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Abstract

Matrix sketching is a powerful tool for reducing the size of large data matrices. Yet
there are fundamental limitations to this size reduction when we want to recover an
accurate estimator for a task such as least square regression. We show that these
limitations can be circumvented in the distributed setting by designing sketching
methods that minimize the bias of the estimator, rather than its error. In particular,
we give a sparse sketching method running in optimal space and current matrix
multiplication time, which recovers a nearly-unbiased least squares estimator using
two passes over the data. This leads to new communication-efficient distributed
averaging algorithms for least squares and related tasks, which directly improve on
several prior approaches. Our key novelty is a new bias analysis for sketched least
squares, giving a sharp characterization of its dependence on the sketch sparsity.
The techniques include new higher-moment restricted Bai-Silverstein inequalities,
which are of independent interest to the non-asymptotic analysis of deterministic
equivalents for random matrices that arise from sketching.

1 Introduction

Matrix sketching is a powerful collection of randomized techniques for compressing large data
matrices, developed over a long line of works as part of Randomized Numerical Linear Algebra
[RandNLA, e.g., 45, 26, 37, 39, 21]. Sketching can be used to reduce the large dimension n of a data
matrix A ∈ Rn×d by applying a random sketching matrix (operator) S ∈ Rm×n to obtain the sketch
Ã = SA ∈ Rm×d where m≪ n. For example, sketching can be used to approximate the solution
to the least squares problem, x∗ = argminx L(x) where L(x) = ∥Ax− b∥2, by using a sketched
estimator x̃ = argminx ∥Ãx− b̃∥2, where Ã = SA and b̃ = Sb.

Perhaps the simplest form of sketching is subsampling, where the sketching operator S selects a
random sample of the rows of matrix A. However, the real advantage of sketching as a framework
emerges as we consider more complex operators S, such as sub-Gaussian matrices [1], randomized
Hadamard transforms [3], and sparse random matrices [12]. These approaches ensure higher quality
and more robust compression of the data matrix, e.g., leading to provable ϵ-approximation guarantees
for the estimate x̃ in the least squares task, i.e., L(x̃) ≤ (1 + ϵ)L(x∗). Nevertheless, there are
fundamental limitations to how far we can compress a data matrix using sketching while ensuring
an ϵ-approximation. These limitations pose a challenge particularly in space-limited computing

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



A Subsample Õ(d/ϵ)× d

Õ(1/ϵ) rows

Õ(1/ϵ) rows
...

Õ(1/ϵ) rows

Sketch O(d)× d

...

Figure 1: Illustration of the leverage score sparsification algorithm used in Theorem 1. Each row of
the sketch mixes Õ(1/ϵ) leverage score samples from A. Remarkably, the ϵ-error guarantee of the
subsampled estimator is retained as ϵ-bias of the sketched estimator.

environments, such as for streaming algorithms where we observe the matrix A, say, one row at a
time, and we have limited space for storing the sketch [11].

One strategy for overcoming the fundamental limitations of sketching as a compression tool is to look
beyond the single approximation guarantee provided by a sketching-based estimator x̃, and consider
how its broader statistical properties can be leveraged in a given computing environment. To that
end, many recent works have demonstrated both theoretically and empirically that sketching-based
estimators often exhibit not only approximation robustness but also statistical robustness, for instance
enjoying sharp confidence intervals, effectiveness of statistical inference tools such as bootstrap
and cross-validation, as well as accuracy boosting techniques such as distributed averaging [e.g.,
35, 25, 32, 33]. Yet, these results have had limited impact on the traditional computational complexity
analysis in RandNLA and sketching literature, as many of them either impose additional assumptions,
focus on sharpening the constant factors, or require using more expensive sketching techniques. In
this work, we demonstrate that the statistical properties of sketching-based estimators can in fact have
a substantial impact on the computational trade-offs that arise in RandNLA.

Our key motivating example is the above mentioned least squares regression task. It is well understood
that for an n× d least squares task, to recover an ϵ-approximate solution out of an m× d sketch, we
need sketch size at least m = Ω(d/ϵ). This has been formalized in the streaming setting with a lower
bound of Ω(ϵ−1d2 log(nd)) bits of space required, when all of the input numbers useO(log(nd)) bits
of precision [11]. One setting where this can be circumvented is in the distributed computing model
where the bits can be spread out across many machines, so that the per-machine space can be smaller.
Here, one could for instance hope that we can maintain small O(d) × d sketches in q = O(1/ϵ)
machines and then combine their estimates to recover an ϵ-approximate solution. A simple and
attractive approach is to average the estimates x̃i produced by the individual machines, returning
x̂ = 1

q

∑q
i=1 x̃i, as this only requires each machine to communicateO(d log(nd)) bits of information

about its sketch. This approach requires the sketching-based estimates x̃i to have sufficiently small
bias for the averaging scheme to be effective. While this has been demonstrated empirically in
many cases, existing theoretical results still require relatively expensive sketching methods to recover
low-bias estimators, leading to an unfortunate trade-off in the distributed averaging scheme between
the time and space complexity required.

In this work, we address the time-space trade-off in distributed averaging of sketching-based estima-
tors, by giving a sharp characterization of how their bias depends on the sparsity of the sketching
matrix. Remarkably, we show that in the distributed streaming environment one can compress the
data down to the minimum size of O(d2 log(nd)) bits at no extra computational cost, while still being
able to recover an ϵ-approximate solution for least squares and related problems. Importantly, our
results require the sketching matrix to be slightly denser than is necessary for obtaining approximation
guarantees on a single estimate, and thus, cannot be recovered by standard RandNLA sampling
methods such as approximate leverage score sampling [27].

Before we state the full result in the distributed setting, we give our main technical contribution.
which is the following efficient construction of a low-bias least squares estimator in a single pass
using only O(d2 log(nd)) bits of space, assuming all numbers use O(log(nd)) bits of precision.
Below, γ > 0 denotes an arbitrarily small constant.
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Reference Method Total runtime Parallel passes
Folklore Gaussian sketch O(ndω−1) 1

[43] Leverage Score Sampling nnz(A) + Õ(dω/
√
ϵ) 1

[5] Determinantal Point Process nnz(A) + Õ(dω) log3(n/ϵ)
[9] Weighted Mb-SGD (sequential) nnz(A) + Õ(d2/ϵ) 1/ϵ

This work (Thm. 1) Leverage Score Sparsification nnz(A) + Õ(d2/ϵ) 1

Table 1: Comparison of time complexities and parallel passes over the data required for differ-
ent methods to obtain a (1 + ϵ)-approximation in O(d2 log(nd)) bits of space for an n × d least
squares problem (A,b), given a preconditioner P such that κ(AP) = O(1) (see Section 3 for our
computational model). We include the fully sequential Weighted Mb-SGD as a reference.

Theorem 1. Given streaming access to A ∈ Rn×d and b ∈ Rn, and direct access to a pre-
conditioner matrix P ∈ Rd×d such that κ(AP) ≤ α, within a single pass over (A,b), in
O(γ−1nnz(A) + ϵ−1αd2+γpolylog(d)) time and O(d2 log(nd)) bits of space, we can construct a
randomized estimator x̃ for the least squares solution x∗ = argminx ∥Ax− b∥2 such that:

(Bias)
∥∥AE[x̃]− b

∥∥2 ≤ (1 + ϵ)∥Ax∗ − b∥2,
(Variance) E

[
∥Ax̃− b∥2

]
≤ 2 ∥Ax∗ − b∥2.

Remark 1. The above construction assumes access to a preconditioner matrix P with κ(AP) ≤ α
(where κ denotes the condition number). Such matrix can be obtained efficiently with α = O(1) in a
separate single pass, leading to a two-pass algorithm described later in Theorem 2.

Our estimator x̃ is constructed at the end of the data pass from a sketch (Ã, b̃) where Ã = SA and
b̃ = Sb, by minimizing ∥Ãx− b̃∥2 using preconditioned conjugate gradient. Here, S is a carefully
constructed sparse sketching matrix which is inspired by the so-called leverage score sparsified
(LESS) embeddings [18]. Leverage scores represent the relative importances of the rows of A which
are commonly used for subsampling in least squares (see Definition 1), and their estimates can be
easily obtained in a single pass by using the preconditioner matrix P.

Our time complexity bound of Õ(nnz(A) + d2/ϵ) matches the time it would take (for a single
machine) to subsample Õ(d/ϵ) rows of A according to the approximate leverage scores and produce
an estimator x̃ that achieves the ϵ-error bound ∥Ax̃ − b∥2 ≤ (1 + ϵ)∥Ax∗ − b∥2. However, this
strategy requires either maintaining Õ(d2/ϵ) bits of space for the sketch, or computing x̃ directly
along the way, blowing up the runtime to Õ(dω/ϵ). Since approximate leverage score sampling leads
to significant least squares bias, averaging can only improve this to Õ(dω/

√
ϵ) (see Table 1). An

alternate strategy would be to combine leverage score sampling with a preconditioned mini-batch
stochastic gradient descent (Weighted Mb-SGD), with mini-batches chosen so that they fit in Õ(d2)
space. This achieves the same time and space complexity as our method, but due to the streaming
access to A and the sequential nature of SGD, it requires O(1/ϵ) data passes.

Instead, our algorithm essentially mixes an Õ(d/ϵ) size leverage score sample into an O(d) size
sketch, merging Õ(1/ϵ) rows of A into a single row of the sketch (see Figure 1). This results
in better data compression compared to direct leverage score sampling, with only Õ(d2) bits of
space, while retaining the same Õ(nnz(A) + d2/ϵ) runtime complexity as the above approaches
and requiring only a single data pass. The resulting estimator x̃ can no longer recover the ϵ-error
bound, but remarkably, its expectation E[x̃] still does. To turn this into an improved estimator in a
distributed model, we can simply average q = 1/ϵ such estimators, i.e., x̂ = 1

q

∑q
i=1 x̃i, obtaining

E∥Ax̂− b∥2 ≤ (1 + 2ϵ)∥Ax∗ − b∥2. As shown in Table 1, ours is the first result in this model to
achieve Õ(d2) space in a single pass and faster than current matrix multiplication time O(dω).

Finally, by incorporating a preconditioning scheme, we illustrate how our construction can be used
to design the first algorithm that solves least squares in current matrix multiplication time, constant
parallel passes and O(d2 log(nd)) bits of space. We note that the O(dω) cost comes only from
the worst-case complexity of constructing the preconditioner P, which can often be accelerated in
practice. The computational model used in Theorem 2 is described in detail in Section 3.
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Theorem 2. Given A ∈ Rn×d and b ∈ Rn in the parallel computing model, using two parallel
passes with q machines, we can compute x̃ such that with probability 0.9

∥Ax̃− b∥ ≤
(
1 + ϵ+O(1/q)

)
∥Ax∗ − b∥

in O(γ−1nnz(A) + dω + ϵ−1d2+γpolylog(d)) time, O(d2 log(nd)) bits of space and O(d log(nd))
bits of communication. In particular, choosing q = 1/ϵ we recover an O(ϵ)-approximation.

Remark 2. While the parallel computing model in Theorem 2 assumes that all machines have
streaming access to the entire data matrix, this result can be easily extended to the setting where
A has been randomly down-sampled or partitioned into separate size n chunks A1, ...,Aq, and
each machine constructs an estimate x̃i based on a sketch of its own chunk. Then, with the same
computational guarantees as in Theorem 2, the averaged estimator x̃ = 1

q

∑q
i=1 x̃i with probability

0.9 enjoys a guarantee of:

∥Ax̃− b∥ ≤
(
1 +O(ϵ+ 1/q +Bchunk)

)
∥Ax∗ − b∥,

where Bchunk is the bias that would be incurred if we solved each chunk exactly and averaged those
solutions. Using existing guarantees for uniform down-sampling of least squares [Theorem 20, 43],
one can bound this bias as Bchunk = Õ

(
µ
qn + (µn )

2
)
, where µ is the coherence of the data matrix

and n is the chunk size. For sufficiently large chunks, this bias is negligible compared to the error ϵ.
We prove the above high probability guarantee in Theorem 6 in Appendix E.

Further applications. Our least squares analysis can be extended to other settings where prior
works [e.g., 17, 18, 16, 22] have analyzed randomized estimators based on sparse sketching via
techniques from asymptotic random matrix theory. The primary and most direct application involves
correcting inversion bias in the so-called sketched inverse covariance estimate (Ã⊤Ã)−1, which was
the motivating task of [18], with applications including distributed second-order optimization and
statistical uncertainty quantification, where quantities like (Ã⊤Ã)−1x are approximated.

Theorem 3 (informal Theorem 5). Given A ∈ Rn×d and its LESS embedding S with sketch size
m ≥ Cd and s non-zeros per row, the inverse covariance sketch ( m

m−dA
⊤S⊤SA)−1 is an (ϵ, δ)-

unbiased estimator of (A⊤A)−1 (see Definition 3) for ϵ = Õ
(
(1 +

√
d/s)

√
d

m

)
and δ = 1/poly(d).

This result should be compared with ϵ = Õ
(
(1 + d/s)

√
d

m

)
obtained by [18]. Thus, we get a direct

improvement for very sparse sketches, i.e., s = o(d). This can be immediately translated into an
improved local convergence guarantee for Distributed Newton Sketch which is a second-order convex
minimization algorithm used in settings where the Hessian matrix can be expressed as A⊤A for a
tall matrix A, e.g., in generalized linear models like logistic regression. In this method, following
Corollary 16 of [18] as well as related results [16, 44, 19], we use sketching and averaging to estimate
a Newton step:

xt+1 = xt −
1

q

q∑
i=1

H̃−1
i gt,

where gt is the gradient at xt and H̃1, ..., H̃q are Hessian sketches constructed by independent
machines. The following corollary, which is a direct improvement over Corollary 16 of [18], shows
that Distributed Newton Sketch on a generalized linear model task can achieve a fast local convergence
rate of the form f(xt+1)−f(x∗)

f(xt)−f(x∗) = o(1) with O(dω) time per iteration (see Appendix B.1 for details).

Corollary 1 (Distributed Newton Sketch). Consider f(x) = 1
n

∑n
i=1 ℓi(x

⊤ϕi) +
λ
2 ∥x∥

2, where ℓi
are convex twice continuously differentiable functions, such that f has a Lipschitz Hessian, λ > 0,
and ϕ⊤

i is the ith row of an n× d data matrix Φ. Given ϵ > 0, there is a neighborhood Uϵ around
the minimizer x∗ = argminx f(x) such that, for any xt ∈ Uϵ, using two parallel passes with Õ(1/ϵ)
machines, we can compute a Distributed Newton Sketch update xt+1 such that

f(xt+1)− f(x∗) ≤ ϵ ·
[
f(xt)− f(x∗)

]
,

in O(γ−1nnz(Φ) + dω + ϵ−1d2+γpolylog(d)) time, O(d2 log(nd)) bits of space and O(d log(nd))
bits of communication.
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Our Techniques. At the core of our analysis are techniques inspired by asymptotic random matrix
theory (RMT) in the proportional limit [e.g., see 6]. Here, in order to establish the limiting spectral
distribution (such as the Marchenko-Pastur law) of a random matrix Ã⊤Ã whose dimensions diverge
to infinity, one aims to show the convergence of the Stieltjes transform of its resolvent matrix
(Ã⊤Ã − zI)−1. Recently, [18] showed that these techniques can be adapted to sparse sketching
matrices (via leverage score sparsification) in order to characterize the bias of the sketched inverse
covariance (Ã⊤Ã)−1, where Ã = SA.

Our main contribution is two-fold. First, we show that a similar argument can also be applied to
analyze the bias of the least squares estimator, x̃ = (Ã⊤Ã)−1Ã⊤b̃. Unlike the inverse covariance,
this estimator no longer takes the form of a resolvent matrix, but its bias is also associated with
the inverse, which means that we can use a leave-one-out argument to characterize the effect of
removing a single row of the sketch on the estimation bias. Our second main contribution is to
improve the sharpness of the bounds relative to the sparsity of the sketching matrix by combining
a careful application of Hölder’s inequality with a higher moments analysis of the restricted Bai-
Silverstein inequality for quadratic forms. Those improvements are not only applicable to the least
squares analysis, but also to all existing RMT-style results for LESS embeddings, including the
aforementioned inverse covariance estimation, as well as applications in stochastic optimization,
resulting in the sketching cost of LESS embeddings dropping below matrix multiplication time.

2 Related Work

Randomized numerical linear algebra. RandNLA sketching techniques have been developed
over a long line of works, starting from fast least squares approximations of [42]; for an overview,
see [45, 26, 37, 39, 21] among others. Since then, these methods have been used in designing fast
algorithms not only for least squares but also many other fundamental problems in numerical linear
algebra and optimization including low-rank approximation [13, 34], lp regression [14], solving
linear systems [28, 24] and more. Using sparse random matrices for matrix sketching also has a long
history, including data-oblivious sketching methods such as CountSketch [12], OSNAP [40], and
more [38]. Leverage score sparsification (LESS) was introduced by [18] as a data-dependent sparse
sketching method to enable RMT-style analysis for sketching (see below).

Unbiased estimators for least squares. To put our results in a proper context, let us consider
other approaches for producing near-unbiased estimators for least squares, see also Table 1. First, a
well known folklore result states that the least squares estimator computed from a dense Gaussian
sketching matrix is unbiased. The bias of other sketching methods, including leverage score sampling
and OSNAP, has been studied by [43], showing that these methods need a

√
ϵ-error guarantee to

achieve an ϵ-bias which leads to little improvement unless ϵ is extremely small and the sketch size
is sufficiently large. Another approach of constructing unbiased estimators for least squares, first
proposed by [23], is based on subsampling with a non-i.i.d. importance sampling distribution based
on Determinantal Point Processes [DPPs, 31, 20]. However, despite significant efforts [30, 7, 5],
sampling from DPPs remains quite expensive: the fastest known algorithm requires running a Markov
chain for polylog(n/ϵ) many steps, each of which requires a separate data pass and takes O(dω) time.
Other approaches have also been considered which provide partial bias reduction for i.i.d. RandNLA
subsampling schemes in various regimes that are are either much more expensive or not directly
comparable to ours [2, 44].

Statistical and RMT analysis of sketching. Recently, there has been significant interest in statisti-
cal and random matrix theory (RMT) analysis of matrix sketching; see [21] for an overview. These
approaches include both asymptotic analysis via limiting spectral distributions and deterministic
equivalents [35, 25, 32, 33], and non-asymptotic analysis under statistical assumptions [36, 41, 4].
A number of works have shown that the RMT-style techniques based on deterministic equivalents
can be made rigorously non-asymptotic for certain sketching methods such as dense sub-Gaussian
[17], LESS matrices [16, 18], and other sparse matrices [9], which has been applied to low-rank
approximation, fast subspace embeddings and stochastic optimization. Our new analysis can be
viewed as a general strategy for directly improving the sparsity required by LESS embeddings (and
thereby, the sketching time complexity) in many of these applications, specifically those that rely on
analysis inspired by the calculus of deterministic equivalents via generalized Stieltjes transforms.
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3 Preliminaries

Notations. In all our results, we use lowercase letters to denote scalars, lowercase boldface for
vectors, and uppercase boldface for matrices. The norm ∥ · ∥ denotes the spectral norm for matrices
and the Euclidean norm for vectors, whereas ∥ · ∥F denotes the Frobenius norm for matrices. We use
⪯ to denote the p.s.d. ordering of matrices.

Computational model. We next clarify the computational model that is used in Theorem 2. We
consider a central data server storing (A,b), and q machines. The jth machine has a handle
Stream(j), which can be used to open a stream and to read the next row/label pair (ai, bi) in the
stream. After a full pass, the machine can re-open the handle and begin another pass over the data.
The machines can operate their streams entirely asynchronously, and each has its own limited local
storage space, e.g., in Theorem 2 we use O(d2 log(nd)) bits of space per machine. At the end, they
can communicate some information back to the server, e.g., in Theorem 2, they communicate their
final estimate vectors x̃j , using O(d log(nd)) bits of communication. Then, the server computes the
final estimate, in our case via averaging, x̃ = 1

q

∑q
i=1 x̃i, which can be done either directly or via a

map-reduce type architecture.

We define the parallel passes required by such an algorithm as the maximum number of times the
stream is opened by any single machine. We analogously define time/space/communication costs by
taking a maximum over the costs required by any single machine (for communication, this refers
only to the number of bits sent from the machine back to the server).

Definitions and useful lemmas. In our framework, we construct a sparse sketching matrix S
where sparsification is achieved using a probability distribution over rows of data matrix A, that is
proportional to the leverage scores of A. The next definition [following, e.g., 9] provides the explicit
definition of exact and approximate leverage scores for our setting.
Definition 1 ((β1, β2)-approximate leverage scores). Fix a matrix A ∈ Rn×d and consider matrix
U ∈ Rn×d with orthonormal columns spanning the column space of A. Then, the leverage scores
li, 1 ≤ i ≤ n are defined as the row norms squared of U, i.e., li = ∥ui∥2, where u⊤

i is the ith row of
U. Furthermore, consider fixed β1, β2 > 1. Then l̃i are called (β1, β2)-approximate leverage scores
for A if the following holds for all i

li
β1

≤ l̃i and
n∑

i=1

l̃i ≤ β2 · d.

The approximate leverage scores can be computed by first constructing a preconditioner matrix
P ∈ Rd×d such that κ(AP) = O(1), which takes O(nnz(A)+dω) in a single pass, and then relying
on the following norm approximation scheme.
Lemma 1 (Based on Lemma 7.2 from [10]). Given A ∈ Rn×d and P ∈ Rd×d, using a single pass
over A in time O(γ−1(nnz(A) + d2)) for small constant γ > 0, we can compute estimates l̃1, ..., l̃n
such that with probability ≥ 0.95:

n−γ∥e⊤i AP∥2 ≤ l̃i ≤ O(log(n))∥e⊤
i AP∥2 ∀i and

∑
i

l̃i ≤ O(1) · ∥AP∥2F .

In the next definition, we give the sparse sketching strategy used in our analysis. This approach is
similar to the original leverage score sparsification proposed by [18], except: 1) we adapted it so that
it can be implemented effectively in a single pass, and 2) we use it in a much sparser regime (fewer
non-zeros per row).
Definition 2 ((s, β1, β2)-LESS embedding). Fix a matrix A ∈ Rn×d and some s ≥ 0. Let the tuple
(l̃1, · · · , l̃n) denote (β1, β2)-approximate leverage scores for A. Let pi = min{1, sβ1 l̃i

d }. We define
a (s, β1, β2)-approximate leverage score sparsifier ξ as follows.

ξ =

(
b1√
p1
, · · · , bn√

pn

)
where bi ∼ Bernoulli(pi).

Moreover, we define the (s, β1, β2)-leverage score sparsified (LESS) embedding of size m as matrix
S ∈ Rm×d with i.i.d. rows 1√

m
xi such that xi = diag(ξi)yi where ξi denotes a randomly generated

(β1, β2)-approximate leverage score sparsifier and yi ∈ Rn consist of random ±1 entries.
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A key property of a sketching matrix is the subspace embedding property, defined below. It was
recently shown by [9] that LESS embeddings require only polylogarithmically many non-zeros per
row of S to prove that S is a subspace embedding for the data matrix A with the optimal m = O(d)
sketching dimension. For our main results, it is sufficient to use η = O(1) below.
Lemma 2 (Subspace embedding for LESS, Theorem 1.3, [9]). Fix η, δ > 0. Consider β1, β2 > 1 and
a full rank matrix A ∈ Rn×d. Then for a (β1, β2)-leverage score sparsified embedding S ∈ Rm×n

with s ≥ O(log4(d/δ)/η4) and m = O((d+ log 1/δ)/η2), with probability 1− δ we have

1

1 + η
·A⊤A ⪯ A⊤S⊤SA ⪯ (1 + η) ·A⊤A. (1)

4 Least Squares Bias Analysis

In this section we provide an outline of the bias analysis for the sketched least squares estimator
constructed using a LESS embedding, leading to the proofs of our main results, Theorems 1 and 2. In
particular, we prove the following main technical result (detailed proof in Appendix C).
Theorem 4 (Bias of LESS-sketched least squares). Fix A ∈ Rn×d and let S be an (s, β1, β2)-LESS
embedding of size m for A. Let S satisfy (1) with η = 1

2 and probability 1− δ where δ < 1
m4 . Then

there exists an event E with probability at least 1− δ such that

L(EE [x̃])− L(x∗) = O
(
d

m2

(
1 +

d

s

)
log9(n/δ)

)
· L(x∗).

Remark 3. Thus, the bias L(EE [x̃])− L(x∗) of the LESS estimator using O(β1β2s) = Õ(s) non-
zeros per row of S is of the order Õ( d2

sm2 + d
m2 ) · L(x∗). By comparison, the standard expected

loss bound which holds for sketched least squares (including this estimator) is E[L(x̃)]− L(x∗) ≤
Õ( d

m )L(x∗), and the best known bound on the bias of most standard sketched estimators (e.g.,
leverage score sampling) is Õ( d2

m2 )L(x
∗), given by [43]. So, our result recovers the standard bias

bound for s = 1 and improves on it for s≫ 1 by a factor of min{s, d}. At the end of the section, we
discuss how to deal with the lower order term Õ( d

m2 ) to reduce the bias further.

Proof sketch. Using a standard argument, we can replace the matrix A with the matrix U ∈ Rn×d

consisting of orthonormal columns spanning the column space of A, and assume that n = poly(d).
Let S be an (s, β1, β2)-LESS embedding for U. Also, let b ∈ Rn be a vector of responses/labels
corresponding to n rows in U. Let x̃ = argminx ∥SUx − Sb∥2. Furthermore for any x ∈ Rd

we can find the loss at x as L(x) = ∥Ux − b∥2. Additionally, we use r to denote the residual
b − Ux∗. We also define Q = (γU⊤S⊤SU)−1 as the sketched inverse covariance matrix with
scaling γ = m

m−d representing the standard correction accounting for inversion bias. We condition on
the high probability event E guaranteed in Lemma 2 and consider L(EE(x̃))−L(x∗). By Pythagorean
theorem, we have L(EE [x̃]) − L(x∗) = ∥U(EE [x̃])−Ux∗∥2. Note that by the normal equations
we have x̃ = (U⊤S⊤SU)−1U⊤S⊤Sb = γQU⊤S⊤Sb, and also S⊤S = 1

m

∑m
i=1 xix

⊤
i . These two

facts lead to writing the bias as follows:

L(EE [x̃])− L(x∗) = ∥γ · EE [QU⊤xix
⊤
i r]∥

2
.

Using a leave-one-out technique , we replace Q with Q−i = (γU⊤S⊤
−iS−iU)−1, where S−i denotes

matrix S without the ith row, by noting that Q = (γU⊤S⊤
−iS−iU+ γ

mU⊤xix
⊤
i U)−1 and applying

the Sherman-Morrison formula. This leads to the following relation:

L(EE [x̃])− L(x∗) ≤ 2 ∥EE [Q−iU
⊤xix

⊤
i r]∥

2︸ ︷︷ ︸
∥Z0r∥2

+2

∥∥∥∥EE

[(
γ

γi
− 1

)
Q−iU

⊤xix
⊤
i r

]∥∥∥∥2︸ ︷︷ ︸
∥Z2r∥2

where γi = 1 + γ
mx⊤

i UQ−iU
⊤xi. Due to the subspace embedding assumption and assuming

m large enough, we have ∥Q∥ = O(1) and also ∥Q−i∥ = O(1). The first term ∥Z0r∥2 is quite
straightforward to bound since, if not for the conditioning on the high probability event E , we would
have E[Q−iU

⊤xix
⊤
i r] = E[Q−iU

⊤r] = 0, which follows from U⊤(b − Ux∗) = 0. We get an

upper bound on ∥Z0r∥2 as O
(

d2 log(d/δ)
sm2 + d

m2

)
· ∥r∥2, which is sufficient for us.
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The central novelty of our analysis lies in bounding ∥Z2r∥2 for (s, β1, β2)-LESS embeddings, which
is the dominant term. Our key observation is that, when examining a random variable of the form x⊤

i v
for some vector v, the dependence on the sparsity of row xi only arises when considering moments
higher than 2 + 1

O(log(n)) , because otherwise we can simply rely on the fact that E[xix
⊤
i ] = I. Thus,

when decomposing ∥Z2r∥2, we must carefully separate the contribution of near-second moments vs
the contribution of higher moments to the overall bound.

To obtain this separation, we start by applying Hölder’s inequality on ∥Z2r∥ with p = O(log(n))
and q = 1 + 1

O(log(n)) to get

∥Z2r∥ ≤
(
EE [
∣∣ γ
γi

− 1
∣∣p])1/p

·

(
sup

∥v∥=1

EE [v
⊤Q−iU

⊤xix
⊤
i r]

q

)1/q

.

Furthermore applying Cauchy-Schwarz inequality on the second term leads to

∥Z2r∥ ≤
(
EE [
∣∣ γ
γi

− 1
∣∣p])1/p

·
(
EE ∥Q−iU

⊤xi∥2q
)1/2q

·
(
EE ∥x⊤

i r∥
2q
)1/2q

.

Unlike [18], we exploit the fact that ∥xi∥1/O(log(n))
= O(1) and get a constant upper bound on

(EE ∥Q−iU
⊤xi∥2q). However, this results in a much more careful argument, requiring now an upper

bound on (EE [
∣∣ γ
γi

− 1
∣∣p])1/p for p = O(log(n)). First, we observe that(
EE [
∣∣ γ
γi

− 1
∣∣p])1/p

≤ |γ − γ̄|+ (EE [(γi − γ̄)p])
1/p (2)

where γ̄ = 1 + γ
mEE (x

⊤
i UQ−iU

⊤xi). In particular, for the second term, we have

(EE [(γi − γ̄)p])
1/p ≤

( γ
m

)
·
[(
EE
[
(tr(Q−i)− x⊤

i UQ−iU
⊤xi)

p])1/p
+ (EE [tr(Q−i)− EEtr(Q−i)]

p
)
1/p
]
.

(3)

To bound the first of these two terms, we prove a new version of the Restricted Bai-Silverstein
inequality (Lemma 3) for (s, β1, β2)-LESS embeddings. Unlike [18], we provide a proof with any p
and any (β1, β2) values. Furthermore, utilizing the subspace embedding guarantee from Lemma 2,
we prove a much more general result where the number of non-zeros in the approximate leverage
score sparsifier ξ can be much smaller than d (proof in Appendix D).
Lemma 3 (Restricted Bai-Silverstein for (s, β1, β2)-LESS embeddings). Let p ∈ N be fixed and
U ∈ Rn×d be such that U⊤U = I. Let xi = diag(ξ)yi where yi ∈ Rn has independent ±1
entries and ξ is an (s, β1, β2)-approximate leverage score sparsifier for U. Then for any matrix with
0 ⪯ C ⪯ O(1) · I and any δ > 0 we have for an absolute constant c > 0.

(
E [tr(C)− x⊤

i UCU⊤xi]
p)1/p

< c ·
√
dp3 ·

(
1 +

√
dp log(d/δ)

s

)
.

Using Lemma 3, we upper bound the first term squared in (3) as Õ
(

d
m2

(
1 + d

s

))
. Moreover, also

using Lemma 3, we get a matching upper bound on |γ−γ̄|. We then design a martingale concentration
argument to prove a high probability upper bound on the last remaining term, |tr(Q−i)−EEtr(Q−i)|,
which implies the desired moment bound (proof in Appendix B), concluding the proof of Theorem 4.
Lemma 4. For given δ > 0 and matrix Q−i we have with probability 1− δ:

|tr(Q−i)− Etr(Q−i)| ≤ c′γ · d√
m

log4.5(m/δ).

Completing the proof of Theorem 1. First, suppose that ϵ ≥ O(polylog(d)/d) so that the
bias bound can be achieved from Theorem 4. Our implementation is mainly based on the online
construction of approximate leverage scores, given the preconditioner P, using Lemma 1. Briefly,
this construction proceeds by first sketching P using a d×O(1/γ) Gaussian matrix G to produce
the matrix P̃ = PG, and then, for each observed row ai of A, we compute l̃i = ∥a⊤

i P̃∥2. Assuming
without loss of generality that d = poly(n) and adjusting γ, the estimates satisfy β1β2 = O(αdγ).
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Next, we sample the non-zero entries of S corresponding to the observed row ai, i.e., the i-th column
of S. Note that for this we only need to know the single leverage score estimate l̃i. Crucially for our
analysis, the entries of this column need to be sampled i.i.d., which can be done in time proportional
to the number of non-zeros in that column by first sampling a corresponding Binomial distribution to
determine how many non-zeros we need, then picking a random subset of that size, and then sampling
the random ±1 values. Altogether, the cost of constructing the sketch isO(γ−1nnz(A)+β1β2sd

2) =
O(γ−1nnz(A)+αϵ−1d2+γpolylog(d)) by setting s = O(polylog(d)/ϵ). Finally, once we construct
the sketch, at the end of the pass we can run conjugate gradient preconditioned with P on the sketched
problem, which takes Õ(αd2).

We note that in the (somewhat artificial) regime where we require extremely small bias, i.e., ϵ =
o(polylog(d)/d), the bound claimed in Theorem 1 can still be obtained, since in this case for small
enough γ we have d2+γ/ϵ = O(dω/

√
ϵ) with ω < 2.5, so we can rely on direct leverage score

sampling (which corresponds to s = 1), and instead of maintaining the sketch, we compute the
estimator x̃ = (Ã⊤Ã)−1Ã⊤b directly along the way. This involves performing a separate d × d

matrix multiplication after collecting each d leverage score samples, to gradually compute Ã⊤Ã,
and then inverting the matrix at the end. From Theorem 4, we see that it suffices to set sketch size
m = Õ(d/

√
ϵ), which leads to the desired runtime.

Completing the proof of Theorem 2. Here, we use a slightly modified variant of Lemma 2, given
as Theorem 1.4 in [9], which shows that using a single pass we can compute a sketch Ã in time
O(nnz(A) + dω), which satisfies the subspace embedding property (1) with η = 1

2 . Then, we can
perform the QR decomposition Ã = QR and set P = R−1 in additional time O(dω) to obtain
the desired preconditioner. Next, we use Theorem 1 to construct q i.i.d. estimators x̃i in a second
parallel pass, and finally, the estimators are aggregated to compute x̂ = 1

q

∑q
i=1 x̃i, which satisfies

E∥Ax̂− b∥2 ≤
(
1 + ϵ+O(1/q)

)
∥Ax∗ − b∥2. Applying Markov’s inequality concludes the proof.

5 Experiments

In this section, we illustrate empirically how our results point to a practical free lunch phenomenon
in distributed averaging of sketching-based estimators. As mentioned in Section 1, our construction
from Theorem 1 essentially works by taking a subsample of the data and then mixing groups of
those rows together to produce an even smaller sketch (see Figure 1). According to our theory, while
the small sketch does not recover the same ϵ-small error as the larger subsample, it does recover an
ϵ-small bias. Moreover, this happens without incurring any additional computational cost, as the cost
of the sketching is proportional to the cost of simply reading the subsampled rows. This suggests that
we can use sparse sketching to compress a data subsample down to a small size while retaining the
least squares performance in a distributed averaging environment.

To verify this, we evaluate the effectiveness of distributed averaging of sketched least squares
estimators on several benchmark datasets. Specifically, we visualize the relative error of the averaged
sketch-and-solve estimator L(x̂)−L(x∗)

L(x∗) , against the number of machines q used to generate the estimate
x̂ = 1

q

∑q
i=1 x̃i. Each estimate x̃i is constructed with the same sparsification strategy used by LESS,

except that instead of sparsifying the sketch with leverage scores, we instead sparsify them with
uniform probabilities (which is often sufficient in practice). Following [16], we call the resulting
method LESSUniform. Within each dataset, we perform four simulations, designed so that the total
sketching cost stays the same for all four test cases, by simultaneously changing sketch size and
sparsity. Concretely, we vary these so that the product (sketch size × nnz per row) stays the same in
each case, so as to ensure that the total cost of sketching is fixed in each plot.

In Figure 2, on the X-axis we plot the number q of estimators being averaged, so that the bias of
a single estimator appears on the right-hand side of the plot (large q), whereas the variance (error)
appears on the left-hand side (q = 1). In each plot, the line with nnz per row = 1 (and large sketch
size) corresponds to uniform subsampling, whereas the remaining ones are sketches produced by
compressing that subsample. The plot shows that decreasing the sketch size (i.e., compressing the
sample) does increase the error of a single estimator (as expected), however it also shows that the
bias of these estimators remains essentially unchanged regardless of the sketch size (since all lines

9



Figure 2: Distributed averaging experiment on YearPredictionMSD and Abalone datasets [8],
showing that sparse sketching can be used to compress the data while preserving near-unbiasedness
without increasing the estimation cost (see Appendix F for results on the Boston dataset).

meet as q → ∞), confirming that suitable sparse sketches that “compress” rows of data can preserve
near-unbiasedness without increasing the cost.

This phenomenon may not occur for all sketching methods. Figure 4 within Appendix F showcases
a few more interesting results. We first further demonstrate that suitable sketches that “compress”
rows of data A into a single row of Ã can preserve near-unbiasedness without increasing the cost.
In particular, this desirable phenomenon that LESSUniform enjoys also extends to LESS proper,
as well as the Gaussian and Subgaussian (Rademacher) sketches. In fact, we observe that LESS
enjoys similar desirable performance as the Gaussian and Subgaussian sketches and virtually no
least squares bias, while retaining the computational speedups of sparse sketching, suggesting that it
attains the best of both worlds.

However, when we decrease the number of subsamples within leverage score subsampling, the bias
introduced by subsampling increases as expected. This happens as the number of subsamples is
reduced without increasing the amount of “compression” as one would with LESS or LESSUniform.1
We also show that the subsampled randomized Hadamard transform (SRHT) can exhibit some amount
of least squares bias as the sketch size decreases. The numerical results shown for the bias introduced
by leverage score subsampling and the SRHT complement the lower bounds established in [18].

6 Conclusions

We gave a new sparse sketching method that, using two passes over the data, produces a nearly-
unbiased least squares estimator, which can be used to improve upon the space-time trade-offs of
solving least squares in parallel or distributed environments via simple averaging. In particular, our
algorithm is the first to require only O(d2 log(nd)) bits of space and current matrix multiplication
time O(dω) while obtaining an ϵ = o(1) approximation in few passes. Our techniques are of broader
interest to sketching-based optimization algorithms, including Distributed Newton Sketch.

Acknowledgments
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1One can think of LESS and LESSUniform as generalizations of leverage score subsampling and uniform
subsampling respectively, where we mix Õ(1/ϵ) subsamples into a single row of the sketch. This suggests that
sparse sketching, as an extension of subsampling, yields desirable bias reduction without significantly increasing
computational costs.
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[21] Michał Dereziński and Michael W Mahoney. Recent and upcoming developments in randomized
numerical linear algebra for machine learning. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 6470–6479, 2024.
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A Detailed preliminaries

We start by providing several classical results, used in our analysis. The following formula provides a
way to compute the inverse of matrix A after a rank-1 update, given the inverse before the update.

Lemma 5 (Sherman-Morrison formula). For an invertible matrix A ∈ Rd×d and vector u,v ∈ Rd,
A+ uv⊤ is invertible if and only if 1 + v⊤A−1u ̸= 0. If this holds then,

(A+ uv⊤)−1 = A−1 − A−1uv⊤A−1

1 + v⊤A−1u
.

In particular,

(A+ uv⊤)−1u =
A−1u

1 + v⊤A−1u
.

The following inequality provides a crucial tool for writing expectation of the product of two random
variables as the product of higher individual moments.

Lemma 6 (Hölder’s inequality). For real-valued random variables X and Y ,

E[|XY |] ≤ (E[|X|p])1/p · (E[|Y |q])1/q

where p, q > 0 are Hölder’s conjugates, i.e. 1
p + 1

q = 1.

The following technical lemmas provide concentration results for the sum of random quantities. We
collect these results here and then refer to them while using in our analysis.

Lemma 7 (Matrix Chernoff Inequality). For i = 1, 2, · · · , n consider a sequence Zi of d×d positive
semi-definite random matrices such that E[ 1n

∑
i Zi] = Id and ∥Zi∥ ≤ R. Then for any ϵ > 0, we

have

Pr

(
λmax

(
1

n

n∑
i=1

Zi

)
≥ (1 + ϵ)

)
≤ d · exp

(
− nϵ2

(2 + ϵ)R

)
.

where λmax denotes taking the maximum eigenvalue.

Lemma 8 (Azuma’s inequality). If {Y0, Y1, Y2, · · · } is a martingale with |Yj − Yj−1| ≤ cj then for
any m,λ > 0 we have

Pr (|Ym − Y0| ≥ λ) ≤ 2 · exp

(
− λ2

2
∑m

j=1 c
2
j

)
.

Lemma 9 (Rosenthal’s inequality ([29], Theorem 2.5 and Corollary 2.6)). Let 1 ≤ p < ∞ and
X1, X2, · · · , Xn are nonnegative, independent random variables with finite pth moments then,(

E

[∑
i

Xi

]p)1/p

≤ 2p

log(p)
·max

∑
i

E[Xi],

(∑
i

E[Xp
i ]

)1/p
 .

Furthermore, for mean-zero independent and symmetric random variables we have(
E

[∑
i

Xi

]p)1/p

≤ 2p√
log(p)

·max


(∑

i

E[X2
i ]

)1/2

,

(∑
i

E[Xp
i ]

)1/p
 .

Lemma 10 (Bai-Silverstein’s Inequality Lemma B.26 from [6]). Let B be a d× d be a fixed matrix
and x be a random vector of independent entries. Let E[xi] = 0 and E[x2i ] = 1,and E|xj |l ≤ νl.
Then for any p ≥ 1,

E|x⊤Bx− tr(B)|p ≤ (2p)p ·
(
(ν4tr(BB⊤))p/2 + ν2ptr(BB⊤)p/2

)
.
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B Inversion bias analysis

We use the notion of an (ϵ, δ) unbiased estimator of A as defined in [18].

Definition 3 ((ϵ, δ)-unbiased estimator). For ϵ, δ > 0, a random positive definite matrix B ∈ Rd×d

is called an (ϵ, δ) unbiased estimator of A if there exists an event E with Pr(E) ≥ 1− δ such that,

1

1 + ϵ
A ⪯ EE [B] ⪯ (1 + ϵ)A and, B ⪯ O(1) ·A,

when conditioned on the event E .

In this section, we give a formal statement and proof for Theorem 3, which is then used in the proof
of Theorem 4. We replace A with U such that U consists of d orthonormal columns spanning the
column space of A. Here Sm ∈ Rm×n denotes a LESS sketching matrix with independent rows
1√
m
x⊤, x⊤ = y⊤ · diag(ξ) where y consists of ±1 Rademacher entries and ξ is an (s, β1, β2)-

approximate leverage score sparsifier. Note that E[xx⊤] = In. We assume that the sketching matrix
Sm consists of m ≥ 10d i.i.d rows and 3 divides m. Also, we assume that the Sm satisfies the
subspace embedding condition for U (Theorem 2) with η = 1

2 . Let Q = (γU⊤S⊤
mSmU)−1 where

γ = m
m−d .

Theorem 5 (Small inversion bias for (s, β1, β2)-LESS embeddings). Let δ > 0 satisfy δ < 1
m4 and

m ≥ O(d). Let Sm ∈ Rm×n be an (s, β1, β2)-LESS embedding for data matrix U ∈ Rn×d such
that U⊤U = I. Then there exists an event E with Pr(E) ≥ 1− δ such that,

1

1 + ϵ
· I ⪯ EE [Q] ⪯ (1 + ϵ) · I and

1

2
I ⪯ Q ⪯ 2I when conditioned on E

where ϵ = O

(√
d log4.5(n/δ)

m

(
1 +

√
d
s

))
.

Proof. Let S−i denote Sm without the ith row, and S−ij denote Sm with the ith and jth rows
removed. Let Q−i = (γU⊤S⊤

−iS−iU)−1 and Q−ij = (γU⊤S⊤
−ijS−ijU)−1. We proceed with the

same proof strategy as adopted in [18]. We define the events Ej as follows:

Ej =
3

m
U⊤

 tj∑
i=t(j−1)+1

xix
⊤
i

U ⪰ 1

2
I, j = 1, 2, 3 , E = ∧3

j=1Ej .

Note that event Ej means that the sketching matrix with just (1/3)rd rows (scaled to maintain
unbiasedness of the sketch) from Sm satisfies a lower spectral approximation of U⊤U = I. Also
we notice that events E1, E2, E3 are independent, and for any pair (i, j) there exists at least one event
Ek, k ∈ {1, 2, 3} such that Ek is independent of both xi and xj . Furthermore conditioned on Ek we
have

Q−i ⪯ 6 · Id and Q−ij ⪯ 6 · Id.
Note that as guaranteed in Theorem 2, we have Pr(Ek) ≥ 1−δ′ for all k and therefore Pr(E) ≥ 1−δ
with δ′ = δ/3. Let EE denote the expectation conditioned on the event E .

I− EE [Q] = −EE [Q] + γEE [QU⊤S⊤
mSmU]

= −EE [Q] + γEE [QU⊤xix
⊤
i U]

= −EE [Q] + γEE
[ Q−iU

⊤xix
⊤
i U

1 + γ
mx⊤

i UQ−iU⊤xi

]
= EE [Q−iU

⊤(xix
⊤
i − I)U]︸ ︷︷ ︸

Z0

+EE [Q−i −Q]︸ ︷︷ ︸
Z1

+EE
[( γ
γi

− 1
)
Q−iU

⊤xix
⊤
i U
]

︸ ︷︷ ︸
Z2

where γi = 1 + γ
mx⊤

i UQ−iU
⊤xi. The second equality follows by noting that S⊤

mSm =
1
m

∑m
i=1 xix

⊤
i and using linearity of expectation. The third equality holds due to the application of

Sherman Morrison’s (Lemma 5) formula on Q = (γU⊤S⊤
−iS−iU+ γ

mU⊤xix
⊤
i U)−1. We start by

upper bounding Z0 and use the following from [18].
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Lemma 11 (Upper bound on ∥Z0∥). For any k > 0 we have,

∥EE [Q−iU
⊤(xix

⊤
i − I)U]∥ ≤ 12

(
kδ′ +

∫ ∞

k

Pr(x⊤
i UU⊤xi ≥ x)dx

)
.

Using Chebyshev’s inequality we have, Pr(x⊤
i UU⊤xi ≥ x) ≤ Var(x⊤

i UU⊤xi)
x2 . Using Restricted

Bai-Silverstein inequality for (s, β1, β2)-approximate LESS embeddings i.e., Lemma 3 (proved in
Lemma 16) with p = 2, we have Var(x⊤

i UU⊤xi) ≤ cd ·
(
1 + d log(d/δ)

s

)
for some absolute constant

c. Let k = m2 and δ′ < 1
m4 we get,

∥Z0∥ = O
(

1

m2
+

d

m2
+
d2 log(d/δ)

sm2

)
= O

(
d

m2
+
d2 log(d/δ)

sm2

)
. (4)

We use the bound on the term ∥Z1∥ directly from [18], provided below as a Lemma.

Lemma 12 (Upper bound on ∥Z1∥, [18]).
∥EE′ [Q−i −Q]∥ = O(1/m). (5)

It remains to upper bound ∥Z2∥.

∥Z2∥ = ∥EE
[( γ
γi

− 1
)
Q−iU

⊤xix
⊤
i U
]
∥ ≤ sup

∥v∥=1, ∥z∥=1

EE [|
γ

γi
− 1| · |v⊤Q−iU

⊤xix
⊤
i Uz|].

Applying Hölder’s inequality with p = O(log(n)) and q = p
p−1 = 1+∆ for ∆ = 1

O(log(n)) , we get,

∥Z2∥ ≤ sup
∥v∥=1, ∥z∥=1

(
EE
[
| γ
γi

− 1|p
])1/p

·
(
EE
[
|v⊤Q−iU

⊤xix
⊤
i Uz|q

])1/q
≤
(
EE
[
| γ
γi

− 1|p
])1/p

· sup
∥v∥=1

(
EE
[
|v⊤Q−iU

⊤xi|2q
])1/2q

︸ ︷︷ ︸
O(1)

· sup
∥z∥=1

(
EE
[
|x⊤

i Uz|2q
])1/2q

︸ ︷︷ ︸
O(1)

(6)

where we used Cauchy-Schwarz inequality on EE
[
|v⊤Q−iU

⊤xix
⊤
i Uz|q

]
. Now note that xi =

diag(ξ) · yi, we have ∥xi∥ = poly(n) and therefore ∥xi∥∆ = O(1). We now show the terms
involving exponents depending on q are O(1) as highlighted in the inequality (6).(

sup
∥v∥=1

EE
[
|v⊤Q−iU

⊤xi|2q
])1/2q

≤

(
sup

∥v∥=1

EE
[
|v⊤Q−iU

⊤xi|2 ·
∣∣v⊤Q−iU

⊤xi|2∆]

)1/2q

≤

(
sup

∥v∥=1

EE
[
|v⊤Q−iU

⊤xi|2 ·
∥∥v⊤Q−iU

⊤∥2∆ · ∥xi∥2∆]

)1/2q

≤ O(1) ·
(
EE
[
∥Q−iU

⊤xi∥2 · ∥Q−iU
⊤∥2∆

])1/2q
≤ O(1) ·

(
2 · EE′

[
∥Q−iU

⊤xi∥2 · ∥Q−iU
⊤∥2∆

])1/2q
.

Here E ′
is an event independent of xi. Without loss of generality, we can assume that E ′

= E1 ∧ E2.
We first condition on Q−i and take expectation over xi. Also note that Q−i and xi are independent
and event E ′

is independent of xi, and furthermore EE′ [x⊤
i xi] = E[x⊤

i xi] = 1. We get,(
sup

∥v∥=1

EE
[
|v⊤Q−iU

⊤xi|2q
])1/2q

≤ O(1) ·
(
EE′ [∥Q−iU

⊤∥2q]
)1/2q

.

Now we use that conditioned on E ′
, ∥Q−i∥ ≤ 6 and ∥U⊤∥ = 1, we get,(

sup
∥v∥=1

EE
[
|v⊤Q−iU

⊤xi|2q
])1/2q

= O(1).
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Similarly, using ∥xi∥∆ = O(1) and EE′ [x⊤
i xi] = E[x⊤

i xi] = 1,

sup
∥z∥=1

(
EE
[
|x⊤

i Uz|2q
])1/2q

= O(1).

Now we prove an upper bound on
(
EE

[(
γ
γi

− 1
)p])1/p

. Without loss of generality, we assume that
p is even. We have,

EE

[(
γ

γi
− 1

)p]
≤ 2 · EE′

[(
γ

γi
− 1

)p]
where E ′

is event independent of xi. The above can be upper bounded as,(
EE′

[(
γ

γi
− 1

)p])1/p

≤ (EE′ [(γ − γi)
p
])
1/p

= (EE [(γ − γ̄ + γ̄ − γi)
p
])
1/p

≤ |γ − γ̄|+ (EE′ [(γi − γ̄)p])
1/p (7)

where γ̄ = 1 + γ
mEE′ (x⊤

i UQ−iU
⊤xi). As E ′

is independent of xi and Q−i is independent of xi,
we get EE′ (x⊤

i UQ−iU
⊤xi) = EE′ tr(Q−i). Therefore, γ̄ = 1 + γ

mEE′ tr(Q−i). We now aim to
upper bound (EE′ [(γi − γ̄)p])

1/p as,

(EE′ [(γi − γ̄)p])
1/p ≤

( γ
m

)
·
[(
EE′

[
(tr(Q−i)− x⊤

i UQ−iU
⊤xi)

p])1/p
+ (EE′ [tr(Q−i)− EE′ tr(Q−i)]

p
)
1/p
]
.

Using our new Restricted Bai-Silverstein inequality from Lemma 3 (restated as Lemma 16 and proven
in Appendix D), we have

(
EE′

[
(tr(Q−i)− x⊤

i UQ−iU
⊤xi)

p])1/p
< c · p3

√
d ·

(
1 +

√
dp log(d/δ)

s

)
.

We now consider (EE′ [tr(Q−i)− EE′ tr(Q−i)]
p
)
1/p. In Lemma 4 (restated below as Lemma 13), we

show that |tr(Q−i)−EE′ tr(Q−i)| ≤ c′γ√
m
·d log4.5(m/δ) with probability at least 1−δ. Conditioned

on this high-probability event we have,

(EE′ [tr(Q−i)− EE′ tr(Q−i)]
p
)
1/p ≤ c′γ√

m
· d log4.5(m/δ)

for an absolute constant c′ > 0. Therefore we get with probability at least 1− δ,

(EE′ [(γi − γ̄)p])
1/p ≤ γ

m

[
c · p3

√
d ·

(
1 +

√
dp log(d/δ)

s

)
+

c′γ√
m

· d log4.5(m/δ)

]
.

As m > d, we get (EE′ [(γi − γ̄)p])
1/p

= O
(√

d log4.5(n/δ)
m ·

(
1 +

√
d
s

))
. Also using the analysis

in [18] for upper bounding |γ − γ̄|, we get a matching upper bound on |γ − γ̄| as follows:

|γ − γ̄| = O

(√
d log4.5(n/δ)

m
·

(
1 +

√
d

s

))
.

Substituting these bounds in (7) and then in (6) we get,

∥Z2∥ = O

(√
d log4.5(n/δ)

m
·

(
1 +

√
d

s

))
. (8)

Combining the upper bounds for Z0,Z1 and Z2 using relations (4,5,8) we conclude our proof.

We now provide the proof of Lemma 4, which we restate in the following Lemma.
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Lemma 13. For given δ > 0 and matrix Q−i we have with probability 1− δ:

|tr(Q−i)− EE′ tr(Q−i)| ≤
c′γ√
m

· d log4.5(m/δ)

for an absolute constant c′ > 0.

Proof. Writing tr(Q−i)− EE′ tr(Q−i) as a finite sum, we have,

tr(Q−i)− EE′ tr(Q−i) =

m∑
j=1

EE′ ,jtr(Q−i)− EE′ ,j−1tr(Q−i).

Denoting Xj = EE′ ,jtr(Q−i) with X0 = EE′ tr(Q−i), we have the following formulation

tr(Q−i)− EE′ tr(Q−i) =

m∑
j=1

Xj −Xj−1

with EE′ ,j−1[Xj ] = Xj−1. The random sequence Xj forms a martingale and tr(Q−i) −
EE′ tr(Q−i) = Xm −X0. We find an upper bound on |Xj −Xj−1|. To achieve that we note,

Xj −Xj−1 = EE′ ,jtr(Q−i)− EE′ ,j−1tr(Q−i) = −(EE′ ,j − EE′ ,j−1)(tr(Q−ij −Q−i)− tr(Q−ij)).

Therefore with ψj = (EE′ ,j − EE′ ,j−1)tr(Q−ij − Q−i) and χj = −(EE′ ,j − EE′ ,j−1)tr(Q−ij),
we have,

|Xj −Xj−1| ≤ |ψj + χj | ≤ |ψj |+ |χj |.

From [18], we have |χj | ≤ 1
m . We now prove an upper bound on ψj .

0 ≤ tr(Q−ij)− tr(Q−i) = tr

(
γ
mQ−ijU

⊤xjx
⊤
j UQ−ijU

⊤U

1 + γ
mx⊤

j UQ−ijU⊤xj

)

=
γ
mx⊤

j (UQ−ijU
⊤)2xj

1 + γ
mx⊤

j UQ−ijU⊤xj
≤ γ

m
x⊤
j UQ2

−ijU
⊤xj .

Now look at the term x⊤
j UQ2

−ijU
⊤xj . For any a > 0 and any k > 0, by Markov’s inequality we

have,

Pr
(
x⊤
j UQ2

−ijU
⊤xj ≥ a

)
≤

E[|x⊤
j UQ2

−ijU
⊤xj |k]

ak

≤
2k−1 · E[|x⊤

j UQ2
−ijU

⊤xj − tr(Q2
−ij)|k

ak
+

2k−1 · E[(tr(Q2
−ij))

k]

ak
.

Let E1 be an event independent of both xi and xj and have probability at least 1− δ′. Therefore we
have E[·] ≤ 2 · EE1

[·]. We get,

Pr
(
x⊤
j UQ2

−ijU
⊤xj ≥ a

)
≤

2k · EE1 [|x⊤
j UQ2

−ijU
⊤xj − tr(Q2

−ij)|k

ak
+

2k · EE1 [(tr(Q
2
−ij))

k]

ak
.

(9)

We now upper bound both terms on the right-hand side separately. Considering the term
EE1 [|x⊤

j UQ2
−ijU

⊤xj − tr(Q2
−ij)|k and using Lemma 3 we get,

EE1 [|x⊤
j UQ2

−ijU
⊤xj − tr(Q2

−ij)|k] ≤ ck · k3k ·
(
d2k log(d/δ)

s
+ d

)k/2

. (10)

Now considering the second term in (9), i.e., EE1
[(tr(Q2

−ij))
k]. We use that conditioned on E1, we

have Q−ij ⪯ 6Id. Therefore,

EE1
[(tr(Q2

−ij))
k] ≤ 6k · dk. (11)
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Substituting (10) and (11) in (9),

Pr
(
x⊤
j UQ2

−ijU
⊤xj ≥ a

)
≤

2k · ck · k3k ·
(

d2k log(d/δ))
s + d

)k/2
ak

+
2k · 6k · dk

ak

Pr
(
x⊤
j UQ2

−ijU
⊤xj ≥ a

)
≤ 2k · ck · k3k · dk · (k log(d/δ))k/2

ak

for some potentially different constant c. Consider k =
⌈
log(m/δ)
log(2)

⌉
and a = 4 ·c ·k3 ·d ·

√
k log(d/δ)

and we have with probability at least 1− δ/m,

x⊤
j UQ2

−ijU
⊤xj ≤ 4 · c · k3 · d ·

√
log(kd/δ).

This implies that for an absolute constant c′ we have,

|tr(Q−ij)− tr(Q−i)| ≤ c′ · γ
m

· d · log3.5(m/δ).

Therefore we now have an upper bound for |ψj |

|ψj | = |EE′ ,j − EE′ ,j−1(tr(Q−ij −Q−i))| ≤ 2c′ · γ
m

· d · log3.5(m/δ).

This means for all j, we have,

|Xj −Xj−1| ≤ 4c′ · γ
m

· d · log3.5(m/δ)

with probability at least 1− δ. Consider cj = 4c′ · γ
m · d · log3.5(m/δ). Then

∑m
j=1 c

2
j = γ2

m · 16c′2 ·
d2 log7(m/δ). Applying Azuma’s inequality (Lemma 8) with λ = γ√

m
· 4c′ · d · log3.5(m/δ). We

get with probability at least 1− δ and for potentially different absolute constant c′ > 0:

|Xm −X0| ≤
c′γ√
m

· d log4.5(m/δ).

This concludes our proof.

B.1 Proof of Corollary 1

We consider the following Distributed Newton Sketch method:

xt+1 = xt − pt, pt =
1

q

q∑
i=1

H̃−1
i gt,

where gt = ∇f(xt) and H̃i = m
m−dA

⊤
t S

⊤
i SiAt is a sketched estimate of the Hessian Ht =

∇2f(xt), when expressed as the matrix product Ht = A⊤
t At for the appropriately chosen n × d

matrix At (as can be done for any generalized linear model). This update can be viewed as an
approximate Newton step with the Hessian inverse estimate Ĥ−1

t = 1
q

∑q
i=1 H̃

−1
i . As long as each

H̃−1
t is an (

√
ϵ, δ/2q)-unbiased estimator of H−1

t , then using Lemma 34 from [18] we get that the
averaged Hessian inverse with q = Õ(1/ϵ) satisfies:

1

1 + ϵ̃
H−1

t ⪯ Ĥ−1
t ⪯ (1 + ϵ̃)H−1

t , ϵ̃ =
√
ϵ+ Õ(1/

√
q) = O(

√
ϵ).

Using standard approximate Newton analysis (e.g., see Lemmas 1 and 3, and the related discussion in
[15]), this implies that when xt is in a sufficiently small neighborhood around x∗ (determined solely
by the strong convexity and Lipschitz constants of the Hessian of f ), we have:

f(xt+1)− f(x∗)

f(xt)− f(x∗)
= O(ϵ̃2) = O(ϵ).

Adjusting the constants appropriately, relying on Theorem 3 for constructing H̃i, and following the
complexity analysis from Theorem 2, we recover the claim.
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C Least squares bias analysis: Proof of Theorem 4

In this section, we aim to prove Theorem 4. Let x∗ = argminx ∥Ux− b∥2 where U ∈ Rn×d is the
data matrix containing n data points and b ∈ Rn is a vector containing labels corresponding to n data
points. We adopt the same notations as used in the proof of Theorem 5. Let x̃ = argminx ∥SmUx−
Smb∥2. Furthermore for any x ∈ Rd we can find the loss at x as L(x) = ∥Ux− b∥2. Additionally,
we use r to denote the residual b−Ux∗. We aim to provide an upper bound on the bias introduced
due to this sketch and solve paradigm, i.e. L(E(x̃))− L(x∗). Similar to Theorem 4 we condition
on the high probability event E and consider L(EE(x̃))− L(x∗). By Pythagorean theorem, we have
L(EE [x̃])− L(x∗) = ∥U(EE [x̃])−Ux∗∥2. Also,

L(EE [x̃])− L(x∗) = ∥U(EE [x̃])−Ux∗∥2 = ∥EE [x̃]− x∗∥2

=
∥∥EE [(U

⊤S⊤
mSmU)−1U⊤S⊤

mSmb]−U⊤b
∥∥2

=
∥∥EE [(U

⊤S⊤
mSmU)−1U⊤S⊤

mSm](b−UU⊤b)
∥∥2 .

Note that b−UU⊤b = b−Ux∗ = r. We get,

L(EE [x̃])− L(x∗) =
∥∥EE [(U

⊤S⊤
mSmU)−1U⊤S⊤

mSm]r
∥∥2 .

Consider Q = (γU⊤S⊤
mSmU)−1, Q−i = (γU⊤S⊤

−iS−iU)−1and γ = m
m−d ,

EE [(U
⊤S⊤

mSmU)−1U⊤S⊤
mSmr] = EE [γ(γU

⊤S⊤
mSmU)−1U⊤S⊤

mSmr]

= γEE [QU⊤S⊤
mSmr]

= γEE [QU⊤xix
⊤
i r]

where we used linearity of expectation in the last line combined with S⊤
mSm = 1

m

∑m
i=1 xix

⊤
i .

Using Sherman-Morrison formula (Lemma 5) we have QU⊤xi = Q−iU
⊤xi

1+ γ
mx⊤

i UQ−iU⊤xi
. Denote

γi = 1 + γ
mx⊤

i UQ−iU
⊤xi and substitute we get,

EE [(U
⊤S⊤

mSmU)−1U⊤S⊤
mSmr] = EE

[(
γ

γi

)
Q−iU

⊤xix
⊤
i r

]

EE [(U
⊤S⊤

mSmU)−1U⊤S⊤
mSmr] = EE [Q−iU

⊤xix
⊤
i r] + EE

[(
γ

γi
− 1

)
Q−iU

⊤xix
⊤
i r

]
.

So we get the following decomposition:

L(EE [x̃])− L(x∗) =
∥∥EE [(U

⊤S⊤
mSmU)−1U⊤S⊤

mSm]r
∥∥2

=

∥∥∥∥EE [Q−iU
⊤xix

⊤
i r] + EE

[(
γ

γi
− 1

)
Q−iU

⊤xix
⊤
i r

]∥∥∥∥2
≤ 2 ∥EE [Q−iU

⊤xix
⊤
i r]∥

2︸ ︷︷ ︸
∥Z0r∥2

+2

∥∥∥∥EE

[(
γ

γi
− 1

)
Q−iU

⊤xix
⊤
i r

]∥∥∥∥2︸ ︷︷ ︸
∥Z2r∥2

. (12)

Note that a similar decomposition was considered in the proof of Theorem 5 (see Appendix B) with
slightly different Z0 and Z2. We first bound ∥Z0r∥2 in the following argument. Without loss of
generality, we assume that events E1 and E2 are independent of xi and E ′

= E1 ∧ E2.

Z0r = EE [Q−iU
⊤xix

⊤
i r] =

E[Q−iU
⊤xix

⊤
i r · 1E ]

Pr(E)

=
E[Q−iU

⊤xix
⊤
i r · 1E1

· 1E2
· (1− 1¬E3

)]

Pr(E)

=
E[Q−iU

⊤xix
⊤
i r · 1E1

· 1E2
]

Pr(E)
− E[Q−iU

⊤xix
⊤
i r · 1E1

· 1E2
· 1¬E3

)]

Pr(E)

=
1

1− δ′
(EE′ [Q−iU

⊤xix
⊤
i r]− EE′ [Q−iU

⊤xix
⊤
i r · 1¬E3

)]) .
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Now note that in the first term Q−i is independent of xi and xi is also independent of the event E ′
.

Using this with the fact that E[xix
⊤
i ] = I we get EE′ [Q−iU

⊤xix
⊤
i r] = EE′ [Q−iU

⊤r] = 0, since
U⊤r = 0. Therefore,

∥Z0r∥2 ≤ 2 ∥EE′ [Q−iU
⊤xix

⊤
i r · 1¬E3 ]∥

2

≤ 72∥EE′ [U⊤xix
⊤
i r · 1¬E3

]∥2.

The last inequality holds because conditioned on E ′
, we know that ∥Q−i∥ ≤ 6. Using Cauchy-

Schwarz inequality we have,

∥Z0r∥2 ≤ 72

(√
EE′ [x⊤

i UU⊤xi · 1¬E3
] ·
√

EE′ [r⊤xix⊤
i r]

)2

.

Note that EE′ [r⊤xix
⊤
i r] = ∥r∥2. Also, we can bound EE′ [x⊤

i UU⊤xi · 1¬E3
] as following:

EE′ [x⊤
i UU⊤xi · 1¬E3

] =

∫ ∞

0

Pr(x⊤
i UU⊤xi · 1¬E3

> x)dx

=

∫ y

0

Pr(x⊤
i UU⊤xi · 1¬E3 > x)dx+

∫ ∞

y

Pr(x⊤
i UU⊤xi · 1¬E3 > x)dx

≤ yδ′ +

∫ ∞

y

Pr(x⊤
i UU⊤xi > x)dx.

Using Chebyshev’s inequality, Pr(x⊤
i UU⊤xi ≥ x) ≤ Var(x⊤

i UU⊤xi)
x2 . By Restricted Bai-Silverstein,

Lemma 3 with p = 2, we have Var(x⊤
i UU⊤xi) ≤ c ·

(
d+ d2 log(d/δ)

s

)
for some absolute constant c.

Let y = m2 and δ′ < 1
m4 we get,

E[x⊤
i UU⊤xi · 1¬E3

] = O
(

1

m2
+

d

m2
+
d2 log(d/δ)

sm2

)
= O

(
d

m2
+
d2 log(d/δ)

sm2

)
.

This finishes upper bounding ∥Z0r∥2 as:

∥Z0r∥2 = O
(
d

m2
+
d2 log(d/δ)

sm2

)
· ∥r∥2. (13)

Now we proceed with ∥Z2r∥2,

∥Z2r∥ =

∥∥∥∥EE

[(
γ

γi
− 1

)
Q−iU

⊤xix
⊤
i r

]∥∥∥∥ .
Applying Hölder’s inequality with p = O(log(n)) and q = 1 +∆ where ∆ = 1

O(log(n)) , we get,

∥Z2r∥ ≤
(
EE
∣∣ γ
γi

− 1
∣∣p)1/p

·

(
sup

∥v∥=1

EE [v
⊤Q−iU

⊤xix
⊤
i r]

q

)1/q

≤
(
EE
∣∣ γ
γi

− 1
∣∣p)1/p

·
(
EE ∥Q−iU

⊤xi∥2q
)1/2q

·
(
EE ∥x⊤

i r∥
2q
)1/2q

≤
(
EE
∣∣ γ
γi

− 1
∣∣p)1/p

·
(
2 · EE′ [∥Q−iU

⊤xi∥2 · ∥Q−iU
⊤xi∥2∆]

)1/2q
·
(
2 · EE′ [∥x⊤

i r∥
2 · ∥x⊤

i r∥
2∆

]
)1/2q

.

Since ∥xi∥ = poly(n), we have ∥xi∥2∆ = O(1) and therefore we have ∥Q−iU
⊤xi∥2∆ =

O(1) ∥Q−iU
⊤∥2∆. Also EE′ ∥Q−iU

⊤xi∥2 = EE′ ∥Q−i∥2. Using that conditioned on E ′
we

have ∥Q−i∥ ≤ 6, we get
(
EE ∥Q−iU

⊤xi∥2q
)1/2q

= O(1). Similarly using ∥xi∥2∆ = O(1) we

get
(
EE ∥x⊤

i r∥
2q
)1/2q

= O(1) ∥r∥. This gives us:

∥Z2r∥ ≤ O(1) ·
(
EE
∣∣ γ
γi

− 1
∣∣p)1/p

· ∥r∥ .
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Now using (8) from the proof of Theorem 5, we get,(
EE
∣∣ γ
γi

− 1
∣∣p)1/p

= O

(√
d log4.5(n/δ)

m
·

(
1 +

√
d

s

))
.

Finally the bound for ∥Z2r∥2 follows as:

∥Z2r∥2 = O
(
d log9(n/δ)

m2
·
(
1 +

d

s

))
· ∥r∥2. (14)

Combining (13) and (14) we conclude our proof.

D Higher-Moment Restricted Bai-Silvestein (Lemma 3)

In this section, we prove Lemma 3. We need the following two auxiliary lemmas to derive the main
theorem of this section. The first lemma uses Matrix-Chernoff concentration inequality to upper
bound the spectral norm of U⊤

ξUξ where ξ is a (s, β1, β2)-approximate leverage score sparsifier.

Lemma 14 (Spectral norm bound with leverage score sparsifier). Let U ∈ Rn×d has orthonormal
columns. Let ξ be a (s, β1, β2)-approximate leverage score sparsifier for U, and denote Uξ =
diag(ξ)U. Then for any δ > 0 we have,

Pr

(∥∥U⊤
ξUξ

∥∥ ≥
(
1 +

3d log(d/δ)

s

))
≤ δ if s < d,

Pr
(∥∥U⊤

ξUξ

∥∥ ≥ (1 + 3 log(d/δ))
)
≤ δ if s ≥ d.

Proof. Writing U⊤
ξUξ as a sum of matrices we have,

U⊤
ξUξ =

n∑
i=1

ξ2i uiu
⊤
i =

n∑
i=1

bi
pi
uiu

⊤
i =

n∑
i=1

Zi

where pi = min{1, sβ1 l̃i
d } and Zi = bi

pi
uiu

⊤
i . Note that Z′

is are independent random variables
and E[Zi] = uiu

⊤
i . Also

∑n
i=1 EZi = U⊤U = Id. If pi = 1 then Zi = uiu

⊤
i and therefore

∥Zi∥ = ∥ui∥2 ≤ 1. If pi < 1, we have ∥Zi∥ ≤ 1
pi

∥ui∥2 = d
sβ1 l̃i

· li. As li ≤ β1 l̃i, we get

∥Zi∥ ≤ d
s . Therefore ∥Zi∥ ≤ max{1, ds} for all i. DenoteR = max{1, ds}. We use Matrix Chernoff

(Lemma 7) to upper bound the largest eigenvalue of U⊤
ξUξ. For any ϵ > 0, we have,

Pr

(
λmax

(
n∑

i=1

Zi

)
≥ (1 + ϵ)

)
≤ d · exp

(
− ϵ2

(2 + ϵ)R

)
.

With R = max{1, ds} and depending on the case whether s ≤ d or s > d we get

Pr

(
λmax

(
n∑

i=1

Zi

)
≥
(
1 +

3d log(d/δ)

s

))
≤ δ if s ≤ d,

Pr

(
λmax

(
n∑

i=1

Zi

)
≥ (1 + 3 log(d/δ))

)
≤ δ if s > d.

Let Aξ denote the event
∥∥∥U⊤

ξUξ

∥∥∥ ≤ 1+ 3d log(d/δ)
s , holding with probability at least 1− δ, for small

δ > 0. In the next result we upper bound the higher moments of the trace of UξCU⊤
ξ for any matrix

C ⪯ O(1) · I. We first prove the upper bound in the case when the high probability event Aξ does
not occur.
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Lemma 15 (Trace moment bound over small probability event). Let k ∈ N be fixed. Let U ∈ Rn×d

have orthonormal columns. Let ξ be a (s, β1, β2)-approximate leverage score sparsifier for U. Let
Uξ = diag(ξ)U. Also let Pr(Aξ) ≥ 1 − 1

(12d)4k
and event E ′

be independent of the sparsifier ξ.
Then we have,

EE′
[
(tr(UξCU⊤

ξUξCU⊤
ξ ))

k|¬Aξ

]
≤ (4k)4k

for any fixed matrix C such that 0 ⪯ C ⪯ 6I.

Proof.

EE′
[
(tr(UξCU⊤

ξUξCU⊤
ξ ))

k|¬Aξ

]
=

∫ ∞

0

Pr((tr(UξCU⊤
ξUξCU⊤

ξ ))
k · 1¬Aξ

≥ x|E
′
)dx

=

∫ ∞

0

Pr((tr(UξCU⊤
ξUξCU⊤

ξ ))
k · 1¬Aξ

≥ x)dx.

The last equality holds because E ′
is independent of ξ. Consider some fixed y > 0.

EE′
[
(tr(UξCU⊤

ξUξCU⊤
ξ ))

k|¬Aξ

]
≤
∫ y

0

Pr((tr(UξCU⊤
ξ ))

2k · 1¬Aξ
≥ x)dx

+

∫ ∞

y

Pr((tr(UξCU⊤
ξ ))

2k · 1¬Aξ
≥ x)dx

≤y · δ + E[(tr(UξCU⊤
ξ ))

4k] ·
∫ ∞

y

1

x2
dx. (15)

The last inequality holds because by Chebyshev’s inequality Pr((tr(UξCU⊤
ξ ))

2k ≥ x) ≤
E[(tr(UξCU⊤

ξ ))4k]

x2 . Also note that,

(tr(UξCU⊤
ξ ))

4k =

(
n∑

i=1

ξ2i u
⊤
i Cui

)4k

=

(
n∑

i=1

bi
pi
u⊤
i Cui

)4k

.

For 1 ≤ i ≤ n, let Ri be random variables denoting bi
pi
u⊤
i Cui. Then note that Ri are independent

random variables with E[Ri] = u⊤
i Cui. Also Ri are non-negative random variables with finite

(4k)th moment. Using Rosenthal’s inequality (Lemma 9) we get,

E

( n∑
i=1

bi
pi
u⊤
i Cui

)4k
 ≤ 24k · (4k)4k ·

 n∑
i=1

E[R4k
i ] +

(
n∑

i=1

E[Ri]

)4k
 .

Now
∑n

i=1 E[Ri] = tr(UCU⊤) and E[R4k
i ] can be found as follows: if pi = 1 then Ri = u⊤

i Cui

and therefore R4k
i = (u⊤

i Cui)
4k ≤ ∥ui∥2(4k−1)

u⊤
i C

4kui ≤ u⊤
i C

4kui, if pi < 1, we have,

E[R4k
i ] = pi ·

1

p4ki
(u⊤

i Cui)
4k =

d4k−1

s4k−1
· 1

(β1 l̃i)4k−1
(u⊤

i Cui)
4k

≤ d4k−1

s4k−1
· 1

(β1 l̃i)4k−1
· ∥ui∥2(4k−1)

u⊤
i C

4kui

=
d4k−1

s4k−1
· 1

(β1 l̃i)4k−1
· l4k−1

i u⊤
i C

4kui.

Now using li ≤ β1 l̃i we get,

E[R4k
i ] ≤ d4k−1

s4k−1
· u⊤

i C
4kui.

Therefore,

E

( n∑
i=1

bi
pi
u⊤
i Cui

)4k
 ≤ 24k · (4k)4k ·

[
max

(
1,
d4k−1

s4k−1

)
· tr(C4k) + (tr(C))4k

]
.
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Using the above inequality along with using C ⪯ 6I we get,

E

( s∑
t=1

1

spit
u⊤
itCuit

)4k
 ≤ 24k · (4k)4k · 64k · d4k = (12)4k · (4k)4k · d4k.

Substituting the above bound in (15), it follows that:

EE′
[
(tr(UξCU⊤

ξUξCU⊤
ξ ))

k|¬Aξ

]
≤ y · δ + (12)4k · (4k)4k · d4k · 1

y
.

For y > (12d)4k and δ < 1
y , we get the desired result.

We are now ready to prove the main result of this section. The following result, which is central to
our analysis, upper bounds the high moments of a deviation of a quadratic form from its mean.
Lemma 16 (Restricted Bai-Silverstein for (s, β1, β2)-LESS embedding). Let p ∈ N be fixed and
U ∈ Rn×d have orthonormal columns. Let xi = diag(ξ)yi where yi ∈ Rn has independent ±1
entries and ξ is a (s, β1, β2)-approximate leverage score sparsifier for U. Let Uξ = diag(ξ)U.
Then for any matrix 0 ⪯ C ⪯ 6I and any δ > 0 we have,(

E [tr(C)− x⊤
i UCU⊤xi]

p)1/p
< c · p3

√
d ·

(
1 +

√
dp log(d/δ)

s

)
for an absolute constant c > 0.

Proof. Let xi = diag(ξ)yi where yi is vector of Rademacher ±1 entries. Denote Uξ = diag(ξ)U.

E
[
(tr(C)− x⊤

i UCU⊤xi)
p]

= E
[
(tr(C)− y⊤

i UξCU⊤
ξ yi)

p
]

= E
[
(tr(C)− tr(UξCU⊤

ξ ) + tr(UξCU⊤
ξ )− y⊤

i UξCU⊤
ξ yi)

p
]

≤ 2p−1

E
[
tr(C)− tr(UξCU⊤

ξ )
]p︸ ︷︷ ︸

T1

+E
[
tr(UξCU⊤

ξ )− y⊤
i UξCU⊤

ξ yi

]p︸ ︷︷ ︸
T2

 .

(16)

First, consider T1, substitute ξ2i = bi
pi

, and assume exponent p to be even.

E
[
tr(C)− tr(UξCU⊤

ξ )
]p

= E
[
tr(UCU⊤)− tr(UξCU⊤

ξ )
]p

= E

[(
n∑

i=1

(ξ2i − 1)u⊤
i Cui

)p]

= E

[(
n∑

i=1

(
bi
pi

− 1)u⊤
i Cui

)p]
.

For 1 ≤ i ≤ n consider random variables Ri where Ri = bi
pi
u⊤
i Cui. Furthermore let Yi =

Ri − u⊤
i Cui. Then

∑n
i=1 Yi =

∑n
i=1 (

bi
pi

− 1)u⊤
i Cui and E[Yi] = 0. Yi are independent mean

zero random variables with finite pth moments and therefore we can use Rosenthal’s inequality (for
symmetric random variables, Lemma 9) to get,

E

[
n∑

i=1

Yi

]p
< A(p)


n∑

i=1

E[Yi]p︸ ︷︷ ︸
T 1
1

+

(
n∑

i=1

E[Yi]2
)p/2

︸ ︷︷ ︸
T 2
1

 (17)

where A(p) is a constant depending on p. We bound T 1
1 and T 2

1 separately, starting with T 1
1 as,

T 1
1 =

n∑
i=1

E[Yi]p.
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Recall that Yi = Ri − u⊤
i Cui. Ri is always non-negative because C is a positive semi-definite

matrix. Therefore we have,

E(Yi)p ≤ E(Ri)
p.

We find the pth moment of Ri, E(Ri)
p = (u⊤

i Cui)
p if pi = 1. If pi < 1 then,

E(Ri)
p = pp−1

i (u⊤
i Cui)

p =
dp−1

sp−1
· 1

(β1 l̃i)p−1
(u⊤

i Cui)
p ≤ dp−1

sp−1
· 1

(β1 l̃i)p−1
· ∥ui∥2(p−1)

u⊤
i C

pui

≤ dp−1

sp−1
u⊤
i C

pui

where in the last inequality we use ∥ui∥2(p−1)
= lp−1

i ≤ (β1 l̃i)
p−1. Summing over i from 1 to n we

get an upper bound for T 1
1 as the following:

n∑
i=1

E(Ri)
p ≤

n∑
i=1

E(Ri)
p ≤ max

(
1,
dp−1

sp−1

)
· tr(UCpU⊤). (18)

Now we upper bound T 2
1 . Note that E(Yi)2 = E[Ri]

2 = (u⊤
i Cui)

2 if pi = 1 and if pi < 1 we have
E[Ri]

2 = 1
pi

· (u⊤
i Cui)

2 ≤ d
s · 1

β1 l̃i
∥ui∥2 u⊤

i C
2ui ≤ d

su
⊤
i C

2ui. Summing over i from 1 to n we

get an upper bound for T 2
1 as,(
n∑

i=1

E(Yi)2
)p/2

≤
(
max

(
1,
d

s

)
tr(UC2U⊤)

)p/2

. (19)

Substituting (18) and (19) in (17) we have,

E
[
tr(C)− tr(UξCU⊤

ξ )
]p ≤ A(p) ·

(
max

(
1,
dp−1

sp−1

)
· tr(UCpU⊤) +

(
max

(
1,
d

s

)
tr(UC2U⊤)

)p/2
)
.

(20)

Now we aim to upper bound the term T2 in (16) i.e., E
[
tr(UξCU⊤

ξ )− y⊤
i UξCU⊤

ξ yi

]p
. First, we

condition over ξ and take expectation over yi. This requires using standard Bai-Silverstein inequality
(Lemma 10), we get,

E
[
tr(UξCU⊤

ξ )− y⊤
i UξCU⊤

ξ yi

]p ≤ B(p) · E
[(
ν4tr(UξCU⊤

ξUξCU⊤
ξ )
)p/2

+ ν2ptr(UξCU⊤
ξUξCU⊤

ξ )
p/2
]

where B(p) is a constant depending on p. Since yi consists of ±1 entries we have ν4, ν2p ≤ 1. Also

using tr(AB) ≤ tr(A)tr(B) and considering the high probability event Aξ capturing
∥∥∥U⊤

ξUξ

∥∥∥ ≤(
1 + max

(
3d log(d/δ)

s , 3 log(d/δ)
))

. We get the following,

E
[
tr(UξCU⊤

ξ )− y⊤
i UξCU⊤

ξ yi

]p ≤ 2B(p) · E
(
tr(UξCU⊤

ξUξCU⊤
ξ )
)p/2

=2B(p) ·
[
E
(
tr(UξCU⊤

ξUξCU⊤
ξ ) · 1Aξ

)p/2]
+ 2B(p) ·

[
E
(
tr(UξCU⊤

ξUξCU⊤
ξ ) · 1¬Aξ

)p/2]
≤2B(p) ·

(
1 + max

(
3d log(d/δ)

s
, 3 log(d/δ)

))p/2

E
(
tr(UξC

2U⊤
ξ )
)p/2

+ 2B(p) · (2p)2p.

(21)

The first term in the last inequality follows from the Matrix-Chernoff (Lemma 7) and the second term
follows from Lemma 15 by considering k = p/2 (assuming that δ is small enough so that Lemma 15

is satisfied). We now upper-bound E
(
tr(UξC

2U⊤
ξ )
)p/2

using Rosenthal’s inequality for uncentered
(non-symmetric) random variables,

tr(UξC
2U⊤

ξ ) =

n∑
i=1

ξ2i u
⊤
i C

2ui =

n∑
i=1

bi
pi
u⊤
i C

2ui.
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For 1 ≤ i ≤ n consider independent random variables R′
i =

bi
pi
u⊤
i C

2ui. We have,

n∑
i=1

R′
i = tr(UξC

2U⊤
ξ ).

Here R′
i are positive random variables with finite (p/2)th moment. Using Rosenthal’s inequality we

get,

E

(
n∑

i=1

R′
i

)p/2

≤ C(p/2) ·


n∑

i=1

E(R′
i)

p/2

︸ ︷︷ ︸
T 1
2

+

(
n∑

i=1

ER′
i

)p/2

︸ ︷︷ ︸
T 2
2

 . (22)

It is straightforward to upper bound E(R′
i)

p/2 as,

E(R′
i)

p/2 = (u⊤
i C

2ui)
p/2 if pi = 1,

≤ d
p
2−1

s
p
2−1

u⊤
i C

pui if pi < 1.

Summing over i from 1 to n we get upper bound for T 1
2 as,

n∑
i=1

E(R′
n)

p/2 ≤ max

(
1,
d

p
2−1

s
p
2−1

)
tr(UCpU⊤). (23)

Now we consider T 2
2 . It is simply given as,(

n∑
i=1

ER′
j

)p/2

=
(
tr(UC2U⊤)

)p/2
. (24)

Combining (23) and (24) and substituting in (22) we get,

E
(
tr(UξC

2U⊤
ξ )
)p/2 ≤ C(p/2) ·

(
max

(
1,
d

p
2−1

s
p
2−1

)
tr(UCpU⊤) +

(
tr(UC2U⊤)

)p/2)
. (25)

Substituting (25) in (21) and let w = max(1, d/s),

E
[
tr(UξCU⊤

ξ )− y⊤
i UξCU⊤

ξ yi

]p ≤ 2B(p) · (2p)2p

+2B(p)C(p/2) · (1 + 3w log(d/δ))
p/2 ·

[
w

p
2−1tr(UCpU⊤) +

(
tr(UC2U⊤)

)p/2]
. (26)

Combining the bounds for T1 (20) and T2 (26) substituting in (16), and noting that tr(UCkU⊤) =
tr(Ck) for any k, we get,

E
[
(tr(C)− x⊤

i UCU⊤xi)
p] ≤ 2p−1A(p) ·

(
wp−1 · tr(Cp) +

(
w · tr(C2)

)p/2)
+2pB(p)C(p/2)· (1 + 3w log(d/δ))

p/2 ·
[
w

p
2−1tr(Cp) +

(
tr(C2)

)p/2]
+2pB(p)(2p)2p.

Now we specify the various constants depending on p. We have A(p) ≤ (2p)p, B(p) ≤
(2p)p, C(p/2) ≤ pp/2. Also we use tr(Ck) ≤ 6k · d since C ⪯ 6I. This implies for an abso-
lute constant c we have,

(
E [tr(C)− x⊤

i UCU⊤xi]
p)1/p ≤ c · p3

√
d ·

(
1 +

√
dp log(d/δ)

s

)
where δ > 0 is now arbitrary.
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E Application to distributed settings with partitioned data

In this section, we extend our main result to settings where the dataset is partitioned across multiple
machines. We illustrate this in the distributed setting considered in [43]. Let A ∈ RN×d and b ∈ RN

with rank(A) = d. In practice, we randomly shuffle the rows of A and b, and partition the data
uniformly across q machines, with every machine getting chunks of size n denoted by (Ai,bi). In
this distributed setup, Ai can be considered a uniformly subsampled sketch of A with sketch size
n. However, similar to the analysis in [43], in the following analysis we assume that each machine
constructs its sketch (Ai,bi) by uniformly sampling rows from A and b with replacement and
independently from other machines. This setting is not ideally a partition but we believe similar
results can also be shown for the setting where we partition the dataset after reshuffling the rows.
Let µ = N maxni=1 ℓi(A) denote the matrix coherence of A. Let S ∈ Rn×N be a uniform sampling
matrix with size n, where we will assume that S also scales the samples by

√
N/n, which implies

that E[S⊤S] = I. Then the following holds:
Lemma 17 (Subspace embedding using uniform subsampling; based on Theorem 12 in [43]).
Let S ∈ Rn×N be a uniform sampling matrix of size n where n ≥ O(µ log(d/δ)). Then with
probability 1− δ we have,

1

1 + η
·A⊤A ⪯ A⊤S⊤SA ⪯ (1 + η) ·A⊤A

for η = O(
√
µ log(d/δ)/n).

Let x∗ = A†b denote the minimizer of least squares loss ∥Ax − b∥2 and x∗
i = A†

ibi denote the
solution to the sketched least squares problem at ith machine. Here Ai = SiA and bi = Sib, where
Si denotes the uniform subsampling matrix for ith machine. We can use the model averaging result
from [43] to prove the following result.
Lemma 18 (Model averaging result; adapted from Theorem 20 in [43]). Let there be q machines
and each machine constructs its sketch (Ai,bi) independently by uniformly sampling n rows from A
and b, where n = O(µ log(dq/δ)). Then with probability 0.99,∥∥∥Ax̄∗ − b

∥∥∥2 ≤
(
1 + c

(µ log(d/δ)
qn

+
µ2 log2(d/δ)

n2

))
· ∥Ax∗ − b∥2. (27)

where x̄∗ = 1
q

∑q
i=1 x

∗
i and c > 0 is an absolute constant2.

Since computing x∗
i at any machine could be potentially expensive due to large n, we instead find x̃i

at ith machine using the sketching procedure from Theorem 2. Note that this requires applying our
debiasing techniques to the least squares problem min ∥Aix− bi∥2 at every machine. To that end,
let x̄ = 1

q

∑q
i=1 x̃i and consider EP∥Ax̄− b∥2, where EP means conditional expectation given the

sketches (Ai,bi) at every machine. The following theorem states that if the bias from partitioning is
much smaller than the sketching error in each machine, then our approach can be successfully used
to reduce the bias of the sketching estimate so that averaging will work as desired.
Theorem 6. Let there be q machines and each machine constructs its sketch (Ai,bi) independently
by uniformly sampling n rows from A and b, where n ≥ O(µ log(dq/δ)). Also, let ith machine
construct x̃i via locally sketching Ai and bi such that x̃i satisfies Theorem 1 (with Ai and bi) at ith
machine. Then, the estimator x̄ = 1

q

∑q
i=1 x̃i averaged across the machines satisfies

EP∥Ax̄− b∥2 ≤
(
1 + c′

(
ϵ+

1

q
+
µ log(d/δ)

qn
+
µ2 log2(d/δ)

n2

))
∥Ax∗ − b∥2.

with probability at least 0.9 and an absolute constant c′ > 0.

Proof. By the Pythagorean theorem we have:

EP∥Ax̄− b∥2 = ∥Ax∗ − b∥2 + EP∥A(x̄− x∗)∥2. (28)

2The result Theorem 20 [43] also requires that ∥S⊤
i Si∥2 ≤ N

n
for all i, which holds trivially if Si is a

sampling matrix without replacement. However, in our setting, we are implicitly assuming that with high
probability ∥S⊤

i Si∥2 = O(N
n
) and absorb the extra resulting constant in c.
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We proceed to upper bound EP∥A(x̄− x∗)∥2 as,

EP∥A(x̄− x∗)∥2 ≤ 2
(
EP∥A(x̄− x̄∗)∥2 + ∥A(x̄∗ − x∗)∥2

)
.

We use Lemma 18 to upper bound the second term and get,

EP∥A(x̄− x∗)∥2 ≤ 2

(
EP∥A(x̄− x̄∗)∥2 + c

(µ log(d/δ1)
qn

+
µ2 log2(d/δ1)

n2

)
∥Ax∗ − b∥2

)
.

(29)
On the other hand,

EP∥A(x̄− x̄∗)∥2 = EP∥A(x̄− EP [x̄] + EP [x̄]− x̄∗∥2

= EP∥A(x̄− EP [x̄])∥2 + ∥A(EP [x̄]− x̄∗)∥2. (30)
We upper bound both terms in (30) separately. Proceeding with the first term we have,

EP∥A(x̄− EP [x̄])∥2 = EP

∥∥∥A(1
q

q∑
i=1

(x̃i − EP [x̃i])
)∥∥∥2

=
1

q2
· EP

∥∥∥A( q∑
i=1

(x̃i − EP [x̃i])
)∥∥∥2

=
1

q2
·

q∑
i=1

EP∥A(x̃i − EP [x̃i])∥2 (31)

≤ 1 + η

q2
·

q∑
i=1

EP∥Ai(x̃i − EP [x̃i])∥2 (32)

≤ 2(1 + η)

q2
·

q∑
i=1

EP

(
∥Ai(x̃i − x∗

i )∥2 + ∥Ai(EP [x̃i]− x∗
i )∥2

)
≤ 2(1 + η)

q2
·

q∑
i=1

∥Aix
∗
i − bi∥2 (33)

≤ 2(1 + η)

q2
·

q∑
i=1

∥Aix
∗ − bi∥2. (34)

The equality (31) holds as all x̃′
is are independent. The inequality (32) holds due to the subspace

embedding property (Lemma 17). The inequality (33) holds due to the variance bound in Theorem 1.
The last inequality holds because x∗

i minimizes the least squares loss ∥Aix− bi∥2 at ith machine.
We now upper bound the second term in (30) as

∥A(EP [x̄]− x̄∗)∥ =
∥∥∥A(1

q

q∑
i=1

(EP [x̃i]− x∗
i )
)∥∥∥

≤ 1

q
·

q∑
i=1

∥A(EP [x̃i]− x∗
i )∥

≤
√
1 + η

q
·

q∑
i=1

∥Ai(EP [x̃i]− x∗
i )∥ (35)

≤
√
ϵ(1 + η)

q
·

q∑
i=1

∥Aix
∗
i − bi∥ (36)

≤
√
ϵ(1 + η)

q
·

q∑
i=1

∥Aix
∗ − bi∥

The inequality (35) holds due to the subspace embedding property (Lemma 17) and inequality (36)
holds due to the bias bound in Theorem 1. Therefore we get,

∥A(EP [x̄]− x̄∗)∥2 ≤ ϵ(1 + η)

q2

( q∑
i=1

∥Aix
∗ − bi∥

)2
. (37)
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Combining (28, 29, 34, 37) and assuming η < 1 we get,

EP∥Ax̄− b∥2 ≤
(
1 + 2c

(µ log(d/δ1)
qn

+
µ2 log2(d/δ1)

n2

))
· ∥Ax∗ − b∥2 + 8

q2
·

q∑
i=1

∥Aix
∗ − bi∥2

+
4ϵ

q2

( q∑
i=1

∥Aix
∗ − bi∥

)2
. (38)

As E
(

1
q

∑q
i=1 ∥Aix

∗ − bi∥2
)
= ∥Ax∗ − b∥2, we just use Markov’s inequality to upperbound the

second term in (38) by 160
q ∥Ax∗ − b∥2 with probability 0.95. For the last term, we have( q∑

i=1

∥Aix
∗ − bi∥

)2
= q · 1

q

q∑
i=1

∥Aix
∗ − bi∥2 + (q2 − q) · 1

q2 − q

∑
i,j,i ̸=j

∥Aix
∗ − bi∥ · ∥Ajx

∗ − bj∥

Again 1
q

∑q
i=1 ∥Aix

∗ − bi∥2 ≤ 20∥Ax∗ − b∥2 with probability 0.95. The last term is an average
of q2 − q random variables and we can provide uniform bound for the expectation of all of them
using the independence among different machines. We have E[∥Aix

∗ − bi∥ · ∥Ajx
∗ − bj∥] ≤√

E[∥Aix∗ − bi∥2] ·
√
E[∥Ajx∗ − bj∥2] = ∥Ax∗ − b∥2. Again using Markov’s inequality we

can upper bound the average of these q2 − q random variables with 20 times their expectation with
probability 0.95, finishing the proof of the theorem.

F Further experimental details

Here, we provide a small set of numerical experiments to empirically examine the relative error of
distributed averaging estimates from individual machines to return an estimator x̂ = 1

q

∑q
i=1 x̃i.

First, we show that when the sketching-based estimates x̃i do have a non-negligible bias, so that
the distributed averaging estimator x̂ remains inconsistent in the number of machines – even with
an unlimited number of machines, as long as the space on each machine is limited, the averaged
estimator’s performance will be limited by the bias of the individual estimates. Second, we show
that one can use sketching to compress a data subsample at no extra computational cost, without
increasing its bias, which we refer to as the free lunch in distributed averaging via sketching.

We examine three benchmark regression datasets, Abalone (4177 rows, 8 features), Boston (506
rows, 13 features), and YearPredictionMSD (truncated to the first 2500 rows, with 90 features),
from the libsvm repository from [8]. All the experiments were run on an i9-13900k processor with
128GB of RAM and an NVIDIA RTX 3090 GPU. We repeat the experiment 100 times, with the
shaded region representing the standard error. We visualize the relative error of the averaged sketch-
and-solve estimator L(x̂)−L(x∗)

L(x∗) , against the number of machines q used to generate the estimate
x̂ = 1

q

∑q
i=1 x̃i.

Each estimate x̃i was constructed with the same sparsification strategy used by LESS, except
that instead of sparsifying the sketch with leverage scores, we instead sparsify them with uniform
probabilities. Following [16], we call the resulting method LESSUniform. Within each dataset, we
perform four simulations, each with different sketch sizes and different numbers of nonzero entries
per row. We vary these so that the product (sketch size × nnz per row) stays the same, so as to ensure
that the total cost of sketching is fixed in each plot.

As expected, decreasing the sketch size while increasing the number of nonzeros per row (effectively
increasing the amount of “compression” occurring here by sparse sketching) increases the error in
all three datasets. However, remarkably, increasing the amount of “compression” does not seem
to increase the amount of bias. We can therefore conclude that sparse sketches preserve near-
unbiasedness, while enabling us to reduce the sketch size from subsampling without incurring any
additional computational cost. The increase in error can be mitigated in a distributed setting by
increasing the number of estimates/machines.

F.1 Comparison with other sketching estimators

To further illustrate the phenomenon that suitable sketched least squares estimators enjoy small bias,
we provide a further set of numerical experiments below in Figure 4 for the Boston and Abalone
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Figure 3: Comparison of the relative error of the distributed averaging estimator of sketch-and-
solve least squares estimates where the sketches are constructed with sparse sketching matrices
with uniform probabilities (LESSUniform) on libsvm dataset Boston (see Figure 2 for results on
YearPredictionMSD and Abalone). For each dataset, the computational cost of sketching is the
same in all four parameter settings. Remarkably, sketching to a smaller size appears to preserve
near-unbiasedness without incurring any additional computational cost.

datasets. Recall that in Figures 2 and 3, we show that increasing the amount of “compression” of the
sample, by reducing the sketch size when using sparse sketching matrices with uniform probabilities,
does not increase the bias of the sketched estimator. Figure 4 further demonstrates that Gaussian and
Subgaussian sketches, which are computationally much more expensive than our proposed sparse
sketches, exhibit virtually no bias in sketched least squares (as expected). A similar conclusion can
be made for the proper LESS method, which uses leverage score estimates, and is therefore more
expensive than the LESSUniform method we use in other experiments, but still potentially much
cheaper than Subgaussian sketches.

However, the unbiasedness does not hold for all sparse sketches, as we demonstrate below in Figure 4.
At a high level, we show that sketches constructed using leverage score subsampling and the SRHT
can exhibit a non-negligible level of least squares bias.

Gaussian and Subgaussian sketches, as we see in the figure, enjoy near-unbiasedness while not
introducing additional bias as the sketch size decreases. This does not hold for leverage score
subsampling. When we decrease the number of subsamples within leverage score subsampling, the
bias introduced by subsampling increases as suggested by the lower bound in Theorem 10 of [18].
Intuitively, this happens as the number of subsamples is reduced without increasing the amount of
“compression” as one would with LESS or LESSUniform.

We also show that the subsampled randomized Hadamard transform (SRHT) also introduces increased
bias as the sketch size decreases. This complements the lower bound established for the failure
of SRHT and other data-oblivious sparse embeddings like CountSketch to satisfy the restricted
Bai-Silverstein property that is a structural condition for near-unbiasedness sketches [18].

For completeness, we also demonstrate the desirable performance of LESS proper. Figure 4 demon-
strates that the desirable phenomenon that LESSUniform enjoys also extends to LESS proper. In fact,
we observe that LESS enjoys similar desirable performance as the Gaussian and Subgaussian sketches
and does not increase (in fact, it has minimal) least squares bias, while enjoying the computational
speedups that sparse sketches also enjoy, suggesting a best-of-both-worlds property.
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Figure 4: Distributed averaging experiment for the Boston and Abalone datasets using five different
sketching techniques: Leverage Score Subsampling, Subsampled Randomized Hadamard Transform
(SRHT), Gaussian sketches, Subgaussian sketches, and LESS. Both Gaussian and Subgaussian
sketches exhibit no observable least squares bias, whereas Leverage Score Subsampling and SRHT
exhibit a small but measurable level of bias. LESS enjoys the similar high performance as the
Gaussian and Subgaussian sketches and does not increase (in fact, it has minimal) least squares bias,
but as a sparse sketch also allows for the significant improvements in runtime that sparse sketches
enjoy, demonstrating that it enjoys the best-of-both-worlds.
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paper’s contributions and scope?
Answer: [Yes]
Justification: The paper provides concise mathematical proofs for the claims made in the
abstract.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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limitations or requiring strong assumptions.
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Answer: [Yes]
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• The proofs can either appear in the main paper or the supplemental material, but if
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proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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4. Experimental Result Reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experiments demonstrate the results for solving a few least-squares
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• The answer NA means that the paper does not include experiments.
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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For example, if the contribution is a novel architecture, describing the architecture fully
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
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Justification: Our theoretical work provides a Matrix sketching algorithm, recovering a nearly
unbiased least squares estimator. Solving linear systems approximately is an important
component of a large number of algorithms from varied domains. Our work can thus provide
a way to recover approximation solutions with a smaller bias. This does not lead to any
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• If the authors answer NA or No, they should explain why their work has no societal
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to point out that an improvement in the quality of generative models could be used to
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that a generic algorithm for optimizing neural networks could enable people to train
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• The authors should consider possible harms that could arise when the technology is
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• The authors should cite the original paper that produced the code package or dataset.
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Question: Are new assets introduced in the paper well documented and is the documentation
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Justification: No new assets are released in this work.
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• At submission time, remember to anonymize your assets (if applicable). You can either
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tion of the paper involves human subjects, then as much detail as possible should be
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
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approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve crowdsourcing or research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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