = max{n,b} κn,b.

If the class-imbalance in client selection is reduced, E[QCID] will decrease, and consequently, 1
V

and E[QCID]
V will also decrease, making the convergence bound on the right side tighter. Theorem

4.5 not only provides a convergence guarantee for Fed-CBS, but also proves the class-imbalance
reduction in client selection could benefit FL, i.e., more class-balance leads to faster convergence.

5 EXPERIMENTS

We conduct thorough experiments on three public benchmark datasets, CIFAR-10 (Krizhevsky et al.),
Fashion-MNIST (Xiao et al., 2017) and FEMNIST in the Leaf Benchmark (Caldas et al., 2018).
In all the experiments, we conduct the simulation of the cross-device federated learning (CDFL),
where the system runs on a large amount of client with only a fraction of them available in each
communication round and we make client selection on those available clients. The results show that
our method can achieve faster and more stable convergence, compared with four baselines: random
selection (rand), Power-of-choice Selection Strategy (pow-d) (Cho et al., 2020), the method in Yang
et al. (2020) (Fed-cucb), the ideal setting where we select all the available clients (all). To compare
them efficiently, we present the results of the Cifar-10 where the whole dataset is divided to 200 (or
120) clients in the main text, since we need to engage all the clients for the ideal setting. To simulate
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Figure 4: Test accuracy on Cifar-10 under three heterogeneous settings.

all rand pow-d Fed-cucb Fed-CBS
Communication Rounds α=0.1 757±155 951±202 1147±130 861±328 654±96

α=0.2 746±95 762±105 741±111 803±220 475±110
α=0.5 426±67 537±115 579±140 1080±309 384±74

E[QCID](10−2) α=0.1 1.01±0.01 8.20±0.21 12.36±0.26 7.09±2.27 0.62±0.20
α=0.2 0.93±0.03 7.54±0.27 10.6±0.48 5.93±1.01 0.51±0.12
α=0.5 0.72±0.03 5.87±0.24 7.36±0.57 6.47±0.77 0.36±0.04

Table 2: The communication rounds required for targeted test accuracy and the averaged QCID values. The
targeted test accuracy is 45% for α = 0.1, 47% for α = 0.2 and 50% for α = 0.5. The results are the mean
and the standard deviation over 4 different random seeds.

more realistic settings where there are thousands of clients, we conduct our method on the FEMNIST
in the Leaf Benchmark with more then 3000 clients. Since in practice it is impossible to engage all
the clients in the training, we compare our method with randomly selecting more clients. Due to
space limit, we move the results of FEMNIST, Fashion-MNIST and ablation studies to Section D.5
& E in Appendix. For Fashion-MNIST, we adopt FedNova (Wang et al., 2020a) to show that our
method can be organically integrated to the existing orthogonal works which aim at improving FL.

Experiment Setup We target cross-device settings where the devices are resource-constrained, i.e.,
most of the devices do not have sufficient computational power and memory to support the training
of large models. Therefore, we adopt a compact model with two convolutional layers followed with
three fully-connected layers and FedAvg (McMahan et al., 2017b) as the FL optimizer. The batch size
is 50 for each client. In each communication round, all of them conduct the same number of local
updates, which allows the client with the largest local dataset to conduct 5 local training epochs. In
our method, we set the βm = m, γ = 10 and Lb = 10−20. The local optimizer is SGD with a weight
decay of 0.0005. The learning rate is 0.01 initially and the decay factor is 0.9992. We terminate the
FL training after 3000 communication rounds and then evaluate the model’s performance on the test
dataset of CIFAR-10. More details of the experiment setup are listed in Section D.2.

5.1 RESULTS FOR CLASS-BALANCED GLOBAL DATASETS

In this experiment, we set 200 clients in total with a class-balanced global dataset. The non-IID
data partition among clients is based on Dirichlet distribution parameterized by the concentration
parameter α in Hsu et al. (2019). Roughly speaking, as α decreases, the data distribution will becomes
more non-iid. In each communication round, we uniformly and randomly set 30% of them (i.e., 60
clients) available and select 10 clients from those 60 available ones to participate in the training.

As shown in Table 5, our method can achieve the lowest QCID value compared with other client se-
lection strategies. As a benefit of successfully reducing the class-imbalance, our method outperforms
the other three baseline methods and achieves comparable performance to the ideal setting where all
the available clients are engaged into the training. As shown in Table 5 and Figure 4, our method can
achieve faster and more stable convergence. It is worth noting that due to the inaccurate estimation
of distribution and the weakness of greedy method discussed in Section 2.2, the performance of
Fed-cucb is much worse than ours.

5.2 RESULTS FOR CLASS-IMBALANCED GLOBAL DATASETS

In the real-world settings, the global dataset of all the clients is not always class-balanced. Hence, we
investigate two different cases to show the superiority of our method and provide more details of their
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(b) Case 2

Figure 5: Test accuracy on Cifar-10 with class-imbalanced global dataset in Case 1&2.

all rand pow-d Fed-cucb Fed-CBS
Case 1 3:1 55.17±0.94 50.99±0.97 53.51±0.34 55.11±0.26 56.86±0.34

5:1 50.93±1.64 47.36±2.34 52.73±1.85 53.75±0.58 54.94±0.73
Case 2 3:1 54.01±0.60 50.81±2.03 53.98±1.87 54.48±1.31 57.71±0.50

5:1 50.42±1.27 48.33±3.03 53.54±1.18 53.38±1.48 57.99±0.46

Table 3: Best test accuracy for our method and other four baselines.

settings in Section D.3. For the convenience of constructing a class-imbalanced global dataset, each
client only has one class of data with the same quantity. We report the best test accuracy in Table 3
and present the corresponding QCID values in Section D.4.

5.2.1 CASE 1: UNIFORM AVAILABILITY

Settings. There are 120 clients in total and the global dataset of these 120 clients is class-imbalanced.
To measure the degree of class imbalance, we let the global dataset have the same amount of n1 data
samples for five classes and the same amount of n2 data samples for the other five classes. The ratio
r between n1 and n2 is respectively set to 3 : 1 and 5 : 1 in the experiments. In each communication
round, we uniformly set 30% of them (i.e., 36 clients) available with replacement and select 10 clients
to participate in the training.

As shown in Table 3 and Figure 5a, our method can achieve faster and more stable convergence, and
even slightly better performance than the ideal setting where all the available clients are engaged. The
performance of Fed-cucb (Yang et al., 2020) is better than the results on class-balanced global dataset,
which is partly due to the simplicity of each client’s local dataset composition in our experiments. The
third line in Figure 1 indicates Fed-cucb can accurately estimate this simple type of label distributions.

5.2.2 CASE 2: NON-UNIFORM AVAILABILITY

Settings. There are 200 clients in total. In each communication round, 30% of them (i.e., 60 clients)
are set available uniformly in each training round with replacement. By non-uniformly setting the
availability, the global dataset of those 60 available clients is always class-imbalanced. To measure
the degree of class imbalance, we make the global dataset have the same amount of n1 data samples
for the five classes and have the same amount of n2 data samples for the other five classes. The ratio
r between n1 and n2 is set to 3 : 1 and 5 : 1. We select 10 clients to participate in the training.

As shown in Table 3 and Figure 5a, our method consistently achieves higher test accuracy and
more stable convergence, which also outperforms the ideal setting where all the available clients are
engaged. Since the global dataset of the available 60 clients in each communication round is always
class-imbalanced, engaging all of them is not the optimal selection strategy in terms of test accuracy.

6 CONCLUSION

We unveil the essential reason of performance degradation on non-IID data with random client
selection strategy in FL training, i.e., the class-imbalance. Motivated by this insight, we propose an
efficient heterogeneity-aware client sampling mechanism named Fed-CBS. Extensive experiments
demonstrate that Fed-CBS significantly outperforms the status quo approaches while yielding compa-
rable or even better performance than the ideal setting where all the available clients participate in the
training. We also provide the theoretical convergence guarantee for Fed-CBS. Our mechanism is very
general and can be easily applied to various application domains (e.g., NLP and medical tasks). As
for future work, we will try to incorporate the system heterogeneity into our framework.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Rangachari Anand, Kishan G Mehrotra, Chilukuri K Mohan, and Sanjay Ranka. An improved
algorithm for neural network classification of imbalanced training sets. IEEE Transactions on
Neural Networks, 4(6):962–969, 1993.

Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative technology for cpu
based attestation and sealing. In Proceedings of the 2nd international workshop on hardware and
architectural support for security and privacy, volume 13, pp. 7. Citeseer, 2013.

Ravikumar Balakrishnan, Tian Li, Tianyi Zhou, Nageen Himayat, Virginia Smith, and Jeff Bilmes.
Diverse client selection for federated learning: Submodularity and convergence analysis. In ICML
2021 International Workshop on Federated Learning for User Privacy and Data Confidentiality,
Virtual, July 2021.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption
without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1–36, 2014.

Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMahan, Virginia Smith, and
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A FED-CBS ALGORITHM

Algorithm 1 Fed-CBS

Initialization: initial local model w(0), client index subsetM = ∅, K communication rounds,
k = 0, Tn = 1
while k < K do

Client Selction:
for n in {1, 2, ..., N} do

if n ∈M then
Tn → Tn + 1

else
Tn → Tn.

end if
end for
UpdateM using our proposed sampling strategy in Section 3.3
Local Updates:
for n ∈M do
w

(k+1)
n ← Update(w(k)).

end for
Global Aggregation:
w(k+1) ← Aggregate(w

(k+1)
n ) for n ∈M

end while

B PRIVACY PROTECTION IN THE FRAMEWORK IN FIGURE 3

Theorem B.1 The selector can not derive the exact values of {αi} from S.

Proof B.1 By the definitions of {αi}, we define the following matrix Aα

Aα ≜


α1

...
αn

...
αN

 =


α(1,1) α(1,2) ... α(1,b) ... α(1,B)

...
α(n,1) α(n,2) ... α(n,b) ... α(n,B)

...
α(1,1) α(1,2) ... α(1,b) ... α(1,B)


By the definitions of S, we have

S = Aα ·A⊺
α (1)

To derive the exact values of {αi} based on S, we need to solve the problem 1. However, given S,
the Aα which satisfies S = Aα ·A⊺

α is not unique. If Āα is a solution to the problem 1, then for any
orthogonal matrix Q i.e. Q ·Q⊺ = I where the I is the identity matrix, the new matrix Āα ·Q is
also solution to the problem 1. This is because

Āα ·Q · (Āα ·Q)⊺ = Āα ·Q ·Q⊺ · Ā⊺
α = Āα · Ā⊺

α = S

Hence, the Aα which satisfies S = Aα ·A⊺
α is not unique and we finish our proof.

To understand the Theorem B.1, we provide the following example. If we conduct the following
permutation on the columns of Aα, we can derive a new matrix Āα.

Āα ≜


α(1,2) ... α(1,b) ... α(1,1) α(1,B)

...
α(n,2) ... α(n,b) ... α(n,1) α(n,B)

...
α(1,2) ... α(1,b) ... α(1,1) α(1,B)
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We can find that Āα also satisfies S = Āα · Ā⊺
α. Actually, there are also many other permutations

which can derive the solutions to the problem 1. Hence, in our framework shown in 3, the selector
can not estimate the exact label distribution of the clients.

C PROOF OF THEOREM 3.1, 3.2, 3.3 AND 4.5

C.1 PROOF OF THEOREM 3.1

Proof C.1

QCID(M) =

B∑
b=1

(

∑
n∈M qnα(n,b)∑

n∈M qn
− 1

B
)2

=

B∑
b=1

(

∑
n∈M qnα(n,b)∑

n∈M qn
)2 +

1

B
− 2 ∗ 1∑

n∈M qn
∗ 1

B
∗
∑
n∈M

qn

=

B∑
b=1

(

∑
n∈M qnα(n,b)∑

n∈M qn
)2 − 1

B

=
1

(
∑

n∈M qn)2

∑
n∈M,n′∈M

qnq
′
n(

B∑
b=1

α(n,b)α(n′,b))−
1

B

=
1

(
∑

n∈M qn)2

∑
n∈M,n′∈M

qnq
′
nαnα

T
n′ −

1

B

C.2 PROOF OF THEOREM 3.2

Proof C.2 To select M clients from N available clients, there are
(
N
M

)
different choices to construct

M, denoted byM(1),M(2), ...,M(
(
N
M

)
), respectively. Let xi ≜ QCID(M(i)) and N̄ ≜ (

(
N
M

)
).

Then we have

EM∼PβM
QCID(M) = x1

1

x
βM
1

1

x
βM
1

+ 1

x
βM
2

+ ...+ 1

x
βM
N̄

+ x2

1

x
βM
2

1

x
βM
1

+ 1

x
βM
2

+ ...+ 1

x
βM
N̄

+ ...+ xN̄

1

x
βM
N̄

1

x
βM
1

+ 1

x
βM
2

+ ...+ 1

x
βM
N̄

And EM∼Prand
QCID(M) =

1

N̄
(x1 + x2 + ...+ xN̄ )

Without loss of generality, we assume x1 ≤ x2 ≤ ... ≤ xN̄ and define the following yi for the
notation simplicity:

yi =


1

x
βM
i

if 0 ≤ i ≤ N̄

1

x
βM
i−N̄

if N̄ < i ≤ 2N̄ − 1
(2)

Now we calculate the following ratio:

EM∼PβM
QCID(M)

EM∼Prand
QCID(M)

=

N̄(x1
1

x
βM
1

+ x2
1

x
βM
2

+ ...+ xN̄
1

x
βM
N̄

)

(x1 + x2 + ...+ xN̄ )( 1

x
βM
1

+ 1

x
βM
2

+ ...+ 1

x
βM
N̄

)

=

∑N̄
j=1(

∑N̄
i=1 xi

1

x
βM
i

)∑N̄
j=1(

∑N̄
i=1 xiyj+i−1)
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Since we assume that x1 ≤ x2 ≤ ... ≤ xN̄ , we have 1

x
βM
1

≥ 1

x
βM
2

≥ ... ≥ 1

x
βM
N̄

. Besides, it is easy

to find xi and xi′ satisfying xi ̸= xi′ . Then for each 1 ≤ j ≤ N̄ , according to the rearrangement
inequality, we have

N̄∑
i=1

xi
1

xβM

i

<

N̄∑
i=1

xiyj+i−1 ⇒
N̄∑
j=1

N̄∑
i=1

xi
1

xβM

i

<

N̄∑
j=1

N̄∑
i=1

xiyj+i−1 ⇒

EM∼PβM
QCID(M)

EM∼Prand
QCID(M)

< 1⇒ EM∼PβM
QCID(M) < EM∼Prand

QCID(M)

Similarly, for β′
M such that β′

M ≥ βM , denote β′
M = βM +∆β. We have

EM∼Pβ′
M

QCID(M)

= x1

1

x
β′
M

1

1

x
β′
M

1

+ 1

x
β′
M

2

+ ...+ 1

x
β′
M

N̄

+ x2

1

x
β′
M

2

1

x
β′
M

1

+ 1

x
β′
M

2

+ ...+ 1

x
β′
M

N̄

+ ...+ xN̄

1

x
β′
M

N̄

1

x
β′
M

1

+ 1

x
β′
M

2

+ ...+ 1

x
β′
M

N̄

= x1

1

x
βM+∆β

1

1

x
βM+∆β

1

+ 1

x
βM+∆β

2

+ ...+ 1

x
βM+∆β

N̄

+ x2

1

x
βM+∆β

2

1

x
βM+∆β

1

+ 1

x
βM+∆β

2

+ ...+ 1

x
βM+∆β

N̄

+ ...+ xN̄

1

x
βM+∆β

N̄

1

x
βM+∆β

1

+ 1

x
βM+∆β

2

+ ...+ 1

x
βM+∆β

N̄

Now we calculate the following ratio:

EM∼Pβ′
M

QCID(M)

EM∼PβM
QCID(M)

=

(
x1

x
βM+∆β

1

+ x2

x
βM+∆β

2

+ ...+ xN

x
βM+∆β

N

)(
1

x
βM
1

+ 1

x
βM
2

+ ...+ 1

x
βM
N̄

)
(

1

x
βM+∆β

1

+ 1

x
βM+∆β

2

+ ...+ 1

x
βM+∆β

N̄

)(
x1

x
βM
1

+ x2

x
βM
2

+ ...+ xN̄

x
βM
N̄

)

=

∑
1≤i≤j≤N

1

x
βM
i x

βM
j

(
xi

x∆β
i

+
xj

x∆β
j

)
∑

1≤i≤j≤N
1

x
βM
i x

βM
j

(
xi

x∆β
j

+
xj

x∆β
i

)
Since we assume that x1 ≤ x2 ≤ ... ≤ xN̄ , we have 1

x∆β
1

≥ 1

x∆β
2

≥ ... ≥ 1

x∆β

N̄

. Then for each

1 ≤ i ≤ j ≤ N , according to the rearrangement inequality, we have
xi

x∆β
i

+
xj

x∆β
j

≤ xi

x∆β
j

+
xj

x∆β
i

Furthermore, among all the (xi, xj) pairs, it is easy to find one (xi, xi′) such that it satisfies xi ̸= xi′ .
Thus we have

xi

x∆β
i

+
xi′

x∆β
i′

<
xi

x∆β
i′

+
xi′

x∆β
i

Consequently, we have∑
1≤i≤j≤N

1

xβM

i xβM

j

(
xi

x∆β
i

+
xj

x∆β
j

)
<

∑
1≤i≤j≤N

1

xβM

i xβM

j

(
xi

x∆β
j

+
xj

x∆β
i

)
⇒

EM∼Pβ′
M

QCID(M)

EM∼PβM
QCID(M)

< 1⇒ EM∼Pβ′
M

QCID(M) < EM∼PβM
QCID(M)
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C.3 PROOF OF THEOREM 3.3

Proof C.3 According to Schneider & Barker (1989), we first define the principle submatrix, which
is a submatrix where the set of remaining row indices is the same as the remaining set of column
indices.

Before selecting the first client, we need to calculate the following value for all clients c1 ∈
{1, 2, 3, ..., N},

P (C1 = c1) ∝
1

[QCID(M1)]β1
+ λ

√
3 ln k

2Tc1

, β1 > 0.

To derive the QCID(M1) for each c1 ∈ {1, 2, 3, ..., N}, according to Theorem 3.1, we need to find
the principle submatrix of S, denoted by S1, in which the set of column indices isM1. Then we
need to calculate the sum of all the elements in S1. Since there are N different values for c1 and the
dimension of S1 is 1× 1, we need to conduct the computation for N times.

After selectingM1 = {c1}, we need to select c2 ∈ {1, 2, 3, ..., N}/M1 to formM2 =M1

⋃
{c2}.

Before selecting the second client, we need to calculate the following value for all theM2 = {c1, c2}
where c2 ∈ {1, 2, 3, ..., N}/M1,

P (C2 = c2|C1 = c1) ∝
1

[QCID(M2)]β2

1
[QCID(M1)]β1

+ α
√

3 ln k
2Tc1

To derive the QCID(M2) for each c2 ∈ {1, 2, 3, ..., N}/{M1}, according to Theorem 3.1, we need
to find the principle submatrix of S, denoted by S2, in which the set of column indices isM2. Then we
need to calculate the sum of all the elements in S2. Since there are N −1 different values for c2, there
will be N − 1 different S2. Also, because we have already calculate the sum of all the elements in S1,
which is a submatrix of S2, in our first step, we now only need to sum over all the other elements in
S2. Since the dimension of S2 is 2× 2, we need to do the computation for (N − 1)× (22 − 1) times.

This procedure goes on. After selecting Mm−1 = {c1, c2, ..., cm−1}, where 3 ≤ m ≤ M , we
need to select cm ∈ {1, 2, 3, ..., N}/Mm to form Mm = Mm−1

⋃
{cm}. Before selecting the

m-th client, we need to calculate the following value for all the Mm = {c1, c2, ..., cm} where
cm ∈ {1, 2, 3, ..., N}/Mm−1,

P (Cm = cm|Cm−1 = cm−1, ..., C2 = c2, C1 = c1) ∝
[QCID(Mm−1)]

βm−1

[QCID(Mm)]βm

To derive the QCID(Mm) for each cm ∈ {1, 2, 3, ..., N}/{Mm−1}, according to Theorem 3.1, we
need to find the principle submatrix of S, denoted by Sm, in which the set of column indices isMm.
Then we need to calculate the sum of all the elements in Sm. Since there are N − (m− 1) different
values for cm, there will be N − (m − 1) different Sm. Since we have already calculate the sum
of all the elements in Sm−1, which is a submatrix of Sm, in our previous step, now we only need
to sum all the other elements in Sm. Since the dimension of Sm is m×m, we need to conduct the
computation for (N − (m− 1))× (m2 − (m− 1)2) times.

In summary, in our strategy, the total times of computations we need to conduct are

N + (N − 1)× (22 − 1) + ...+ (N − (m− 1))× (m2 − (m− 1)2) + ...+ (N −M)× (M2 − (M − 1)2)

≤ N +N × (22 − 1) + ...+N × (m2 − (m− 1)2) + ...+N × (M2 − (M − 1)2)

= N ×M2 ,

which finishes the proof that the computation complexity for our method is O
(
N ×M2

)
.
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C.4 PROOF OF THEOREM 4.5

Proof C.4 Suppose there are N available clients and their indices are denoted by {1, 2, 3, .., N}.
Our goal is to get a subset M of {1, 2, 3, .., N} following the probability law S of some client
selection strategy. Let w(k,t)

n denote the model parameter of client n after t local updates in the k-th
communication round and w(k,0) denote the global model parameter at the beginning of the k-th
communication round. According to the proof of Theorem 1 in Wang et al. (2020a), we can define the
following auxiliary variables for the setting where we adopt FedAvg as the FL optimizer and all the
client conduct τ local updates in each communication round k:

Normalized Stochastic Gradient: d
(k)
n =

∑τ−1
k=0 gn

(
w

(k,t)
n

)
Normalized Gradient: h(k)

n =
∑τ−1

k=0∇Fn

(
w

(k,t)
n

)
.

Normalized Class-wise Gradient: h(k)
(n,b) =

∑τ−1
k=0∇F(n,b)

(
w

(k,t)
n

)
.

It is easy to verify that h(k)
n =

∑B
b=1 α(n,b)h

(k)
(n,b).

According to the proof of Theorem 1 in Wang et al. (2020a), one can show that E
[
d
(k)
n − h

(k)
n

]
= 0.

Besides, since clients are independent to each other, we have E
〈
d
(k)
n − h

(k)
n ,d

(k)
n′ − h

(k)
n′

〉
=

0,∀n ̸= n′. Recall that the update rule of the global model can be written as follows:

w(k+1,0) −w(k,0) = −η
∑

n∈M qnd
(k)
n∑

n∈M qn
,

where η is the learning rate. According to the Lipschitz-smooth assumption for the global objective
function F̃ (Asssumption 4.1), it follows that

E
[
F̃
(
w(k+1,0)

)]
− F̃

(
w(k,0)

)
≤− η E

[〈
∇F̃

(
w(k,0)

)
,

∑
n∈M qnd

(k)
n∑

n∈M qn

〉]
︸ ︷︷ ︸

T1

+
η2LF̃

2
E

∥∥∥∥∥
∑

n∈M qnd
(k)
n∑

n∈M qn

∥∥∥∥∥
2


︸ ︷︷ ︸
T2

(3)

where the expectation is taken over randomly selected indices set M as well as mini-batches
ξ
(k,t)
i ,∀n ∈ {1, 2, . . . ,m}, t ∈ {0, 1, . . . , τ − 1}

Similar to the proof in Wang et al. (2020a), to bound the T1 in (3), we should notice that

T1 = E

〈∇F̃
(
w(k,0)

)
,

∑
n∈M qn

(
d
(k)
n − h

(k)
n

)
∑

n∈M qn

〉+ E

[〈
∇F̃

(
w(k,0)

)
,

∑
n∈M qnh

(k)
n∑

n∈M qn

〉]

= E

[〈
∇F̃

(
w(k,0)

)
,

∑
n∈M qnh

(k)
n∑

n∈M qn

〉]

=
1

2

∥∥∥∇F̃
(
w(k,0)

)∥∥∥2

+
1

2
E

∥∥∥∥∥
∑

n∈M qnh
(k)
n∑

n∈M qn

∥∥∥∥∥
2
− 1

2
E

∥∥∥∥∥∇F̃
(
w(k,0)

)
−

∑
n∈M qnh

(k)
n∑

n∈M qn

∥∥∥∥∥
2

(4)

where the last equation uses the fact: 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2.

T2 is similar as the one in Wang et al. (2020a). According to the proof in Section C.2 of Wang et al.
(2020a) , we have the following bound for T2,

T2 ≤2σ2E
∑

n∈M q2n

(
∑

n∈M qn)2
+ 2E

∥∥∥∥∥
∑

n∈M qnh
(k)
n∑

n∈M qn

∥∥∥∥∥
2


≤2σ2 + 2E

∥∥∥∥∥
∑

n∈M qnh
(k)
n∑

n∈M qn

∥∥∥∥∥
2
 (5)
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Plugging (4) and (5) back into (3), we have

E
[
F̃
(
w(k+1,0)

)]
− F̃

(
w(k,0)

)
≤− η E

[〈
∇F̃

(
w(k,0)

)
,

∑
n∈M qnd

(k)
n∑

n∈M qn

〉]
︸ ︷︷ ︸

T1

+
η2LF̃

2
E

∥∥∥∥∥
∑

n∈M qnd
(k)
n∑

n∈M qn

∥∥∥∥∥
2


︸ ︷︷ ︸
T2

≤− 1

2
η
∥∥∥∇F̃

(
w(k,0)

)∥∥∥2

− 1

2
ηE

∥∥∥∥∥
∑

n∈M qnh
(k)
n∑

n∈M qn

∥∥∥∥∥
2
+

1

2
ηE

∥∥∥∥∥∇F̃
(
w(k,0)

)
−

∑
n∈M qnh

(k)
n∑

n∈M qn

∥∥∥∥∥
2


+η2LF̃σ
2 + η2LF̃E

∥∥∥∥∥
∑

n∈M qnh
(k)
n∑

n∈M qn

∥∥∥∥∥
2
 (6)

If we set η ≤ 1
2L , we have

E
[
F̃
(
w(k+1,0)

)]
− F̃

(
w(k,0)

)
≤− 1

2
η
∥∥∥∇F̃

(
w(k,0)

)∥∥∥2

+
1

2
ηE

∥∥∥∥∥∇F̃
(
w(k,0)

)
−

∑
n∈M qnh

(k)
n∑

n∈M qn

∥∥∥∥∥
2
+ η2LF̃σ

2. (7)

Now we focus on the E

[∥∥∥∥∇F̃ (w(k,0)
)
−

∑
n∈M qnh

(k)
n∑

n∈M qn

∥∥∥∥2
]

in the following:

E

∥∥∥∥∥∇F̃
(
w(k,0)

)
−

∑
n∈M qnh

(k)
n∑

n∈M qn

∥∥∥∥∥
2

= E

∥∥∥∥∥∥ 1

B

B∑
b=1

∇F̃b

(
w(k,0)

)
−

∑
n∈M qn

(∑B
b=1 α(n,b)h

(k)

(n,b)

)
∑

n∈M qn

∥∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

B

B∑
b=1

∇F̃b

(
w(k,0)

)
−

B∑
b=1

∑
n∈M qnα(n,b)h

(k)

(n,b)∑
n∈M qn

∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥∥ 1

B

B∑
b=1

∇F̃b

(
w(k,0)

)
−

B∑
b=1

∑
n∈M qnα(n,b)∇F̃b

(
w(k,0)

)
∑

n∈M qn

∥∥∥∥∥∥
2

+ 2E

∥∥∥∥∥∥
B∑

b=1

∑
n∈M qnα(n,b)∇F̃b

(
w(k,0)

)
∑

n∈M qn
−

B∑
b=1

∑
n∈M qnα(n,b)h

(k)

(n,b)∑
n∈M qn

∥∥∥∥∥∥
2

= 2E

∥∥∥∥∥
B∑

b=1

(
1

B
−

∑
n∈M qnα(n,b)∑

n∈M qn
)∇F̃b

(
w(k,0)

)∥∥∥∥∥
2

︸ ︷︷ ︸
T3

+ 2E

∥∥∥∥∥∥
B∑

b=1

∑
n∈M qnα(n,b)[∇F̃b

(
w(k,0)

)
− h

(k)

(n,b)]∑
n∈M qn

∥∥∥∥∥∥
2

︸ ︷︷ ︸
T4

(8)

For T3, according to the Cauchy-Schwarz inequality and Assumption 4.3, we have

E

∥∥∥∥∥
B∑

b=1

(
1

B
−

∑
n∈M qnα(n,b)∑

n∈M qn
)∇F̃b

(
w(k,0)

)∥∥∥∥∥
2

≤ BE

 B∑
b=1

(
1

B
−

∑
n∈M qnα(n,b)∑

n∈M qn
)2

∥∥∥∥∥ 1

B

B∑
b=1

∇F̃b

(
w(k,0)

)∥∥∥∥∥
2


= B∥∇F̃
(
w(k,0)

)
∥2E[QCID(M)] + γ2E[QCID(M)] (9)
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For T4, we have

E

∥∥∥∥∥∥
B∑

b=1

∑
n∈M qnα(n,b)[∇F̃b

(
w(k,0)

)
− h

(k)

(n,b)]∑
n∈M qn

∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥
B∑

b=1

∑
n∈M qnα(n,b)[∇F̃b

(
w(k,0)

)
−∇F(n,b)

(
w(k,0)

)
+∇F(n,b)

(
w(k,0)

)
− h

(k)

(n,b)]∑
n∈M qn

∥∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥∥
B∑

b=1

∑
n∈M qnα(n,b)[∇F̃b

(
w(k,0)

)
−∇F(n,b)

(
w(k,0)

)
]∑

n∈M qn

∥∥∥∥∥∥
2

+ 2E

∥∥∥∥∥∥
B∑

b=1

∑
n∈M qnα(n,b)[∇F(n,b)

(
w(k,0)

)
− h

(k)

(n,b)]∑
n∈M qn

∥∥∥∥∥∥
2

≤ 2κ2
B∑

b=1

∑
n∈M qnα(n,b)∑

n∈M qn
+ 2

∥∥∥∥∥∥
B∑

b=1

∑
n∈M qnα(n,b)[∇F(n,b)

(
w(k,0)

)
− h

(k)

(n,b)]∑
n∈M qn

∥∥∥∥∥∥
2

≤ 2κ2 + 2

∥∥∥∥∥∥
B∑

b=1

∑
n∈M qnα(n,b)[∇F(n,b)

(
w(k,0)

)
− h

(k)

(n,b)]∑
n∈M qn

∥∥∥∥∥∥
2

, (10)

where where κ = max{n,b}κ{n,b}. According to the results from the proof in C.5 in Wang et al.
(2020a), we have

E
∥∥∥∇F(n,b)

(
w(k,0)

)
− h

(k)
(n,b)

∥∥∥2 ≤ L2
n,b

τ

τ−1∑
k=0

E
[∥∥∥w(k,0) −w(k,t)

n

∥∥∥2]

≤ L2

τ

τ−1∑
k=0

E
[∥∥∥w(k,0) −w(k,t)

n

∥∥∥2]
≤ 2η2L2σ2

1−D
(τ − 1) +

D

1−D
E
[∥∥∥∇Fi

(
w(k,0)

)∥∥∥2]
≤ 2η2L2σ2

1−D
(τ − 1) +

2D

1−D

∥∥∥∇F̃ (w(k,0)
)∥∥∥2 + 2D

1−D
E
[∥∥∥∇Fi

(
w(k,0)

)
−∇F̃

(
w(k,0)

)∥∥∥2]
≤ 2η2L2σ2

1−D
(τ − 1) +

2D

1−D

∥∥∥∇F̃ (w(k,0)
)∥∥∥2 + 2D

1−D
E
[∥∥∥∇Fi

(
w(k,0)

)
−∇F̃

(
w(k,0)

)∥∥∥2]
≤ 2η2L2σ2

1−D
(τ − 1) +

2D

1−D

∥∥∥∇F̃ (w(k,0)
)∥∥∥2 + 1

B

2D

1−D
κ2 (11)

where L = max{n,b}Ln,b and D = 4η2L2τ(τ − 1).

Combining the results in (7), (8), (9), (10) and (11), it is easy to derive that

E
[
F̃
(
w(k+1,0)

)]
− F̃

(
w(k,0)

)
≤− (

1

2
−BδE[QCID]− 4D

1−D
)η
∥∥∥∇F̃ (w(k,0)

)∥∥∥2 + 4ηκ2 +
4η3L2σ2

1−D
(τ − 1)

+
1

B

4D

1−D
ηκ2 + η2LF̃σ

2 + γ2ηE[QCID] (12)
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Now we have

E
[
F̃
(
w(k+1,0)

)]
− F̃

(
w(k,0)

)
η

≤− (
1

2
−BδE[QCID]− 4D

1−D
)
∥∥∥∇F̃ (w(k,0)

)∥∥∥2 + 4κ2

+
4η2L2σ2

1−D
(τ − 1) +

1

B

4D

1−D
κ2 + γ2E[QCID] + ηLF̃σ

2 (13)

Taking the total expectation and averaging over all rounds, one can obtain

E
[
F̃
(
w(K,0)

)]
− F̃

(
x(0,0)

)
ηK

≤ −(1
2
−BδE[QCID]− 4D

1−D
)
1

K

K−1∑
t=1

E
∥∥∥∇F̃ (w(k,0)

)∥∥∥2
γ2E[QCID] + (4 +

1

B

4D

1−D
)κ2 +

4η2L2σ2

1−D
(τ − 1) + ηLσ2

(14)

Finally, we have

min
k≤K

E
∥∥∥∇F (w(k,0)

)∥∥∥2 ≤ 1

K

K−1∑
k=1

E
∥∥∥∇F̃ (w(k,0)

)∥∥∥2 (15)

≤ 1

( 12 −BδE[QCID(M)]− 4D
1−D )

[
F̃
(
w(0,0)

)
− F̃min

ηK
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4η2L2σ2
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(16)

If setting η = s

10L
√

τ(τ−1)K
with s < 1, we have

min
k≤K

E
∥∥∥∇F (w(k,0)

)∥∥∥2 ≤ 1
1
3 −BδE[QCID(M)]

[
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(
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)
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s
√
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√
τ(τ − 1))

+ 5κ2 +
σ2s2

25τK
+

sLF̃σ
2

10L
√
τ(τ − 1)K

+ γ2E[QCID]] (17)

Since F̃ is larger than 0, Fmin > 0. Now we let w(k) denote the global model parameter at the k-th
communication round and w(0) denote the initial parameter. After changing the notations, we can
finish our proof by the following:

min
k≤K

E
∥∥∥∇F̃ (w(k)

)∥∥∥2 ≤ 1
1
3 −BδE[QCID(M)]

[
σ2s2

25τK
+

sLF̃σ
2

10L
√
τ(τ − 1)K

+ 5κ2 +
10L

√
τ(τ − 1)F̃

(
w(0)

)
s
√
K

+ γ2E[QCID]],

D SUPPLEMENTAL EXPERIMENT SETTINGS AND RESULTS

We run all the other experiments on a sever with a single NVIDIA TITAN RTX GPU and Intel Xeon
Gold 6254 CPU.

D.1 THE EXPERIMENTAL SETTINGS IN SECTION 2.1

We adopt an MLP model with one hidden layer of 64 units and FedAvg (McMahan et al., 2017b) as
the FL optimizer. In Figure 1a, we allocate the MNIST data to N = 100 clients with each client only
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accessing to the same amount of data from one class. In Figure 1b, each client is associated with
the same amount of data from two classes. In Figure 1c and 1d, we first allocate the whole MNIST
dataset to N = 200 clients and pick 100 to construct a class-imbalanced global dataset. The global
dataset with the 100 clients has the same amount of n1 data samples for five classes and has the same
amount of n2 data samples for the other five classes. The ration r between n1 and n2 is set to 3 : 1.

In each training round (communication round), all of the clients conduct 5 local training epochs.
The batch size is 50 for each client. The local optimizer is SGD with a weight decay of 0.0005.
The learning rate is 0.01 initially and the decay factor is 0.9992. We terminate the FL training after
200 training rounds (communication rounds) and then evaluate the model’s performance on the test
dataset of MNIST.

D.2 ADDITIONAL EXPERIMENTAL SETTINGS IN SECTION 5

The model we adopt has two convolutional layers with the number of kernel being 6 and 16,
respectively. And all convolution kernels are of size 5 × 5. The outputs of convolutional layers are
fed into two hidden layers with 120 and 84 units.

In our implementation of Power-of-choice selection strategy (pow-d)(Cho et al., 2020), we first sample
a candidate set A of 20 clients without replacement such that client n is chosen with probability
proportional to the size of their local dataset qn. Then the server sends the current global model to
the clients in set A, and these clients compute and send back to the server their local loss. To derive
M, we select M clients which have the highest loss from A.

In our implementation of the method in (Yang et al., 2020) (Fed-cucb), the exploration factor to
balance the trade-off between exploitation and exploration is set as 0.2 and forgetting factor as 0.99,
which are the same as the settings in Yang et al. (2020).

With help with FHE, we can derive the matrix of inner products S accurately. Hence, in the simulation
of our method, Fed-CBS, we ignore the process of deriving S and focus on our sampling strategy.

D.3 ADDITIONAL DETAILS FOR THE EXPERIMENTAL SETTINGS IN CASE 1 AND CASE 2

Case 1 In this setting, we have 120 clients in total, and each client has only one class of data.

When n1 : n2 = 3 : 1, there are 18 clients having the data from the 1st class, 18 clients having the
data from the 2nd class, 18 clients having the data from the 3rd class, 18 clients having the data from
the 4th class and 18 clients having the data from the 5th class. There are 6 clients having the data
from the 6th class, 6 clients having the data from the 7th class, 6 clients having the data from the 8th
class, 6 clients having the data from the 9th class and 6 clients having the data from the 10th class.

When n1 : n2 = 5 : 1, there are 20 clients having the data from the 1st class, 20 clients having the
data from the 2nd class, 20 clients having the data from the 3rd class, 20 clients having the data from
the 4th class and 20 clients having the data from the 5th class. There are 4 clients having the data
from the 6th class, 4 clients having the data from the 7th class, 4 clients having the data from the 8th
class, 4 clients having the data from the 9th class and 4 clients having the data from the 10th class.

Then we uniformly set 30% (36 clients) of them available. Since there are more clients which contain
the data from the first 5 classes among the above 120 clients. The global dataset of these 36 clients is
often class-imbalanced.

Case 2 In this setting, we have 200 clients in total and each client has only one class of data. For all
the i ∈ {1, 2, ..., 10}, there are 20 clients having the data from the i−th class.

When n1 : n2 = 3 : 1, we randomly pick 9 clients from the 20 clients which have the data from the
1st class and set them available. We randomly pick 9 clients from the 20 clients which have the data
from the 2nd class and set them available. Similarly, for the k-th class (2 < k ≤ 5), we randomly
pick 9 clients from the 20 clients which have the data from the k-th class and set them available. On
the contrary, we randomly pick 3 clients from the 20 clients which have the data from the 6th class
and set them available. We randomly pick 3 clients from the 20 clients which have the data from the
7th class and set them available. Similary, for 7 < k ≤ 10, we randomly pick 3 clients from the 20
clients which have the data from the k-th class and set them available. There are 60 clients in total.
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When n1 : n2 = 5 : 1, we randomly pick 10 clients from the 20 clients which have the data from
the 1st class and set them available. We randomly pick 10 clients from the 20 clients which have the
data from the 2nd class and set them available. For the k-tth class (2 < k ≤ 5), we randomly pick
10 clients from the 20 clients which have the data from the k-th class and set them available. On
the contrary, we randomly pick 2 clients from the 20 clients which have the data from the 6th class
and set them available. We randomly pick 2 clients from the 20 clients which have the data from the
7th class and set them available. And for the other k-th class (7 < k ≤ 10), we randomly pick 2
clients from the 20 clients which have the data from the k-th class and set them available. There are
60 clients in total.

Since there are more clients that contain the data from the first 5 classes among the above 60 clients,
the global dataset of these 60 clients is always class-imbalanced.

The difference between the settings of Case 1 and Case 2 is that we uniformly set 30% clients
available in Case 1 but non-uniformly set 30% clients available in Case 2. Nevertheless, the global
datasets of the available clients are both class-imbalanced in both cases.

D.4 THE AVERAGED QCID VALUES FOR CASE 1 AND CASE 2 IN SECTION 5.2

E[QCID](10−2) all rand pow-d Fed-cucb Fed-CBS
Case 1 3:1 2.90±0.02 9.33±0.17 13.70±0.39 1.39±0.37 0.57±0.04

5:1 6.17±0.04 12.36±0.20 16.63±0.74 3.43±0.76 2.41±0.07
Case 2 3:1 2.50±0.00 9.91±0.16 13.68±0.72 1.89±1.72 0.001±0.001

5:1 4.44±0.00 11.70±0.20 15.68±0.96 2.63±2.40 0.002±0.001

Table 4: The averaged QCID values for four baselines and our method. Our method, Fed-CBS, has successfully
reduced the class-imbalance. Since the global dataset of all the 60 available clients is always class-imbalanced
and the ratio is always fixed in case 2, the QCID value is fixed and the derivation of it is always zero.

D.5 EXPERIMENT RESULTS OF FASHION-MNIST DATASET

Experiment Setup We adopt an MLP model with one hidden layer of 64 units and FedNova (Wang
et al., 2020a) as the FL optimizer. Similar to the setup in the experiment of CIFAR-10, the batch size
is 50 for each client. In each communication round, all of them conduct the same number of local
updates, which allows the client with the largest local dataset to conduct 5 local training epochs. In
our method, we set the βm = m, γ = 10 and Lb = 10−20. The local optimizer is SGD with a weight
decay of 0.0005. The learning rate is 0.01 initially and the decay factor is 0.9992. We terminate the
FL training after 3000 communication rounds and then evaluate the model’s performance on the test
dataset of Fashion-MNIST.

all rand pow-d Fed-cucb Fed-CBS
Communication Rounds α=0.1 115±17 185±27 135±22 124±37 92±6

α=0.2 173±45 284±54 218±55 216±24 166±36
α=0.5 258±44 331±55 281±54 284±51 218±36

E[QCID](10−2) α=0.1 1.40±0.11 8.20±0.19 11.72±0.33 4.24±0.59 0.15±0.02
α=0.2 1.39±0.22 7.67±0.26 10.31±0.24 4.43±0.38 0.21±0.01
α=0.5 0.94±0.07 5.93±0.26 7.68±0.28 4.34±0.85 0.22±0.01

Table 5: The communication rounds required for targeted test accuracy and the averaged QCID values on
Fashion-MNIST dataset. The targeted test accuracy is 78% for α = 0.1, 80% for α = 0.2 and 82% for α = 0.5.
The results are the mean and the standard deviation over 4 different random seeds.

D.5.1 RESULTS FOR CLASS-BALANCED GLOBAL DATASET

Similar to the experiment settings, in this experiment, we set 200 clients in total with a class-
balanced global dataset. The non-IID data partition among clients is based on the settings of
Dirichlet distribution parameterized by the concentration parameter α in Hsu et al. (2019). In each
communication round, we uniformly and randomly set 30% of them (i.e., 60 clients) available and
select 10 clients from those 60 available ones to participate in the training.
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Figure 6: Test accuracy on Fashion-MNIST dataset under three heterogeneous settings.

As shown in Table 6, our method successfully reduces the class-imbalance, since it achieve the lowest
QCID value compared with other client selection strategies. Our method outperforms the other three
baseline methods and achieves comparable performance to the ideal setting where all the available
clients are engaged into the training. As shown in Table 4 and Figure 6, our method can achieve faster
and more stable convergence. It is worth noting that due to the inaccurate estimation of distribution
and the weakness of greedy method discussed in Section 2.2, the performance of Fed-cucb is much
worse than ours.

D.5.2 RESULTS FOR CLASS-IMBALANCED GLOBAL DATASET: CASE 1

Similar to the settings for Cifar-10, there are 120 clients in total and each client only has one class
of data with the same quantity. The global dataset of these 120 clients is always class-imbalanced.
To measure the degree of class imbalance, we let the global dataset have the same amount n1 of
data samples for five classes and have the same amount n2 of data samples for the other five classes.
The ratio r between n1 and n2 is set to 3 : 1 and 5 : 1 respectively in the experiments. In each
communication round, we randomly set 30% of them (i.e., 36 clients) available and select 10 clients
to participate in the training.

As shown in the Table 6 and Figure 7a, our method can achieve faster and more stable convergence,
and even better performance than the ideal setting where all the available clients are engaged. The
performance of Fed-cucb (Yang et al., 2020) is better than the results on class-balanced global dataset,
which is partly due to the simplicity of each client’s local dataset composition in our experiments as
discussed in the experiments of Cifar-10.

D.5.3 RESULTS FOR CLASS-IMBALANCED GLOBAL DATASET: CASE 2
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Figure 7: Test accuracy on Fashion-MINST with class-imbalanced global dataset in Case 1 and Case 2.

all rand pow-d Fed-cucb Fed-CBS
Case 1 3:1 78.42±0.79 78.46±0.90 81.08±0.21 80.83±0.91 81.75±0.34

5:1 72.42±2.22 75.49±2.56 80.15±0.41 80.50±0.95 81.42±0.50
Case 2 3:1 74.64±1.87 78.80±0.55 81.13±0.41 79.94±0.31 81.95±0.57

5:1 67.16±4.13 74.17±2.01 80.05±0.39 80.00±0.58 81.92±0.57

Table 6: Best test accuracy for our method and other four baselines on Fashion-MNIST dataset.
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Similar to the settings of Cifar-10, we assume that there are 200 clients in total. In each communication
round, 30% of them (i.e., 60 clients) are set available in each training round. The global dataset of
those 60 available clients is always class-imbalanced. To measure the degree of class imbalance,
we make the global dataset have the same amount n1 of data for the five classes and have the same
amount n2 of data for the other five classes. The ratio r between n1 and n2 is set to 3 : 1 and 5 : 1.
We select 10 clients from these 60 clients to participate in the training.

As shown in the Table 6 and Figure 7b, our method can achieve higher test accuracy and more stable
convergence, which outperforms the ideal setting where all the available clients are engaged. Since
the global dataset of the available 60 clients in each communication round is always class-imbalanced,
the performance of engaging all of them is not good.

E ABLATION STUDIES AND DISCUSSION

E.1 ACCURATE ESTIMATION VS INACCURATE ESTIMATION FOR FED-CUCB
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Figure 8: Test accuracy on Cifar-10 for Fed-cucb, Fed-cucb+ and Fed-CBS.

Fed-cucb+ (Astraea) Fed-cucb Fed-CBS
Best Accuracy (%) α=0.1 49.10±0.70 46.84±0.73 50.36±0.58

α=0.2 50.61±0.77 48.80±1.05 51.95±0.57
α=0.5 52.71±0.27 50.98±0.56 54.21±0.34

E(QCID) (10−2) α=0.1 0.83±0.18 7.09±2.27 0.62±0.20
α=0.2 0.68±0.05 5.93±1.01 0.51±0.12
α=0.5 0.43±0.04 6.47±0.77 0.36±0.04

Table 7: Best accuracy and the averaged QCID values.

As discussed in Sections 2.2 and 5.1, the estimation of the label distribution in Fed-cucb (Yang et al.,
2020) is not accurate, which leads to performance degradation. Hence there comes a natural question,
would the performance of Fed-cucb get improved if it got an exact estimation of the local label
distribution? In our simulation, we manually let the Fed-cucb know the exact value of each client’s
local label distribution and name it as Fed-cucb+. Actually, Fed-cucb+ is the core part of Astraea
(Duan et al., 2019) without data augmentation. Hence, comparing our method with Fed-cucb+ can
show the superiority of our sampling strategy over the greedy method in Fed-cucb (Yang et al., 2020)
and Astraea (Duan et al., 2019).

E.2 THE EFFECT OF EXPLORATION FACTOR λ

As shown in the Figure 8 and Table 7, Fed-cucb+ does improve the performance of Fed-cucb, which
verifies the importance of accurate estimation. However, our Fed-CBS still outperforms Fed-cucb+.
Although, it seems that the accuracy of Fed-cucb+ increases a little faster than Fed-CBS at the
beginning of the training, our method will achieve higher accuracy as the training proceeds further.
As discussed in the Remark 3.3 in Section 3.3 and the Figure 2 of Section 5.1, this is due to the pitfall
of greedy method, where one will miss the optimal solution. This has been verified by the averaged
QCID value in Table 7 and Fed-CBS achieves lower E(QCID) than Fed-cucb+ (Astraea).
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Figure 9: Test accuracy with different exploration factor λ.

Another potential weakness of greedy method is the diversity of client composition. Following their
selection process, once the first choice of client has been made, the following choices are fixed
successively. Hence there are only limited kinds of client composition. It is interesting to investigate
the relationship between the training performance and the diversity of client composition and we
leave it as future work.

In our sampling strategy, when we sample the first client, we introduce the exploration factor λ to
balance the tradeoff between exploitation and exploration. When the λ is small, our method will
tend to exploit the class-balanced clients since their QCID values are smaller. For fairness, we hope
every client can get the chance to be selected. Hence, we can increase the λ and then our method will
tend to explore the clients which have seldom been selected before. However, it might cost many
communication rounds for exploration and lead to slower convergence.

We conduct some experiments to verify the effect of exploration factor λ. The setting are the same as
the ones in Section 5.1 when α = 0.2. As shown in the Figure 9, as the λ becomes larger, the increase
of accuracy will become a little slower at the start of the training. This because the it might cost more
communication rounds for exploration. As the training proceeds, the accuracy with larger λ becomes
a little higher than the ones with smaller λ. Overall, the improvement on the convergence speed and
best accuracy is very slight, which means the performance of FL training is not very sensitive to
the values of exploration factor λ. Generally, if we want to slightly fasten the convergence, we can
decrease the value of λ. If we want to improve the best accuracy, we can increase the value of λ.

E.3 THE PERFORMANCE WITH DIFFERENT AMOUNTS OF SELECTED CLIENTS

In this section, we want to investigate how the amount of selected clients will affect the FL training
performance. Generally, we think as the amount of selected clients increases, the FL training
process can achieve better performance. However, once that amount reaches some threshold ϵ, the
improvement will become slighter. This is because we find that select only a subset of all the available
can achieve comparable results with engaging all the available clients into the training. As for how to
decide the threshold ϵ, we provide the following two principles based on QCID and our experience.

• First, if we work on a classification task with B classes, we can select at least B clients. This
is because in some special cases, each client will only have one class of data in their local
dataset, such as the settings in Section 5.2. Hence, if less than B clients are selected, the
grouped dataset of the selected clients will miss some classes of data.

• Second, to avoid missing some classes of data, we increase the threshold ϵ such that the
averaged QCID value could smaller than 1

B2 . This is because if the grouped dataset misses
at least one class of data, the QCID will be larger than 1

B2 .
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We conduct some experiments to verify our prediction on the effect of the amount of selected clients.
The settings are the same as the ones in Section 5.1 when α = 0.2. As shown in the left figure of
Figure 10, as the amount of selected clients increases, the FL training process can achieve better
performance. However, when the amount M is larger than 10, the improvement is slighter. In the
right figure of Figure 10 , we can find that the averaged QCID value of selecting 5 clients is larger
than ( 1

10 )
2 = 0.01 and its performance is obviously worse than the others. These results verify the

effectiveness of our principles on how to set the threshold ϵ. It is worth noting that due to limitation
of communication bandwidth, we cannot select as many clients as possible. Hence, how to identify
the appropriate threshold ϵ is critical to the FL training.
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Figure 10: Left: The performance with different amounts of selected clients. Right: The QCID with different
amounts of selected clients.

Besides, we notice that if we increase the number of clients selected, the performance of random
selection might improve. However, it is worth noting that our method can achieve comparable results
with less selected clients, which reduces the computation and communication costs. Indeed, this has
been reflected in our comparison between the baseline "all" and our method "Fed-CBS" in Section
5.1, which shows our method’s strength. We randomly set 30% clients (60 clients) available in each
round. Then our method will select 10 clients from them. The baseline "all" is the ideal case where
we select all the 60 clients. In fact, it is a special case of "randomly selecting more clients". Although
it is much better than randomly selecting 10 clients, our method is still comparable to it.

E.4 ADDITIONAL EXPERIMENTAL RESULTS ON FEMNIST DATASET

We also conduct some experiment on the FEMINST Dataset. There are 3500 (> 1000) clients in
total and we randomly set 10%(< 30%) of them available in each round. Then our method tries
to select 30 clients from them. That is less than 1% of all the 3550 clients and also less than the
number of classes (64). Besides, we also run three baselines, randomly selecting 30 clients, randomly
selecting 120(> 100) clients , selecting 30 clients with fedcucb. We present the results in Table 8
and Figure 11. Our performance is still the best. Due to the global imbalance, rand-120 is even worse
than rand-30.

rand-30 rand-120 Fed-cucb Fed-CBS
Communication Rounds 1106 ± 24 1394 ± 11 1124± 31 980±17

Table 8: The communication rounds required for targeted test accuracy (75%). The results are the mean and the
standard deviation over 3 different random seeds.
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Figure 11: Test accuracy for FEMNIST
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