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ABSTRACT

We consider tackling a single-agent RL problem by distributing it to n learners.
These learners, called advisors, endeavour to solve the problem from a different
focus. Their advice, taking the form of action values, is then communicated to
an aggregator, which is in control of the system. We show that the local planning
method for the advisors is critical and that none of the ones found in the literature
is flawless: the egocentric planning overestimates values of states where the other
advisors disagree, and the agnostic planning is inefficient around danger zones. We
introduce a novel approach called empathic and discuss its theoretical aspects. We
empirically examine and validate our theoretical findings on a fruit collection task.

1 INTRODUCTION

When a person faces a complex and important problem, his individual problem solving abilities might
not suffice. He has to actively seek for advice around him: he might consult his relatives, browse
different sources on the internet, and/or hire one or several people that are specialised in some aspects
of the problem. He then aggregates the technical, ethical and emotional advice in order to build an
informed plan and to hopefully make the best possible decision. A large number of papers tackle
the decomposition of a single Reinforcement Learning task (RL, Sutton & Barto, 1998) into several
simpler ones. They generally follow a method where agents are trained independently and generally
greedily to their local optimality, and are aggregated into a global policy by voting or averaging.
Recent works (Jaderberg et al., 2016; van Seijen et al., 2017b) prove their ability to solve problems
that are intractable otherwise. Section 2 provides a survey of approaches and algorithms in this field.

Formalised in Section 3, the Multi-Advisor RL (MAd-RL) partitions a single-agent RL into a Multi-
Agent RL problem (Shoham et al., 2003), under the widespread divide & conquer paradigm. Unlike
Hierarchical RL (Dayan & Hinton, 1993; Parr & Russell, 1998; Dietterich, 2000a), this approach
gives them the role of advisor: providing an aggregator with the local Q-values for all actions. The
advisors are said to have a focus: reward function, state space, learning technique, etc. The MAd-RL
approach allows therefore to tackle the RL task from different focuses.

When a person is consulted for an advice by a enquirer, he may answer egocentrically: as if he
was in charge of next actions, agnostically: anticipating any future actions equally, or empathically:
by considering the next actions of the enquirer. The same approaches are modelled in the local
advisors’ planning methods. Section 4 shows that the egocentric planning presents the severe
theoretical shortcoming of inverting a max

∑
into a

∑
max in the global Bellman equation. It leads

to an overestimation of the values of states where the advisors disagree, and creates an attractor
phenomenon, causing the system to remain static without any tie-breaking possibilities. It is shown
on a navigation task that attractors can be avoided by lowering the discount factor γ under a given
value. The agnostic planning (van Seijen et al., 2017b) has the drawback to be inefficient in dangerous
environments, because it gets easily afraid of the controller performing a bad sequence of actions.
Finally, we introduce our novel empathic planning and show that it converges to the global optimal
Bellman equation when all advisors are training on the full state space.

van Seijen et al. (2017a) demonstrate on a fruit collection task that a distributed architecture signifi-
cantly speeds up learning and converges to a better solution than non distributed baselines. Section
5.2 extends those results and empirically validates our theoretical analysis: the egocentric planning
gets stuck in attractors with high γ values; with low γ values, it gets high scores but is also very
unstable as soon as some noise is introduced; the agnostic planning fails at efficiently gathering the
fruits near the ghosts; despite lack of convergence guarantees with partial information in advisors’
state space, our novel empathic planning also achieves high scores while being robust to noise.
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2 RELATED WORK

Task decomposition – Literature features numerous ways to distribute a single-agent RL problem
over several specialised advisors: state space approximation/reduction (Böhmer et al., 2015), reward
segmentation (Dayan & Hinton, 1993; Gábor et al., 1998; Vezhnevets et al., 2017; van Seijen et al.,
2017b), algorithm diversification (Wiering & Van Hasselt, 2008; Laroche & Féraud, 2017), algorithm
randomization (Breiman, 1996; Glorot & Bengio, 2010), sequencing of actions (Sutton et al., 1999), or
factorisation of actions (Laroche et al., 2009). In this paper, we mainly focus on reward segmentation
and state space reduction but the findings are applicable to any family of advisors.

Subtasks aggregation – Singh & Cohn (1998) are the first to propose to merge Markov decision
Processes through their value functions. It makes the following strong assumptions: positive rewards,
model-based RL, and local optimality is supposed to be known. Finally, the algorithm simply
accompanies a classical RL algorithm by pruning actions that are known to be suboptimal. Sprague
& Ballard (2003) propose to use a local SARSA online learning algorithm for training the advisors,
but they elude the fact that the online policy cannot be locally accurately estimated with partial state
space, and that this endangers the convergence properties. Russell & Zimdars (2003) study more in
depth the theoretical guaranties of convergence to optimality with the local Q-learning, and the local
SARSA algorithms. However, their work is limited in the fact that they do not allow the local advisors
to be trained on local state space. van Seijen et al. (2017b) relax this assumption at the expense of
optimality guarantees and beat one of the hardest Atari games: Ms. Pac-Man, by decomposing the
task into hundreds of subtasks that are trained in parallel.

MAd-RL can also be interpreted as a generalisation of Ensemble Learning (Dietterich, 2000b) for
RL. As such, Sun & Peterson (1999) use a boosting algorithm in a RL framework, but the boosting
is performed upon policies, not RL algorithms. In this sense, this article can be seen as a precursor
to the policy reuse algorithm (Fernández & Veloso, 2006) rather than a multi-advisor framework.
Wiering & Van Hasselt (2008) combine five online RL algorithms on several simple RL problems and
show that some mixture models of the five experts performs generally better than any single one alone.
Each algorithm tackles the whole task. Their algorithms were off-policy, on-policy, actor-critics, etc.
Faußer & Schwenker (2011) continue this effort in a very specific setting where actions are explicit
and deterministic transitions. We show in Section 4 that the planning method choice is critical and
that some recommendations can be made in accordance to the task definition. In Harutyunyan et al.
(2015), while all advisors are trained on different reward functions, these are potential based reward
shaping variants of the same reward function. They are therefore embedding the same goals. As
a consequence, it can be related to a bagging procedure. The advisors recommendation are then
aggregated under the HORDE architecture (Sutton et al., 2011), with egocentric planning. Two
aggregator functions are tried out: majority voting and ranked voting. Laroche & Féraud (2017) follow
a different approach in which, instead of boosting the weak advisors performances by aggregating
their recommendation, they select the best advisor. This approach is beneficial for staggered learning,
or when one or several advisors may not find good policies, but not for variance reduction brought by
the committee, and it does not apply to compositional RL.

The UNREAL architecture (Jaderberg et al., 2016) improves the state-of-the art on Atari and Labyrinth
domains by training their deep network on auxiliary tasks. They do it in an unsupervised manner
and do not consider each learner as a direct contributor to the main task. The bootstrapped DQN
architecture Osband et al. (2016) also exploits the idea of multiplying the Q-value estimations to
favour deep exploration. As a result, UNREAL and bootstrapped DQN do not allow to break down a
task into smaller, tractable pieces.

As a summary, a large variety of papers are published on these subjects, differing by the way they
factorise the task into subtasks. Theoretical obstacles are identified in Singh & Cohn (1998) and
Russell & Zimdars (2003), but their analysis does not go further than the non-optimality observation
in the general case. In this article, we accept the non-optimality of the approach, because it naturally
comes from the simplification of the task brought by the decomposition and we analyse the pros and
cons of each planning methods encountered in the literature. But first, Section 3 lays the theoretical
foundation for Multi-Advisor RL.

Domains – Related works apply their distributed models to diverse domains: racing (Russell &
Zimdars, 2003), scheduling (Russell & Zimdars, 2003), dialogue (Laroche & Féraud, 2017), and fruit
collection (Singh & Cohn, 1998; Sprague & Ballard, 2003; van Seijen et al., 2017a;b).
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Figure 1: The Pac-Boy game:
Pac-Boy is yellow, the corridors
are in black, the walls in grey, the
fruits are the white dots and the
ghosts are in red.

The fruit collection task being at the centre of attention, it is
natural that we empirically validate our theoretical findings on
this domain: the Pac-Boy game (see Figure 1), borrowed from van
Seijen et al. (2017a). Pac-Boy navigates in a 11x11 maze with a
total of 76 possible positions and 4 possible actions in each state:
A = {N,W,S,E}, respectively for North, West, South and
East. Bumping into a wall simply causes the player not to move
without penalty. Since Pac-Boy always starts in the same position,
there are 75 potential fruit positions. The fruit distribution is
randomised: at the start of each new episode, there is a 50%
probability for each position to have a fruit. A game lasts until the
last fruit has been eaten, or after the 300th time step. During an
episode, fruits remain fixed until they get eaten by Pac-Boy. Two
randomly-moving ghosts are preventing Pac-Boy from eating all
the fruits. The state of the game consists of the positions of Pac-
Boy, fruits, and ghosts: 76× 275 × 762 ≈ 1028 states. Hence, no
global representation system can be implemented without using
function approximation. Pac-Boy gets a +1 reward for every
eaten fruit and a −10 penalty when it is touched by a ghost.

3 MULTI-ADVISOR REINFORCEMENT LEARNING

Markov Decision Process – The Reinforcement Learning (RL) framework is formalised as a Markov
Decision Process (MDP). An MDP is a tuple 〈X ,A, P,R, γ〉 where X is the state space, A is the
action space, P : X ×A → X is the Markovian transition stochastic function, R : X ×A → R is
the immediate reward stochastic function, and γ is the discount factor.

A trajectory 〈x(t), a(t), x(t+ 1), r(t)〉t∈J0,T−1K is the projection into the MDP of the task episode.
The goal is to generate trajectories with high discounted cumulative reward, also called more
succinctly return:

∑T−1
t=0 γtr(t). To do so, one needs to find a policy π : X ×A → [0, 1] maximising

the Q-function: Qπ(x, a) = Eπ
[∑

t′≥t γ
t′−tR(Xt′ , At′)|Xt = x,At = a

]
.

Advisor Advisor...Environment

Figure 2: The MAd-RL architecture

MAd-RL structure – This section defines the
Multi-Advisor RL (MAd-RL) framework for
solving a single-agent RL problem. The n advi-
sors are regarded as specialised, possibly weak,
learners that are concerned with a sub part of the
problem. Then, an aggregator is responsible for
merging the advisors’ recommendations into a
global policy. The overall architecture is illus-
trated in Figure 2. At each time step, an advisor
j sends to the aggregator its local Q-values for
all actions in the current state.

Aggregating advisors’ recommendations – In
Figure 2, the f function’s role is to aggregate
the advisors’ recommendations into a policy.
More formally, the aggregator is defined with
f : Rn×|A| → A, which maps the received qj = Qj(xj , • ) values into an action of A. This article
focuses on the analysis of the way the local Qj-functions are computed. From the values qj , one can
design a f function that implements any aggregator function encountered in the Ensemble methods
literature (Dietterich, 2000b): voting schemes (Gibbard, 1973), Boltzmann policy mixtures (Wiering
& Van Hasselt, 2008) and of course linear value-function combinations (Sun & Peterson, 1999;
Russell & Zimdars, 2003; van Seijen et al., 2017b). For the further analysis, we restrict ourselves
to the linear decomposition of the rewards: R(x, a) =

∑
j wjRj(xj , a), which implies the same

decomposition of return if they share the same γ. The advisor’s state representation may be locally
defined by φj : X → Xj , and its local state is denoted by xj = φj(x) ∈ Xj . We define the aggregator
function fΣ(x) as being greedy over the Qj-functions aggregation QΣ(x, a):
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QΣ(x, a) =
∑
j

wjQj(xj , a),

fΣ(x) = argmax
a∈A

QΣ(x, a).

We recall hereunder the main theoretical result of van Seijen et al. (2017b): a theorem ensuring,
under conditions, that the advisors’ training eventually converges. Note that by assigning a stationary
behaviour to each of the advisors, the sequence of random variables X0, X1, X2, . . . , with Xt ∈ X
is a Markov chain. For later analysis, we assume the following.
Assumption 1. All the advisors’ environments are Markov:

P(Xj,t+1|Xj,t, At) = P(Xj,t+1|Xj,t, At, . . . , Xj,0, A0).

Theorem 1 (van Seijen et al. (2017b)). Under Assumption 1 and given any fixed aggregator, global
convergence occurs if all advisors use off-policy algorithms that converge in the single-agent setting.

Although Theorem 1 guarantees convergence, it does not guarantee the optimality of the converged
solution. Moreover, this fixed point only depends on each advisor model and on their planning
methods (see Section 4), but not on the particular optimisation algorithms that are used by them.

4 ADVISORS’ PLANNING METHODS

This section present three planning methods at the advisor’s level. They differ in the policy they
evaluate: egocentric planning evaluates the local greedy policy, agnostic planning evaluates the
random policy, and empathic planning evaluates the aggregator’s greedy policy.

4.1 Egocentric PLANNING

The most common approach in the literature is to learn off-policy by bootstrapping on the locally
greedy action: the advisor evaluates the local greedy policy. This planning, referred to in this paper
as egocentric, has already been employed in Singh & Cohn (1998), Russell & Zimdars (2003),
Harutyunyan et al. (2015), and van Seijen et al. (2017a). Theorem 1 guarantees for each advisor j
the convergence to the local optimal value function, denoted by Qegoj , which satisfies the Bellman
optimality equation:

Qegoj (xj , a) = E
[
rj + γ max

a′∈A
Qegoj (x′j , a

′)

]
,

where the local immediate reward rj is sampled according to Rj(xj , a), and the next local state x′j is
sampled according to Pj(xj , a). In the aggregator global view, we get:

QegoΣ (x, a) =
∑
j

wjQ
ego
j (xj , a) = E

∑
j

wjrj + γ
∑
j

wj max
a′∈A

Qegoj (x′j , a
′)

 .

x0x1 x2
a1 a2

r1 > 0 r2 > 0

a0

r0 = 0

Figure 3: Attractor example.

By construction, r =
∑
j wjrj , and therefore we get:

QegoΣ (x, a) ≥ E

r + γ max
a′∈A

∑
j

wjQ
ego
j (x′j , a

′)


≥ E

[
r + γ max

a′∈A
QegoΣ (x′, a′)

]
.

Egocentric planning suffers from an inversion between the max and
∑

operators and, as a conse-
quence, it overestimate the state-action values when the advisors disagree on the optimal action.
This flaw has critical consequences in practice: it creates attractor situations. Before we define and
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study them formally, let us explain attractors with an illustrative example based on the simple MDP
depicted in Figure 3. In initial state x0, the system has three possible actions: stay put (action a0),
perform advisor 1’s goal (action a1), or perform advisor 2’s goal (action a2). Once achieving a goal,
the trajectory ends. The Q-values for each action are easy to compute: QegoΣ (s, a0) = γr1 + γr2,
QegoΣ (s, a1) = r1, and QegoΣ (s, a2) = r2.

As a consequence, if γ > r1/(r1 + r2) and γ > r2/(r1 + r2), the local egocentric planning
commands to execute action a0 sine die. This may have some apparent similarity with the Buridan’s
ass paradox (Zbilut, 2004; Rescher, 2005): a donkey is equally thirsty and hungry and cannot decide to
eat or to drink and dies of its inability to make a decision. The determinism of judgement is identified
as the source of the problem in antic philosophy. Nevertheless, the egocentric sub-optimality does
not come from actions that are equally good, nor from the determinism of the policy, since adding
randomness to the system will not help. Let us define more generally the concept of attractors.
Definition 1. An attractor x is a state where the following strict inequality holds:

max
a ∈A

∑
j

wjQ
ego
j (xj , a) < γ

∑
j

wj max
a∈A

Qegoj (xj , a).

Theorem 2. State x is attractor, if and only if the optimal egocentric policy is to stay in x if possible.

Note that there is no condition in Theorem 2 (proved in appendix, Section A) on the existence of
actions allowing the system to be actually static. Indeed, the system might be stuck in an attractor set,
keep moving, but opt to never achieve its goals. To understand how this may happen, just replace state
x0 in Figure 3 with an attractor set of similar states: where action a0 performs a random transition in
the attractor set, and actions a1 and a2 respectively achieve tasks of advisors 1 and 2. Also, it may
happen that an attractor set is escapable by the lack of actions keeping the system in an attractor set.
For instance, in Figure 3, if action a0 is not available, x0 remains an attractor, but an unstable one.
Definition 2. An advisor j is said to be progressive if the following condition is satisfied:

∀xj ∈ Xj ,∀a ∈ A, Qegoj (xj , a) ≥ γ max
a′∈A

Qegoj (xj , a
′).

The intuition behind the progressive property is that no action is worse than losing one turn to do
nothing. In other words, only progress can be made towards this task, and therefore non-progressing
actions are regarded by this advisor as the worst possible ones.
Theorem 3. If all the advisors are progressive, there cannot be any attractor.

The condition stated in Theorem 3 (proved in appendix, Section A) is very restrictive. Still, there
exist some RL problems where Theorem 3 can be applied, such as resource scheduling where each
advisor is responsible for the progression of a given task. Note that a MAd-RL setting without any
attractors does not guarantee optimality for the egocentric planning. Most of RL problems do not fall
into this category. Theorem 3 neither applies to RL problems with states that terminate the trajectory
while some goals are still incomplete, nor to navigation tasks: when the system goes into a direction
that is opposite to some goal, it gets into a state that is worse than staying in the same position.

Figure 4: 3-fruit
attractor.

Navigation problem attractors – We consider the three-fruit attractor illustrated
in Figure 4: moving towards a fruit, makes it closer to one of the fruits, but further
from the two other fruits (diagonal moves are not allowed). The expression each
action Q-value is as follows: QegoΣ (x, S) = γ

∑
j maxa∈AQ

ego
j (xj , a) = 3γ2,

and QegoΣ (x,N) = QegoΣ (x,E) = QegoΣ (x,W ) = γ + 2γ3. That means that, if
γ > 0.5, QegoΣ (x, S) > QegoΣ (x,N) = QegoΣ (x,E) = QegoΣ (x,W ). As a result,
the aggregator would opt to go South and hit the wall indefinitely.

More generally in a deterministic1 task where each action a in a state x can be cancelled by a new
action a-1

x , it can be shown that the condition on γ is a function of the size of the action set A.
Theorem 4 is proved in Section A of the appendix.
Theorem 4. State x ∈ X is guaranteed not to be an attractor if ∀a ∈ A,∃a-1

x ∈ A, such that

P (P (x, a), a-1
x ) = x , if ∀a ∈ A, R(x, a) ≥ 0 , and if γ ≤

1

|A|−1
.

1A more general result on stochastic navigation tasks can be demonstrated. We limited the proof to the
deterministic case for the sake of simplicity.
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4.2 Agnostic PLANNING

The agnostic planning does not make any prior on future actions and therefore evaluates the random
policy. Once again, Theorem 1 guarantees the convergence of the local optimisation process to its
local optimal value, denoted by Qagnj , which satisfies the following Bellman equation:

Qagnj (xj , a) = E

[
rj +

γ

|A|
∑
a′∈A

Qagnj (x′j , a
′)

]
,

QagnΣ (x, a) = E

r +
γ

|A|
∑
j

wj
∑
a′∈A

Qagnj (x′j , a
′)


= E

[
r +

γ

|A|
∑
a′∈A

QagnΣ (x′, a′)

]
.

Local agnostic planning is equivalent to the global agnostic planning. Additionally, as opposed to
the egocentric case, r.h.s. of the above equation does not suffer from max-

∑
inversion. It then

follows that no attractor are present in agnostic planning. Nevertheless, acting greedily with respect
to QagnΣ (x, a) only guarantees to be better than a random policy and in general may be far from being
optimal. Still, agnostic planning has proved its usefulness on Ms. Pac-Man (van Seijen et al., 2017b).

4.3 Empathic PLANNING

A novel approach, inspired from the online algorithm found in Sprague & Ballard (2003); Russell &
Zimdars (2003) is to locally predict the aggregator’s policy. In this method, referred to as empathic,
the aggregator is in control, and the advisors are evaluating the current aggregator’s greedy policy
f with respect to their local focus. More formally, the local Bellman equilibrium equation is the
following one:

Qapj (xj , a) = E
[
rj + γQapj (x′j , fΣ(x′))

]
.

Theorem 5. Assuming that all advisors are defined on the full state space, MAd-RL with empathic
planning converges to the global optimal policy.

Proof.

QapΣ (x, a) = E

r + γ
∑
j

wjQ
ap
j (x′j , fΣ(x′))


= E [r + γQapΣ (x′, fΣ(x′))]

= E
[
r + γQapΣ (x′, argmax

a′∈A
QapΣ (x′, a′))

]
= E

[
r + γ max

a′∈A
QapΣ (x′, a′)

]
.

QapΣ is the unique solution to the global Bellman optimality equation, and therefore equals the optimal
value function, quod erat demonstrandum.

However, most MAd-RL settings involve taking advantage of state space reduction to speed up
learning, and in this case, there is no guarantee of convergence because function fΣ(x′) can only be
approximated from the local state space scope. As a result the local estimate f̂j(x′) is used instead of
fΣ(x′) and the reconstruction of maxa′∈AQ

ap
Σ (x′, a′) is not longer possible in the global Bellman

equation:

Qapj (xj , a) = E
[
rj + γQapj (x′j , f̂j(x

′))
]
,

QapΣ (x, a) = E

r + γ
∑
j

wjQ
ap
j (x′j , f̂j(x

′))

 .
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5 EXPERIMENTS

5.1 VALUE FUNCTION APPROXIMATION

For this experiment, we intend to show that the value function is easier to learn with the MAd-RL
architecture. We consider a fruit collection task where the agent has to navigate through a 5× 5 grid
and receives a +1 reward when visiting a fruit cell (5 are randomly placed at the beginning of each
episode). A deep neural network (DNN) is fitted to the ground-truth value function V π

∗

γ for various
objective functions: TSP is the optimal number of turns to gather all the fruits, RL is the optimal
return, and egocentric is the optimal MAd-RL return. This learning problem is fully supervised on
1000 samples, allowing us to show how fast a DNN can capture V π

∗

γ while ignoring the burden of
finding the optimal policy and estimating its value functions through TD-backups or value iteration.
To evaluate the DNN’s performance, actions are selected greedily by moving the agent up, down, left,
or right to the neighbouring grid cell of highest value. Section B.1 of the appendix gives the details.

Figure 5a displays the performance of the theoretical optimal policy for each objective function in
dashed lines. Here TSP and RL targets largely surpass MAd-RL one. But Figure 5a also displays
the performances of the networks trained on the limited data of 1000 samples, for which the results
are completely different. The TSP objective target is the hardest to train on. The RL objective target
follows as the second hardest to train on. The egocentric planning MAd-RL objective is easier to
train on, even without any state space reduction, or even without any reward/return decomposition
(summed version). Additionally, if the target value is decomposed (vector version), the training is
further accelerated. Finally, we found that the MAd-RL performance tends to dramatically decrease
when γ gets close to 1, because of attractors’ presence. We consider this small experiment to show
that the complexity of objective function is critical and that decomposing it in the fashion of MAd-RL
may make it simpler and therefore easier to train, even without any state space reduction.

5.2 PAC-BOY DOMAIN

In this section, we empirically validate the findings of Section 4 in the Pac-Boy domain, presented in
Section 2. The MAd-RL settings are associating one advisor per potential fruit location. The local
state space consists in the agent position and the existence –or not– of the fruit. Six different settings
are compared: the two baselines linear Q-learning and DQN-clipped, and four MAd-RL settings:
egocentric with γ = 0.4, egocentric with γ = 0.9, agnostic with γ = 0.9, and empathic with γ = 0.9.
The implementation and experimentation details are available in the appendix, at Section B.2.

We provide links to 5 video files (click on the blue links) representing a trajectory generated at the
50th epoch for various settings. egocentric-γ = 0.4 adopts a near optimal policy coming close to
the ghosts without taking any risk. The fruit collection problem is similar to the travelling salesman
problem, which is known to be NP-complete (Papadimitriou, 1977). However, the suboptimal small-γ
policy consisting of moving towards the closest fruits is in fact a near optimal one. Regarding the
ghost avoidance, egocentric with small γ gets an advantage over other settings: the local optimisation
guarantees a perfect control of the system near the ghosts. The most interesting outcome is the
presence of the attractor phenomenon in egocentric-γ = 0.9: Pac-Boy goes straight to the centre
area of the grid and does not move until a ghost comes too close, which it still knows to avoid
perfectly. This is the empirical confirmation that the attractors, studied in Section 4.1, present a real
practical issue. empathic is almost as good as egocentric-γ = 0.4. agnostic proves to be unable
to reliably finish the last fruits because it is overwhelmed by the fear of the ghosts, even when
they are still far away. This feature of the agnostic planning led van Seijen et al. (2017b) to use a
dynamic normalisation depending on the number of fruits left on the board. Finally, we observe that
DQN-clipped also struggles to eat the last fruits.

The quantitative analysis displayed in Figure 5b confirms our qualitative video-based impressions.
egocentric-γ = 0.9 barely performs better than linear Q-learning, DQN-clipped is still far from the
optimal performance, and gets hit by ghosts from time to time. agnostic is closer but only rarely eats
all the fruits. Finally, egocentric-γ = 0.4 and empathic are near-optimal. Only egocentric-γ = 0.4
trains a bit faster, and tends to finish the game 20 turns faster too (not shown).

Results with noisy rewards – Using a very small γ may distort the objective function and perhaps
even more importantly the reward signal diminishes exponentially as a function of the distance to the
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Figure 5: Experiment results.

goal, which might have critical consequences in noisy environments, hence the following experiment:
several levels of Gaussian centred white noise ησ with standard deviation σ ∈ {0.01, 0.1} have been
applied to the reward signal: at each turn, each advisor now receives r̂j = rj + ησ instead. Since
the noise is centred and white, the ground truth Q-functions remain the same, but their estimators
obtained during sampling is corrupted by noise variance.

Empirical results displayed in Figure 5c shows that the empathic planning performs better than the
egocentric one even under noise with a 100 times larger variance. Indeed, because of the noise, the
fruit advisors are only able to consistently perceive the fruits that are in a radius dependent on γ
and σ. The egocentric planning, incompatible with high γ values, is therefore myopic and cannot
perceive distant fruits. The same kind of limitations are expected to be encountered for small γ values
when the local advisors rely on state approximations, and/or when the transitions are stochastic. This
also supports the superiority of the empathic planning in the general case.

6 CONCLUSION AND DISCUSSION

This article presented MAd-RL, a common ground for the many recent and successful works decom-
posing a single-agent RL problem into simpler problems tackled by independent learners. It focuses
more specifically on the local planning performed by the advisors. Three of them – two found in the
literature and one novel – are discussed, analysed and empirically compared: egocentric, agnostic,
and empathic. The lessons to be learnt from the article are the following ones.

The egocentric planning has convergence guarantees but overestimates the values of states where
the advisors disagree. As a consequence, it suffers from attractors: states where the no-op action
is preferred to actions making progress on a subset of subtasks. Some domains, such as resource
scheduling, are identified as attractor-free, and some other domains, such as navigation, are set
conditions on γ to guarantee the absence of attractor. It is necessary to recall that an attractor-free
setting means that the system will continue making progress towards goals as long as there are any
opportunity to do so, not that the egocentric MAd-RL system will converge to the optimal solution.

The agnostic planning also has convergence guarantees, and the local agnostic planning is equivalent
to the global agnostic planning. However, it may converge to bad solutions. For instance, in dangerous
environments, it considers all actions equally likely, it favours staying away from situation where
a random sequence of actions has a significant chance of ending bad: crossing a bridge would be
avoided. Still, the agnostic planning simplicity enables the use of general value functions (Sutton
et al., 2011) as in van Seijen et al. (2017b).

The empathic planning optimises the system according to the global Bellman optimality equation,
but without any guarantee of convergence, if the advisor state space is smaller than the global state.
In our experiments, we never encountered a case where the convergence was not obtained, and on the
Pac-Boy domain, it robustly learns a near optimal policy after only 10 epochs. It can also be safely
applied to Ensemble RL tasks where all learners are given the full state space.
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A THEOREMS AND THEIR PROOFS

Theorem 1 (van Seijen et al. (2017b)). Under Assumption 1 and given any fixed aggregator, global
convergence occurs if all advisors use off-policy algorithms that converge in the single-agent setting.

Proof. Each advisor can be seen as an independent learner training from trajectories controlled by
an arbitrary behavioural policy. If Assumption 1 holds, each advisor’s environment is Markov and
off-policy algorithms can be applied with convergence guarantees.

Theorem 2. State x is attractor, if and only if the optimal egocentric policy is to stay in x if possible.

Proof. The logical biconditional will be demonstrated by successively proving the two converse
conditionals.

First, the sufficient condition: let us assume that state x is an attractor. By Definition 1, if state x is
an attractor, we have:

max
a ∈A

∑
j

wjQ
ego
j (xj , a) < γ

∑
j

wj max
a∈A

Qegoj (xj , a).

Let a0 denote the potential action to stay in x, and consider the MDP augmented with a0 in x. Then,
we have :

Qegoj (x, a0) = γ
∑
j

wj max
a∈A

Qegoj (xj , a)

> max
a∈A

∑
j

wjQ
ego
j (xj , a)

= max
a∈A

QegoΣ (x, a),

which proves that a0, if possible, will be preferred to any other action a ∈ A.

Second, the reciprocal condition: let us assume that, in state x, action a0 would be preferred by an
optimal policy under the egocentric planning. Then:

Qegoj (x, a0) > max
a∈A

QegoΣ (x, a)

γ
∑
j

wj max
a∈A

Qegoj (xj , a) > max
a∈A

∑
j

wjQ
ego
j (xj , a),

which proves that x is an attractor.

Theorem 3. If all the advisors are progressive, there cannot be any attractor.

Proof. Let sum Definition 2 over advisors:∑
j

wjQ
ego
j (xj , a) ≥ γ

∑
j

wj max
a′∈A

Qegoj (xj , a
′),

max
a′∈A

∑
j

wjQ
ego
j (xj , a

′) ≥
∑
j

wjQ
ego
j (xj , a),

which proves the theorem.

Theorem 4. State x ∈ X is guaranteed not to be an attractor if:

• ∀a ∈ A,∃a-1
x ∈ A, such that P (P (x, a), a-1

x ) = x ,

• ∀a ∈ A, R(x, a) ≥ 0 ,

• γ ≤
1

|A|−1
.
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Proof. Let us denote J xa as the set of advisors for which action a is optimal in state x. Qegoa (x) is
defined as the sum of perceived value of performing a in state x by the advisors that would choose it:

Qegoa (x) =
∑
j∈J xa

wjQ
ego
j (x′j , a).

Let a+ be the action that maximises this Qegoa (x) function:

a+ = argmax
a∈A

Qegoa (x).

We now consider the left hand side of the inequality characterising the attractors in Definition 1:

max
a ∈A

∑
j

wjQ
ego
j (xj , a) ≥

∑
j

wjQ
ego
j (xj , a

+),

= Qegoa+ (x) +
∑
j /∈J x

a+

wjQ
ego
j (xj , a

+),

= Qegoa+ (x) +
∑
j /∈J x

a+

wj

(
R(x, a+) + γ max

a′∈A
Qegoj (x′j , a

′)

)
.

Since R(x, a+) ≥ 0, and since the a′ maximising Qegoj (x′j , a
′) is at least as good as the cancelling

action (a+)-1
x , we can follow with:

max
a ∈A

∑
j

wjQ
ego
j (xj , a) ≥ Qegoa+ (x) +

∑
j /∈J x

a+

wjγ
2 max
a∈A

Qegoj (xj , a).

By comparing this last result with the right hand side of Definition 1, the condition for x not being an
attractor becomes:

(1− γ)Qegoa+ (x) ≥ (1− γ)γ
∑
j /∈J x

a+

wj max
a∈A

Qegoj (xj , a),

Qegoa+ (x) ≥ γ
∑
a6=a+

∑
j∈J xa

wjQ
ego
j (xj , a),

Qegoa+ (x) ≥ γ
∑
a6=a+

Qegoa (x).

It follows directly from the inequality Qegoa+ (x) ≥ Qegoa (x), that γ ≤ 1/(|A|−1) guarantees the
absence of attractor.

12



Under review as a conference paper at ICLR 2018

B EXPERIMENTAL DETAILS

B.1 VALUE FUNCTION APPROXIMATION

All trainings are performed from the same state and the same network, which are described in Section
B.1.1. Their only difference lies in the objective function targets that are detailed in Section B.1.2.

B.1.1 NEURAL NETWORK SETTING

Similarly to the Taxi Domain Dietterich (1998), we incorporate the location of the fruits into the
state representation by using a 50 dimensional bit vector, where the first 25 entries are used for fruit
positions, and the last 25 entries are used for the agent’s position. The DNN feeds this bit-vector as
the input layer into two dense hidden layers with 100 and then 50 units. The output is a single linear
head representing the state-value, or a multiple in the case of the vector MAd-RL target. In order to
assess the value function complexity, we train for each discount factor setting a DNN of fixed size on
1000 random states with their ground truth values. Each DNN is trained over 500 epochs using the
Adam optimizer Kingma & Ba (2014) with default parameters.

B.1.2 OBJECTIVE FUNCTION TARGETS

Four different objective function targets are considered:

• The TSP objective function target is the natural objective function, as defined by the
Travelling Salesman Problem: the number of turns to gather all the fruits:

yTSP (x) = − min
σ∈Σk

[
k∑
i=1

d(xσ(i−1), xσ(i))

]
,

where k is the number of fruits remaining in statex, where Σk is the ensemble of all
permutations of integers between 1 and k, where σ is one of those permutations, where x0

is the position of the agent in x, where xi for 1 ≤ i ≤ k is the position of fruit with index i,
where d(xi, xj) is the distance (||·||1 in our gridworld) between positions xi and xj .
• The RL objective function target is the objective function defined for an RL setting, which

depends on the discount factor γ:

yRL(x) = max
σ∈Σk

[
k∑
i=1

γ
∑i
j=1 d(xσ(j−1),xσ(j))

]
,

with the same notations as for TSP.
• The summed egocentric planning MAd-RL objective function target does not involve the

search into the set of permutations and can be considered simpler to this extent:

yego(x) =

[
k∑
i=1

γd(x0,xi)

]
,

with the same notations as for TSP.
• The vector egocentric planning MAd-RL objective function target is the same as the summed

one, except that the target is now a vector, separated into as many channels as potential fruit
position:

yego(x) =

{
γd(x0,xi) if there is a fruit in xi,
0 otherwise.

B.2 PAC-BOY EXPERIMENT

MAd-RL Setup – Each advisor is responsible for a specific source of reward (or penalty). More
precisely, we assign an advisor to each possible fruit location. This advisor sees a +1 reward only if a
fruit at its assigned position gets eaten. Its state space consists of Pac-Boy’s position, resulting in 76
states. In addition, we assign an advisor to each ghost. This advisor receives a -10 reward if Pac-Boy
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bumps into its assigned ghost. Its state space consists of Pac-Boy’s and ghost’s positions, resulting in
762 states. A fruit advisor is only active when there is a fruit at its assigned position. Because there
are on average 37.5 fruits, the average number of advisors running at the beginning of each episode is
39.5. Each fruit advisor is set inactive when its fruit is eaten.

The learning was performed through Temporal Difference updates. Due to the small state spaces
for the advisors, we can use a tabular representation. We train all learners in parallel with off-policy
learning, with Bellman residuals computed as presented in Section 4 and a constant α = 0.1 parameter.
The aggregator function sums the Q-values for each action a ∈ A: QΣ(x, a) :=

∑
j Qj(xj , a),

and uses ε-greedy action selection with respect to these summed values. Because ghost agents have
exactly identical MDP, we also benefit from direct knowledge transfer by sharing their Q-tables.

One can notice that Assumption 1 holds in this setting and that, as a consequence, Theorem 1 applies
for the egocentric and agnostic planning methods. Theorem 4 determines sufficient conditions for not
having any attractor in the MDP. In the Pac-Boy domain, the cancelling action condition is satisfied
for every x ∈ X . As for the γ condition, it is not only sufficient but also necessary, since being
surrounded by goals of equal value is an attractor if γ > 1/3. In practice, an attractor becomes stable
only when there is an action enabling it to remain in the attraction set. Thus, the condition for not
being stuck in an attractor set can be relaxed to γ ≤ 1/(|A|−2). Hence, the result of γ > 1/2 in the
example illustrated by Figure 4.

Baselines – The first baseline is the standard DQN algorithm (Mnih et al., 2015) with reward clipping
(referred to as DQN-clipped). Its input is a 4-channel binary image with the following features: the
walls, the ghosts, the fruits, or Pac-Boy. The second baseline is a system that uses the exact same
input features as the MAd-RL model. Specifically, the state of each advisor of the MAd-RL model
is encoded with a one-hot vector and all these vectors are concatenated, resulting in a sparse binary
feature vector of size 17, 252. This vector is used for linear function approximation with Q-learning.
We refer to this setting with linear Q-learning. We also tried to train deep architectures from these
features with no success.

Experimental setting – Time scale is divided into 50 epochs lasting 20,000 transitions each. At the
end of each epoch an evaluation phase is launched for 80 games. The theoretical expected maximum
score is 37.5 and the random policy average score is around -80.

Explicit links to the videos (www.streamable.com website was used to ensure anonymity, if
accepted the videos will be linked to a more sustainable website):

• egocentric-γ = 0.4: https://streamable.com/6tian
• egocentric-γ = 0.9: https://streamable.com/sgjkq
• empathic: https://streamable.com/h6gey
• agnostic: https://streamable.com/grswh
• DQN-clipped: https://streamable.com/emh6y
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