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ABSTRACT

Generative adversarial networks (GANs) have enjoyed great success, however of-
ten suffer instability during training which motivates many attempts to resolve this
issue. Theoretical explanation for the cause of instability is provided in Wasser-
stein GAN (WGAN), and wasserstein distance is proposed to stablize the training.
Though WGAN is indeed more stable than previous GANs, it takes more itera-
tions and time to train. This is because the ways to ensure Lipschitz condition in
WGAN (such as weight-clipping) significantly limit the capacity of the network.
In this paper, we argue that it is beneficial to ensure Lipschitz condition as well
as maintain sufficient capacity and expressiveness of the network. To facilitate
this, we develop both theoretical and practical building blocks, using which one
can construct different neural networks using a large range of metrics, as well
as ensure Lipschitz condition and sufficient capacity of the networks. Using the
proposed building blocks, and a special choice of a metric called Dudley metric,
we propose Dudley GAN that outperforms the state of the arts in both conver-
gence and sample quality. We discover a natural link between Dudley GAN (and
its extension) and empirical risk minimization, which gives rise to generalization
analysis.

1 INTRODUCTION

Generative adversarial networks (GANs) (Goodfellow et al., 2014) are recently proposed powerful
generative models that use two neural networks: (1) a generator network that produces fake samples
that tries to look as real as possible; and (2) a discriminator network that seeks to distinguish fake
and real samples.

The discriminator typically utilizes a divergence measure between the distributions of the reals and
fakes. Early works of GANs are shown to correspond to Jensen-Shannon divergence (Goodfellow
et al., 2014), and later other divergence measures are introduced to GANs such as f-divergences
(Nowozin et al., 2016). These divergence based GANs often suffer from training instability, and
several heuristic tricks have been used to tackle this issue such as batch normalization and careful
network initialization. Arjovsky et al. (2017) point out at theoretical level that the use of divergence
has several flaws such as infinite divergence and vanishing gradient when the two distributions have
no common supports (intersection measure zero). They propose to use earth mover’s distance which
does not need common support. Directly minimizing the earth mover’s distance can be expensive,
thus they resort to solve its dual wasserstein measure instead. They use several tricks such as weight
clipping (Arjovsky et al., 2017) and constrain the norm of the gradient (Gulrajani et al., 2017) to
ensure Lipschitz condition in neural nets. However, these significantly limit the capacity of the
network and reduce the convergence speed.

Ensuring Lipschitz condition in neural nets are the true cornerstone of stablizing GANs. GANs are
sensible to Lipschitz constant: a small value leads to a simpler function with low capacity however a
larger value can be unstable to train. This is why bounded Lipschitz functions are desirable. Neural
networks use complex functions composed of layered nonlinearities, thus analysis of the Lipschitz
condition is highly nontrivial. This is why we develop building blocks to facilitate easy construction
of new GANs that always ensure Lipschitz condition.

With the proposed building blocks, and Dudley metric, we propose a new Dudley GAN which
outperforms the state-of-the-arts due to ensuring both Lipschitz condition and sufficient network
capacity. We further show that it can be extended to a class of metrics called integral probability
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metric (IPM) (Müller, 1997; Sriperumbudur et al., 2012), of which wasserstein measure (used in
WGAN (Arjovsky et al., 2017; Gulrajani et al., 2017)), maximum mean discrepancy (used in various
GANs (Mroueh et al., 2017; Karolina Dziugaite et al., 2015; Sutherland et al., 2016; Lim & Ye,
2017)) and Dudley metric are special cases. Viewing GANs in IPM, we can view our approach as
minimizing a “function norm” subject to best discrimination.

Our contributions in this paper are as follows: (1) we provide sufficient conditions and building
blocks for a Lipschitz neural net (Section 2); (2) we introduce Dudley GAN and show utilizing
minimum bounded Lipschitz functions with appropriate regularization for GANs are effective in
producing good quality images with stable training and faster convergence (Section 3); (3) we show
that our Dudley GAN (and its extension) has a natural link to regularized empirical risk minimiza-
tion, and provide a generalisation bound on error of the discriminator (Section 4) using Rademacher
complexity.

2 DEEP LIPSCHITZ NETWORKS

Lipschitz condition is crucial for GANs, and for neural networks in general, here we provide suffi-
cient conditions for a deep neural network to be Lipschitz.

2.1 THEORETICAL ASPECT

A function f is Lipschitz (or Lipschitz continuous) on a space X if there exists a constant K ≥ 0
such that ‖f(x1)− f(x2)‖ ≤ K‖x1 − x2‖ for all x1,x2 ∈ X . K is known as a Lipschitz constant.
Similar conditions can be found in other communities, e.g. control theory (Fromion, 2000).
Definition 1 (Lipschitz semi-norm). Lipschitz semi-norm of a function f on a space X is

‖f‖L := sup

{
|f(x1)− f(x2)|
|x1 − x2|

: x1 6= x2∀x1,x2 ∈ X
}
.

‖f‖L is in fact the smallest Lipschitz constant of f (also known as the Lipschitz constant for short).
This means that every differentiable function with bounded first derivative is Lipschitz with Lip-
schitz constant ‖f‖L = sup |f ′(x)|, and a function is Lipschitz when its Lipschitz semi-norm is
defined everywhere.
Definition 2. [Lipschitz Neural Network] A neural network represents a function fw : X → Y that
maps from input space X to output space Y parameterized by a set of parameters w. We say the
neural network is a Lipschitz Neural Network if ‖fw‖L is defined everywhere in its input space.

By Definition 2, we know that a single activation function such as Perceptron is a Lipschitz neural
network if that activation function is Lipschitz.
Proposition 1. For two Lipschitz neural nets fw1

and gw2
parameterized by w1,w2 with Lipschitz

constant Lf and Lg respectively, we have:

(i) linear combination hw(x) = fw1
(x) + gw2

(x) is a Lipschitz neural network with constant
Lf + Lg and a new set of parameters denoted by w;

(ii) the composition function hw(x) = fw1
(gw2

(x)) is Lipschitz neural network with constant
Lf × Lg with a new set of parameters denoted by w.

Proposition 1 shows that a deep neural network defined by a composition of functions is a Lipschitz
neural network if the functions in all layers are Lipschitz. And the Lipschitz constant of the deep
neural network is the product of the Lipschitz constants of the functions in all layers.
Proposition 2. Applying following operations in a Lipschitz neural network preserves Lipschitz:

(i) Convolution is an operation that satisfies Lipschitz condition on a compact space with Lipschitz
constant K when |w| = K for d-dimensional1 weight w or Kd where ‖w‖ = K.

(ii) A linear function with weight vector w where ‖w‖ = K satisfies Lipschitz condition with
Lipschitz constant K.

1In practice, d = 1 + (w − F )/s where s is the number of strides, w is the input volume and F is the
receptive field (kernel size) of the input.
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(iii) Following nonlinear activation functions: Sigmoid, tanh and Rectified Linear Unit (ReLU),
exponential linear unit (ELU), sinusoid (sin), softplus defined as 1

β log(1 + exp(βx)).

(iv) log(x) where x ∈ [1,∞).

There are other operations in neural networks such as batch and weight normalization (as linear
transformations from a compact space to another) and dropout that are widely used and preserve
Lipschitz.

2.2 IMPLEMENTING DEEP LIPSCHITZ NEURAL NETWORKS

Above properties provide guidance for designing Lipschitz Neural Networks, and can be imple-
mented in practice. Here we discuss a few practical tricks can be used or have been used, and relate
them to the properties.

Weight Normalization (Salimans & Kingma, 2016a): A simple reparameterization trick for linear
and convolutional layers, shown to be extremely effective in practice. It is an efficient approach
for ensuring the weights are normalized and the network is Lipschitz. It should be noted that the
learnable scale parameter (equaling the norm of parameter vector ‖w‖), is not guaranteed to be
constant throughout training. As such, the Lipschitz constant of the network is learned.

L2-Regularization: Another approach is to penalize the weight values with large L2 norm. It
provides a soft constraint on the norm of the weight vector.

Batch normalization (Salimans & Kingma, 2016b): Another approach for normalizing the inputs so
that they are all normally distributed with mean zero. The mean and standard deviation is optimized
during training and is shown to perform well as a regularizer. For Lipschitz neural networks, it
ensures the output of the batch normalized layer is bounded which effectively constrains the weights
and gradients. In practice, Xiang & Li (2017) showed weight normalization is more effective for
GANs than batch normalization.

Gradient norm regularization and clipping: Since Lipschitz condition limits the rate of change in
functions corresponding to the gradient in continuous functions, it is reasonable to consider regular-
izing the gradient. In general we don’t need any gradient regularization as the Lipschitz neural nets
ensure bounded gradients. However, in practice this value may be large and incur sudden changes
in the network that can lead to divergence. Clipping the gradient is simple however might lead to
divergence because it changes the direction in which the parameters of the network are updated. A
better choice is to scale the gradients by their norm when the gradients are too large. We found this
scaling can be effective in practice when the data is too complex and batches in Stochastic Gradient
Descent (SGD) optimization vary which cause sudden changes in the gradient.

Weight normalization in combination with L2 regularization enable parameters to be updated
smoothly when used with variations of SGD in back-propagation. Additional L2 regularization en-
sures new parameters of weight normalization are also regularized. van Laarhoven (2017) provides
an extensive analysis of the combination of these two.

3 DUDLEY GANS

With the guidance of the properties presented and a choice of a special metric called Dudley metric,
we develop a new GAN called Dudley GAN, which outperforms the state of the arts in both conver-
gence and sample quality, due to ensured Lipschitz and sufficient network capacity. We then show
that Dudley metric belongs to a broader class of metrics that can be integrated nicely with GANs.
This opens a door to create new GANs with desirable theoretical and practical properties.

3.1 BOUNDED DEEP LIPSCHITZ NEURAL NETWORKS FOR GANS

Let p be the true data distribution where the real samples are drawn from, and qθ be the fake data
distribution represented by the generator network parametrised by θ. We only have access to the
real samples but not p. Generating a fake sample x′ ∼ qθ is typically done by drawing a random
vector z from a simple and known distribution pz first, and then feed z into the generator network
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which outputs the fake same, that is x′ = gθ(z). Here gθ is a deterministic function that maps the
generator network’s input to its output. In the ideal case, qθ and p are “equal” with respect to the
divergence measure of choice (that is the distance becomes zero). The discriminator utilizes the
divergence measure and provides feedback to the generator.

Let fw be the function that maps the input of the discriminator to its output with parameter w. We
propose to use integral probability measure (Müller, 1997) below for the generator:

ρ(p, qθ) = sup
fw∈F

∣∣∣∣∫
X
fwdp−

∫
X
fwdqθ

∣∣∣∣ , (1)

where F is a class of real-valued measurable bounded functions on X . Setting F =
{
fw :

‖fw‖BL ≤ 1
}

in Equation 1 where ‖.‖BL is defined as ‖fw‖BL = ‖fw‖∞ + ‖fw‖L with
‖fw‖∞ = sup

{
|fw(x)| : x ∈ X

}
produces a metric called Dudley metric (Müller, 1997). Ef-

fectively, this metric constrains the function to be both bounded and Lipschitz. It is worth noting
that Dudley metric is a weaker convergence measure compared to the Wasserstein distance. How-
ever, for GANs weaker measure is more desirable as it deters the discriminator from saturation (Liu
et al., 2017). We consider the following cases of bounded Lipschitz functions detailed below.

Constrained Linear: We set the function fw to be both Lipschitz and bounded in the output. As
such we have the following objective:

max Ex∼p[fw(x)]− Ex′∼qθ [fw(x′)], subject to − γ ≤ fw(x) ≤ γ ∀x, 0 < γ < 1

Alternatively, this problem can be written as the following unconstrained objective

ρL2(p, qθ) = maxmin
λ

Ex∼p[fw(x)]− Ex′∼qθ [fw(x′)]− λR(w), R(w) = (‖fw‖ − γ)2, (2)

where we have a soft constraint with λ as the Lagrangian multiplier. Here, f is the vector constructed
from the samples of p and qθ. In fact we approximate the ‖.‖∞ constraint for the functional norm
with the L2 norm of the function values for samples from both distributions. At each step of the
optimization, in addition to the parameters of the discriminator and generator, we need to update the
Lagrangian multiplier.

Using tanh: Another alternative is to use a function with limited output while the network is
Lipschitz. We use tanh as a popular bounded activation function, i.e.

ρtanh(p, qθ) = max Ex∼p[fw(x)]− Ex′∼qθ [fw(x′)], fw(x) := tanh(hw(x))

where hw is a Lipschitz neural network mapping the input x to a real number. With tanh as the
output of the network, we might suffer from the vanishing gradient. Considering the derivative of
tanh, that is 1 − tanh(x)2 for a real value x, the gradient is at its peak at tanh(x) = 0. When the
output is close to ±1 for either real or fake samples, the gradient approaches zero and as such there
would be no more improvement on the discriminator or more importantly on the generator. As such,
we directly constrain the value of the function to be close to zero. In particular, we use

R(w) = (‖ftanh‖ − γ)2, , 0 < γ < 1, (3)

where ftanh is the vector of the function values for the samples from the real/fake distribution.

There are other cases that we could consider, however, we observed in practice constraining the
rate of improvement with Lipschitz condition as well as bounding the output provides the most
stable algorithm for GANs. For instance, using tanh as the output of WGAN has been tested when
the network is not conditioned to be Lipschitz (Gulrajani et al. (2017)) and it is reported that the
algorithm diverged (as we further observed in practice).

The optimal generator is obtained when we have:

∇θρ(p, qθ) = ∇θ (Ex∼p[fw(x)]− Ez∼pz [fw(gθ(z))]) = −Ez∼pz [∇θfw(gθ(z))] = 0

Putting all together, we have our algorithm detailed in Algorithm 1. In this algorithm we use Adam
(Kingma & Ba (2014)) that generally is considered a fast and stable optimization.

3.2 INTEGRAL PROBABILITY METRICS

Integral probability metrics (IPM) (Müller, 1997; Sriperumbudur et al., 2012) as defined in Equation
1 introduces a powerful class of divergences. Various choices of function classF lead to well-known
divergence measures. Here we provide a few examples.
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1: while θ is not converged do
2: Sample uniformly x1, . . . ,xn from X
3: Sample z′1, . . . , z

′
n ∼ pz

4: ρ′w = ∇w

[
1
n

∑
i fw(xi)− 1

n

∑
i fw(gθ(zi))

]
{fw is Linear or tanh}

5: R′w = ∇wR(w) {Equation 2 or 3}
6: w = w + ηD.Adam(w, ρ′w − λR′w)
7: Sample z′1, . . . , z

′
n ∼ pz

8: ρ′θ = −∇θ
1
n

∑
i fw(gθ(zi))

9: θ = θ − ηG.Adam(θ, ρ′θ)
10: λ = λ− ηλR′w
11: end while

Algorithm 1: The algorithm for the Dudley GAN. In this algorithm, are the learning rates of discriminator,
generator and Lagrangian multiplier.

Wasserstein distance: Setting F =
{
f : ‖f‖L ≤ 1

}
in Equation 1. The Kantorovich-Rubinstein

theorem states that for separable space X , this metric in Equation 1 with Lipschitz condition is a
dual for L1-Wasserstein distance. This measure is used in WGAN.

Total Variation: Setting F =
{
f : ‖f‖∞ ≤ 1

}
yields popular total variation distance. For example,

EBGAN (Zhao et al. (2016)) uses a similar condition.

Kernel Distance: Setting F =
{
f : ‖f‖H ≤ 1

}
yields Maximum Mean Discrepancy (MMD)

distance. MMD has been a popular measure in GANs (Karolina Dziugaite et al. (2015); Sutherland
et al. (2016); Lim & Ye (2017)).

It should also be noted that when using Lipschitz functions on a compact spaces (such as images)
with both positive and negative values, we always have a bounded function, i.e.

‖f‖∞ = sup
x
|f(x)| ≤ sup

x,x′
|f(x)− f(x′)| ≤ diam(X )‖f‖L,

where diam(X ) is the maximum distance between points in the input. Therefore, while bounding
the output does not significantly change the GAN framework, it does provide a practical advantage
as well as theoretical (as will be further discussed in Section 4).

We concentrate on bounded Lipschitz neural networks because only using bounded functions (not
Lipschitz) for GANs might suffer from the vanishing gradient problem and limit the capacity of the
output. Secondly, using MMD typically requires a choice of kernel.

Moreover, it is interesting to note that in an IPM when f(x) = 〈φ(x),w〉 for some function φ(x)
and ‖w‖ ≤ 1, we recover MMD. Therefore, for a neural network with linear output where φ(x)
represents one layer to the last and is weight-normalized (no need for the previous layers to be
Lipschitz) another alternative for training a GAN is obtained.

4 GENERALIZATION BOUNDS

Another benefit of introducing IPM to GANs, is that it provides a natural link between GANs and
empirical risk minimization (ERM). If we assign a label y = +1 for real samples and y = −1
for fake ones, it is easy to see the relation between IPM and ERM as a binary classification when,
without loss of generality, we have p(y = +1) = p(y = −1), then

inf
f∈F

E(x,y)∼µ(x,y) [`(y, fw(x))] = inf
f∈F

∫
`(+1, fw(x))µ(x|y = +1) + `(−1, fw(x))µ(x|y = −1)

For `(y, fw(x)) = −yf(x), p(x) = µ(x|y = +1), qθ(x
′) = µ(x′|y = −1) we recover the

objective in Equation 1. Hence, it is easy to see the discriminator’s objective is a regularized ERM:
minw E(x,y)∼µ(x,y) [`(y, fw(x))] + R(w). Although in practice, the complete minimization is not
performed in each iteration of GAN.

It can be seen (Sriperumbudur et al., 2012) that the dual of this problem minimizes the norm (de-
pending on the choice of the norm in IPM) of the function at hand, in our case ‖f‖BL. In other
words, we learn the smoothest function (lower ‖f‖L) with minimum highest value (‖f‖∞). We
need more complex functions (higher Lipschitz constant) when the divergence distance is small (i.e.
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distinguishing closer distributions are more difficult). Since in GANs we learn the fake distribution
qθ it is important to have more complex models for fw, an indication of mixture of fake and real
samples. Thus, constraining the Lipschitz constant to be very small is in fact a deterring factor in
estimating the fake distributions from the generalization perspective.

Finally we add that learning the function fw is relevant to the Rademacher complexity where we
sample from the real (σ = 1) and fake (σ = −1) distributions with the same probability ( 12 ) and
evaluate the empirical Rademacher complexity (Shawe-Taylor & Cristianini, 2004),

R = Eσ

[
sup
f∈F

1

m

∣∣∣∣∣
m∑
i=1

σif(xi)

∣∣∣∣∣
]
, xi ∈ X ∪ X ′,X ′ = {g(z1) . . . , g(zn)} , zi ∼ p(z)

that measures the random labeling of the data. This simple measure allows us to determine how easy
it is for our model to distinguish real from fake samples when we randomly label them. Moreover
since our function is bounded, with probability at least 1 − δ for δ ∈ (0, 1) over m samples from
X ∪ X ′, we have a bound on the probability of misclassification of fake/real samples,

p [y 6= sgn(f(x))] ≤ 1

mγ

m∑
i=1

(γ − yf(x))+ + 4

√
diam(X )
mγ2

+ 3

√
log(2/δ)

2m
(4)

As observed, the maximum confusion in the discriminator that is desirable for GANs is inversely
related to the value of γ. The proof is provided in the supplements.

5 EXPERIMENTS

(a) Linear (b) tanh

Figure 1: Generated samples
from MNIST dataset.

Examining generative models are generally challenging. In this sec-
tion, we examine the quality of the generated images using Dudley
GAN. To that end, we construct a Lipschitz neural network with the
bounded output detailed in Section 2. We build upon the architecture
of DCGAN (Radford et al. (2015)) with an additional linear layer
on top and weight-normalization in each layer of the discriminator.
The network architecture is detailed in Appendix B. We apply batch-
normalization in the generator that stabilizes and improves conver-
gence speed. We set the learning rate to 0.0001, weight decay to
0.001, batch size 64 and 100-dimensional noise samples from normal distribution. We, furthermore,
compare with gradient clipping where we clip gradient values exceeding value 2 and gradient decay
where we normalize the gradients so that its norm is less than 10. For WGAN we set the weight
clipping range to [−0.01, 0.01] as is done in the original paper. We will use the same experimental
setup throughout the evaluation with various datasets.

For the original GAN and its variants where JS-divergence is used, batch normalization is essential
for providing common support for the real and fake datasets. Otherwise, it takes a long time to
converge. Batch-norm provides a simple practical trick to encourage high correlation between fake
and real samples. When we use WGAN, batch normalization helps to induce a compact space after
each layer. In Dudley GAN, batch-norm is not required.

Algorithm LL (nats)
WGAN (Arjovsky et al., 2017) 413.27± 0.30
GAN 305± 8.97
tanh-no-weight-norm 413.31± 6.10
tanh 415.32± 1.21
Bounded Linear 417.54± 2.1

Table 1: log-likelihood of various approaches for
MNIST dataset in nats

MNIST Dataset: This dataset contains 60, 000
hand-written digits formatted as binary 28× 28
images. We use Algorithm 1 to train a gener-
ator. Samples from the generator is shown in
Figure 1(a) for linear and 1(b) for tanh at itera-
tion 5000. Moreover, we use kernel density es-
timation (KDE) to estimate the log-likelihood
of the generated samples at iteration 10, 000
similar to Nowozin et al. (2016). As is common
practice, we have taken 16K samples from the trained generator and report the mean log-likelihood
in Table 5. Even though KDE is not an excellent measure and has high variance, we compared the
log-likelihoods of variations approaches. As observed, tanh with Lipschitz network outperforms
tanh with no weight normalization (corresponding to the total variation). The performance of the
bounded linear function with regularization that is proposed in the paper has the best log-likelihood
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(a) Linear (b) tanh (c)
Clipped

(d) Grad Clipping

Figure 3: Weight distributions of the last layer of the generator when using weight clipping compare to other
cases. As observed, the variance of the weights in the linear and is larger. This implies more diversity in
the images produced. In the gradient clipping case where the weight has a very small variance our approach
diverges.
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(a) Discriminator loss
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(c) Inception score
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Figure 4: CIFAR-10 training metrics

albeit with larger variance. Lower variance in WGAN is due to the extremely restrictive nature of
weight clipping.

CIFAR-10 Dataset: The CIFAR-10 dataset Krizhevsky & Hinton (2009) is composed of 50, 000
RGB images of natural scenes with size 32 × 32. We train our GAN similar to MNIST except that
here we are using three channels. The progress of the generator is shown in Figure 2. It is interesting
to observe that weight clipping exhibits relatively fast initial improvement however our approach
catches on quickly. This is because as the time passes the capacity of the discriminator is exploited
and the frequency of the weights being clipped increases. As such, the rate of improvement in the
network significantly decreases. In addition, when we use tanh for the output of a Lipschitz network,
initially the improvement of the generator is slow however we observe a steady improvement and
the end result exhibit better diversity and sharper quality compared to WGAN.
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Figure 2: Generated images at various steps of training. As
observed weight clipping saturates very fast.

In Figure 4 we show metrics from training
of the CIFAR-10 dataset. In particular, in
Figure 4(a) the discriminator loss without
the regularization is shown. As observed,
tanh and bounded linear function show a
stable value for the difference in Equation
1 (empirical expected functions). However,
when we use other regularizations, namely
gradient clipping or gradient normalization
we observe the discriminator loss is not sta-
ble. In addition, in Figure 4(b) the norm of
the gradient of the loss is plotted and as is
observed generally gradient of the tanh is
smaller than the bounded linear. This is be-
cause as the output of tanh increases the
value of its gradient decreases, which is not
the case with the linear function. One in-
teresting case is when we use gradient clip-
ping, the algorithm diverges which is be-
cause the crude change of the gradient alters discriminator in a wrong way. In Figure 4(c), we use
Inception score (Salimans et al., 2016) to evaluate the visual features of the generated images. Even
though this is not a comprehensive measure, we observe our approach performs better than WGAN
(and WGAN-GP). Furthermore, Rademacher complexity is also shown in Figure 4(d). The func-
tional value of the tanh is smaller and thus its Rademacher value, however the final value for the
bounded linear is smaller.

In Figure 3 we show the distribution of the weights in the generator. As observed, when using weight
clipping in the discriminator, the output of the generator is also very restricted. As such, the range
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(a) Bounded Linear Batch-norm (b) Bounded Linear (c) tanh

Figure 5: Images generated from the LSUN dataset.

(a) Bounded Linear (b) tanh (c) Softplus(-1)

Figure 6: Generated images from the CelebA dataset. As observed the shape of faces are very well captured.
Even softplus works well, albeit converges slower than bounded linear and tanh.

of colors we can expect to see in generators with weight clipping is significantly smaller. The final
results for various other experiments are shown in Appendix C.

LSUN Dataset: Similar to the WGAN paper, we use our model to train on the LSUN bedrooms
dataset Yu et al. (2015). LSUN dataset, compared to CIFAR-10, has more samples and are larger
in size. We can generate larger images in this experiment, 64 × 64 and 128 × 128. Samples of the
generated images are shown in Figure 5. Interestingly, our algorithm converges and produces good
quality images at 40, 000th iteration. WGAN produces, with arguably worst quality, at iteration
60, 000. We observe, with batch-normalization linear bounded model is not as sharp as its alterna-
tive. Moreover, tanh does not show as much diversity in the generated images which we believe is
due to the restricted nature of the output function.

CelebA Dataset: For the last experiment, we use the CelebA dataset Liu et al. (2015). We generate
64× 64 images as shown in Figure 6. We use Softplus as another measure based on our framework
where the divergence is interpreted as the difference of the log-likelihood of the observations from
real and fake data (details are provided in Appendix C).

We observe even though the generated samples have good quality, Softplus converges slower than
two other alternatives (takes almost twice the number of epochs).

6 CONCLUSION

In this paper we develop the building blocks of Lipschitz neural networks using which and Dudley
metric, we propose a new GAN called Dudley GAN. Dudley GAN’s discriminator is guaranteed to
be a bounded Lipschitz neural network, thus produces state of the art result in both converge and
sample quality. In addition, we show Dudley GAN and its extension is directly related to empir-
ical risk minimization. This allows us to bridge the gap between GANs and learning complexity
and generalization. We provide an upper bound on probability of confusion between real and fake
images. We believe this view opens new avenues in GAN research for better understanding and
quantifying the ability of the algorithm to capture the distribution of real samples.
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Figure 7: Various outputs for the neural net and their derivatives. For the original WGAN the
derivative is constant, while the tanh has a gradient that decreases as the absolute value of the input
increases.

A PROOFS

proof of 1 (ii). For two Lipschitz continuous functions f and g with Lf and Lg constants we have:

‖f(g(x1))− f(g(x2))‖ ≤ Lf‖g(x1)− g(x2)‖ ≤ Lf × Lg‖x1 − x2‖

proof of 2(i). Let ∗ denote convolutional operation between the input x and weight vector w. Using
Young’s convolution inequality we have,

‖w ∗ x1 −w ∗ x2‖ ≤ |w|‖x1 − x2‖,

To establish the bound for the d-dimensional weight on |w| =
∑
i |w1|+ . . . , |wd|, we consider two

cases (1) |wi| ≤ 1 where the elements are upper bounded by d; (2) |wi| > 1 we know w2
1 + w2

2 +
. . . , w2

n = C2 , then w2
i ≤ C2 and |wi| ≤ C. Thus, |w| ≤ Cd.

proof of 2 (ii). We have ‖〈w,x1〉 − 〈w,x2〉‖ ≤ ‖w‖‖x1 − x2‖ and ‖w‖ = C.

proof of 2(iii). Sigmoid and tanh are continuously differentiable and their derivative is globally
bounded, hence they are Lipschitz continuous. Considering all possible cases of the input to the
ReLU function, it is easy to see ‖ReLU(x1)− ReLU(x2)‖ ≤ ‖x1 − x2‖.

proof of 2(iv). log is a differentiable function with bounded derivative in the specified domain.

Proof of Equation 4. Let’s denote byH the heaviside function and A : R→ [0, 1] as

A(a) =


1 if a > 0

1 + a
γ if 0 ≤ a ≤ γ

0 otherwise
(5)

From Theorem 4.9 in (Shawe-Taylor & Cristianini, 2004) and sinceH− 1 ≤ A− 1 we have,

EX∪X ′ [H(−yg(x))− 1] ≤ EX∪X ′ [A(−yg(x))− 1]

≤ ÊX∪X ′ [A(−yg(x))− 1] +R+ 3

√
log(2/δ)

2m
(6)

and since A(−yif(xi)) ≤ (yf(x)−γ)+
γ for i = 1, . . . ,m, we have

EX∪X ′ [H(−yg(x))− 1] ≤ 1

mγ

m∑
i=1

(yf(x)− γ)+ +R+ 3

√
log(2/δ)

2m
(7)

and since the support of the distribution is in the ball centered on the origin, we have the inequality
proven.
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B NETWORK ARCHITECTURE

We have implemented our approach in PyTorch.

Weight-normalized-Conv2d (nc, 32, kernel size=(4, 4), stride=(2, 2), padding=(1, 1))
LeakyReLU (0.2, inplace)

Weight-normalized-Conv2d (32, 64, kernel size=(4, 4), stride=(2, 2), padding=(1, 1))
LeakyReLU (0.2, inplace)

Weight-normalized-Conv2d (64, 128, kernel size=(4, 4), stride=(2, 2), padding=(1, 1))
LeakyReLU (0.2, inplace)

Weight-normalized-Conv2d (128, 256, kernel size=(4, 4), stride=(2, 2), padding=(1, 1))
LeakyReLU (0.2, inplace)

Weight-normalized-Conv2d (256, 100, kernel size=(4, 4), stride=(1, 1))
Linear (100, 1000)
ReLU ()
Linear (1000, 1)

Table 2: The discriminator for image size 32 × 32. nc is the number of channels which is 1 for
MNIST and 3 for colored images.

ConvTranspose2d (100, 256, kernel size=(4, 4), stride=(1, 1))
BatchNorm2d (256)

ReLU ()
ConvTranspose2d (256, 128, kernel size=(4, 4), stride=(2, 2), padding=(1, 1))

BatchNorm2d (128)
ReLU ()

ConvTranspose2d (128, 64, kernel size=(4, 4), stride=(2, 2), padding=(1, 1))
BatchNorm2d (64)

ReLU ()
ConvTranspose2d (64, 32, kernel size=(4, 4), stride=(2, 2), padding=(1, 1))

BatchNorm2d (32)
ReLU ()

ConvTranspose2d (32, nc, kernel size=(4, 4), stride=(2, 2), padding=(1, 1))
Tanh ()

Table 3: The generator for image size 32× 32. nc is the number of channels which is 1 for MNIST
and 3 for colored images.

C LOG-LIKELIHOOD DIFFERENCE

From Proposition (iv), it is clear that the Softplus function satisfies Lipschitz condition for β 6= 0.
In particular, for β = −1, we recover log of a sigmoid function which is in par with the original
GAN except instead of Ex∼p[log(Dw(x))] + Ez∼pz [log(1−Dw(g(z)))] we train

Ex∼p[log(Dw(x))]− Ez∼pz [log(Dw(g(z)))]

for a sigmoid function Dw (note fw(x) = log(Dw(x)) in Equation 1) with − log(D(x)) trick for
the generator. This choice of fw allows us to interpret our GAN as minimizing the difference of the
expected log-likelihood in the discriminator (as a divergence) while maximizing the expected log
likelihood in the generator. For the case when we use Softplus(−1) function we employ the same
logic and add the regularizer to encourage the function values to be close to boundary as log(0.5)
which yields a bounded function.

ADDITIONAL EXPERIMENTS

CIFAR-10 Dataset:
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(a) linear (b) linear weight-clip

(c) decayed linear (d) grad decayed linear

(e) tanh (f) tanh grad clip

Figure 8: Figure
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LSUN Dataset:

(a) Linear with Batch-norm (b) No Batch-norm

(c) tanh

Figure 9: LSUN Images

CelebA Dataset:
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(a) Linear (b) tanh

(c) Softplus(-1)
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