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Abstract
Post-training compression reduces the computa-
tional and memory costs of large language mod-
els (LLMs), enabling resource-efficient deploy-
ment. However, existing compression bench-
marks only focus on language modeling (e.g.,
perplexity) and natural language understanding
tasks (e.g., GLUE accuracy), ignoring the agen-
tic capabilities—workflow, tool use/function call,
long-context understanding and real-world appli-
cation. We introduce the Agent Compression
Benchmark (ACBench), the first comprehensive
benchmark for evaluating how compression im-
pacts LLMs’ agentic abilities. ACBench spans
(1) 12 tasks across 4 capabilities (e.g., WorfBench
for workflow generation, Needle-in-Haystack for
long-context retrieval), (2) quantization (GPTQ,
AWQ) and pruning (Wanda, SparseGPT), and (3)
15 models, including small (Gemma-2B), stan-
dard (Qwen2.5 7B-32B), and distilled reason-
ing LLMs (DeepSeek-R1-Distill). Our experi-
ments reveal compression tradeoffs: 4-bit quan-
tization preserves workflow generation and tool
use (1%–3% drop) but degrades real-world ap-
plication accuracy by 10%–15%. We introduce
ERank, Top-k Ranking Correlation and Energy to
systematize analysis. ACBench provides action-
able insights for optimizing LLM compression
in agentic scenarios. The code can be found in
https://github.com/pprp/ACBench.

1. Introduction
Large language models (LLMs) (Brown et al., 2020; Chiang
et al., 2023; OpenAI, 2023; Team, 2024a) have demon-
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strated transformative capabilities in domains ranging from
code synthesis (Roziere et al., 2023) and scientific re-
search (Li et al., 2024d) to multi-agent collaboration (Wang
et al., 2024a;b; Li et al., 2023a; Wu et al., 2024b). Despite
these advances, their practical deployment remains hindered
by prohibitive computational and memory costs (Samsi
et al., 2023b; Stojkovic et al., 2024). Post-training compres-
sion techniques—notably pruning (Sun et al., 2024c; Dong
et al., 2024b) and quantization (Park et al., 2024; Dong et al.,
2024c)—address this challenge by reducing model size by
up to 4× while preserving performance on standard bench-
marks like perplexity and arithmetic tasks (Zhang et al.,
2024d).

Existing compression evaluations focus narrowly on single-
turn language modeling (e.g., WikiText-2 perplexity) and
natural language understanding (NLU) tasks (e.g., GLUE
accuracy) (Gong et al., 2024; Yang et al., 2024a; Wang et al.,
2025a; Lai et al., 2025). However, real-world agentic ap-
plications—such as robotic control (Li et al., 2023a) and fi-
nancial analytics (Yang et al., 2023a)—demand capabilities
that transcend these static benchmarks. Specifically, com-
pressed LLMs must retain (1) multi-step planning (e.g., API
call sequences in WebShop), (2) long-context coherence
(e.g., 40k-token retrieval in Needle-in-Haystack), (3)
adaptive reasoning across conversational turns in workflow,
and (4) seamless tool integration (e.g., external API). Prior
work (Li et al., 2024e) evaluates quantized models on NLU
tasks but overlooks the interplay between compression and
these agentic capabilities—a critical oversight given their
centrality to deployment scenarios requiring multi-turn in-
teractions.

We make a holistic evaluation of both quantized and pruned
LLMs using Agent Compression Benchmark (ACBench) to
reveal the status quo across three dimensions: (1) Effects of
compression on agent capabilities: Whether compressed
LLMs still perform well on other essential agent capabili-
ties, such as planning, reasoning, tool use, and long-context
understanding; (2) Effect of compression on LLMs: We
employ three novel metrics to systematically analyze the
gap between compressed and uncompressed LLMs - ER-
ank, Top-K Ranking correlation, and energy. These metrics
help reveal how compression influences model outputs and
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Table 1: The benchmarks and model families for evaluation. “Size” denotes the test size, while “Env” denotes the number of
environments.

Section Task & Ability Benchmark #Size/#Env Model Family

Sec. 4 Tool Use/T-Eval

Plan 553 InternLM-2.5-7B,
Qwen-2.5-7B,

Mistral-7B,
DeepSeek-R1-Distill-Qwen,
DeepSeek-R1-Distill-LLama

Reason 6426
Retrieve 64226

Understand 6753
Instruct 2660
Review 487

Sec. 5 Workflow Generation

Function Call Tasks 1803 Qwen-2.5(1.5B-32B), InternLM-2.5-7B,
Llama-3.1-8B,Mistral-7B,

DeepSeek-R1-Distill-Qwen(1.5B, 7B),
DeepSeek-R1-Distill-Llama-8B

Embodied Tasks 4048
Problem-Solving Tasks 4257
Open-Grounded Tasks 2281

Sec. 6

Code Lcc, RB-P 1000

InternLM-2.5-7B, Qwen-2.5(1.5B, 3B, 7B),
Megrez-3B, MiniCPM-4B,

Gemma-2B, Phi-3.5,
DeepSeek-R1-Llama-8B,

DeepSeek-R1-Distilled(1.5B, 7B)

Single-Doc QA NrtvQA, Qasper, MF-en 750
Multi-Doc QA HotpotQA, 2WikiMQA, Musique, Dureader 800
Summarization QMSum, MultiNews, VCSum 600

Few-shot TREC, TriviaQA, SAMSum, LSHT 800
Synthetic PRE, Pcount 600

LongGenBench GSM8K 8000
MMLU 15908

Information Extraction Needle-in-the-Haystack 40K

Sec. 7

Embodied AI ScienceWorld 90 Qwen-2.5(1.5B-7B), InternLM-2.5-7B,
DeepSeek-R1-Distilled-Qwen-7B,

DeepSeek-R1-Distilled-Qwen-1.5B,
DeepSeek-R1-Distilled-Llama-8B

Game Jericho 20
PDDL 60

Tool Use Tool-Query 60
Tool-Operation 40

internal representations, providing insights into which com-
pression configurations best preserve agent capabilities. (3)
Impact of different compression approaches: The rela-
tive effectiveness of quantization versus pruning methods,
and their potential complementarity, remains unexplored in
the context of agent tasks. A comprehensive comparison is
needed to guide optimal compression strategy selection.

Specifically, we evaluate three categories of LLMs: (1)
Small language models (<7B parameters) like Phi-3.5 (Ab-
din et al., 2024), MiniCPM (Hu et al., 2024), and Megrez (In-
finigence, 2024); (2) Standard models (7B-32B parameters)
including Qwen2.5, InternLM2.5, and Mistral-7B; and (3)
Distilled Reasoning models like DeepSeek-R1-Distilled se-
ries. For agent tasks, we systematically evaluate four core
agentic capabilities (Action Execution, Workflow Gener-
ation, Long-Context Understanding, and Real-world Ap-
plication) that enable complex workflow execution while
maintaining coherent behavior across extended interactions.
To investigate the effects of compression configuration, we
evaluate two mainstream compression methods: quantiza-
tion (including GPTQ (Frantar et al., 2022) and AWQ (Lin
et al., 2023)) and pruning (including SparseGPT (Frantar &
Alistarh, 2023a) and Wanda (Sun et al., 2024b)).

To facilitate systematic analysis of compression impacts,
we introduce three novel analytical tools: (1) Efficient
Rank(Roy & Vetterli, 2007; Wei et al., 2024) leverages

rank-based techniques to capture the distribution of model
logits more efficiently. This tool helps identify the structural
changes in the model’s decision-making process induced
by compression. (2) Top-K Ranking Correlation can mea-
sure the ranking consistency between the top-k logits of
compressed and uncompressed LLMs, providing insights
into how well the compressed model preserves the origi-
nal model’s confidence in its predictions. (2) Energy-based
Analysis, inspired by Out-of-Distribution (OOD) detection
techniques (Lee et al., 2018; Liu et al., 2020), evaluates
the distributional shifts in logit energies between the com-
pressed and uncompressed models.

2. Preliminaries
In this paper, we mainly focus on quantization and weight
pruning as presented in Figure 1(b), with additional exper-
iments on distilled DeepSeek-R1 series. Additionally, we
design three metrics to measure the gap between compressed
and uncompressed LLMs.

Quantization reduces the memory and computational de-
mands of neural networks by mapping full-precision values
(e.g., 16-bit floats) to lower-bit integer representations. The
affine transformation

XINT = round
(
XFP16 − Z

S

)
(1)
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Figure 1: Overview of Agent Compression Benchmarks and Methods for Large Language Models (LLMs). (a) Benchmark
Comparison: Illustrates the transition from single-turn quantized LLMs to multi-turn compressed LLMs in agentic scenarios.
(b) Compression Methods: Summarizes the techniques used for quantization (e.g., GPTQ, AWQ, SmoothQuant) and
sparsification (e.g., SparseGPT, Wanda). (c) Overview of Agent Compression Benchmark: Provides a comprehensive view
of the capabilities and components involved in agentic LLM compression, including action execution, workflow build,
real-world applications, and long-context processing.

S =
max(XFP16)−min(XFP16)

2N−1 − 1
(2)

preserves the dynamic range of the original tensor XFP16,
where N specifies the target integer bit-width (e.g., 8 bits),
S is the scaling factor, and Z aligns the integer zero-point
with the floating-point range. In this paper, we mainly focus
on GPTQ (Frantar et al., 2022) and AWQ (Lin et al., 2023).

Weight Pruning removes redundant parameters to create
sparse weight matrices, reducing model size and inference
latency. Unstructured sparsity is achieved via element-wise
masking:

Ŵ = W ⊙M, Mij =

{
1 if |Wij | > τ

0 otherwise
(3)

where τ governs the sparsity level. For hardware efficiency,
structured pruning eliminates entire channels using the L1-
norm

∑
i |Wc,i| to identify less salient features, trading

finer granularity for better computational alignment. In this
paper, we mainly focus on SparseGPT (Frantar & Alistarh,
2023a) and Wanda (Sun et al., 2024b) with unstructured and
2:4 semi-structured settings.

2.1. Agentic Taxonomy

Since there are already several benchmarks (Li et al., 2024e;
Yang et al., 2024a; Gong et al., 2024; Wang et al., 2024a;b)
that focus on the capabilities of LLMs like in-context
learning, commonsense multi-step reasoning, mathemati-
cal multi-step reasoning, instruction following, and self-
calibration. However, the agentic capabilities of open-

sourced LLMs have not been well-studied. To fill the gap,
we focus on the distinct characteristics of agentic capabil-
ities in this paper. To study the influences of compression
on the agentic capabilities of LLMs, we mainly focus on
the capabilities that can be influenced by compression. We
classified the agentic capabilities into four main ones as
shown in Figure 1(c) and Table 1:

(1) Action Execution includes function call and tool
use (Chen et al., 2023c). Function call denotes that the
agent can employ the user predefined functions to enhance
the capabilities, while tool use denotes that the agent can use
the external tools to enhance the capabilities. We focus on
the six key capabilities: plan, reason, retrieve, understand,
instruct, and review.

(2) Workflow Generation enables agents to break down
complex tasks into executable sequences of steps (Wang
et al., 2024a;b). This includes both single-task workflows
where a direct solution path exists, and multi-step work-
flows requiring intermediate planning and coordination
across multiple tools or APIs. We mainly focus on four
key tasks: function call, embodied, problem-solving, and
open-grounded tasks.

(3) Long-Context Understanding: Due to the nature of
multi-step workflows, the context length is obviously large
compared with basic NLP tasks. In the near future, as
the context length is further increased, the long-context
understanding will become a key capability for agentic
applications. We mainly focus on general long-context
tasks like single- and multi-doc QA, summarization, and
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Figure 2: ERank analysis difference analysis for quantized LLaMA-2-7B (left) and Mistral-7B (right) models

code, etc., and the more challenging ones like LongGen-
Bench (Liu et al., 2024a) (GSM8K and MMLU), Needle-in-
the-Haystack.

(4) Real-world Application encompasses the agent’s ability
to operate in practical deployment scenarios (Wang et al.,
2025a) like e-commerce, robotics control, and scientific
experimentation. This requires coordinating multiple ca-
pabilities including tool use, planning, and environmental
interaction. We evaluate performance on benchmarks like
EmbodiedAI (ScienceWorld), Game (Jericho, PDDL), and
practical tool use including Tool-Query and Tool-Operation.
These tasks can faithfully give us feedback on how agents
can process the real-world applications.

2.2. Benchmarks and Models

Our experimental evaluation focuses on compressed lan-
guage models, encompassing both quantized and pruned
variants. We assess their performance across four distinct
categories of agent tasks: Action Execution, Workflow Gen-
eration, Long-Context Understanding, and Real-world Ap-
plication. In our investigation, we specifically prioritize
compression algorithms that are compatible with contem-
porary inference frameworks such as vLLM (Kwon et al.,
2023), thereby ensuring practical deployability and efficient
model serving in real-world applications.

LLMs. To ensure a comprehensive evaluation, we assess
the performance of state-of-the-art language models, pri-
oritizing their latest versions to maintain relevance. Our
analysis focuses on models with demonstrated agentic ca-
pabilities, as earlier models generally lack these essen-
tial features. We categorize the evaluated models into
three groups: (1) Medium-scale models (7B parameters):
InternLM-2.5-7B (Cai et al., 2024), Qwen2.5-7B (Yang
et al., 2024b), and Mistral-7B (Jiang et al., 2023a); (2)
Knowledge-distilled models: DeepSeek-R1-Distill-Qwen-
1.5B, DeepSeek-R1-Distill-Qwen-7B, and DeepSeek-R1-
Distill-Llama-8B (Team, 2024a); (3) Efficient small-scale
models: MiniCPM3-4B (Hu et al., 2024), Qwen-2.5-1.5B,
Qwen-2.5-3B (Yang et al., 2024b), Gemma-2-2b-it (Team,
2024b), Phi-3.5-mini-3.8B (Abdin et al., 2024), and Megrez-

3B (Infinigence, 2024).

Datasets. Instead of using standard datasets like previ-
ous benchmarks such as llmc (Gong et al., 2024), we
uniquely focus on agentic tasks. We categorize the agentic
tasks into three types: (1) Action Execution: T-Eval (Chen
et al., 2023c), ToolBench (Qin et al., 2023a), and ToolAl-
paca (Tang et al., 2023b); (2) Workflow Generation: Worf-
Bench (Qiao et al., 2024); (3) Long-Context Understanding:
LongBench (Bai et al., 2024), LongGenBench (Liu et al.,
2024a), and Needle-in-the-haystack (Kamradt, 2023); (4)
Real-world applications: AgentBoard (Ma et al., 2024). For
calibration data, to ensure a fair comparison, we follow the
setting in previous works (Gong et al., 2024) and employ
the same subset of the Pile (Gao et al., 2020) validation set.
We set the calibration data size to 128 and the sequence
length to 512.

Compression Methods. We focus on post-training
compression methods, including quantization and prun-
ing. We use the following quantization methods: (1)
GPTQ (Frantar et al., 2022); (2) AWQ (Lin et al., 2023);
(3) SmoothQuant (Xiao et al., 2023). We employ unstruc-
tured, structured, and semi-structured pruning methods.
SparseGPT (Frantar & Alistarh, 2023a) and Wanda (Sun
et al., 2024c) are used for unstructured and semi-structured
pruning. To ensure fairness and reproducibility, we set the
temperature to 0.

2.3. Statistical Analysis

To investigate the influences of compression on the LLMs
and how the compression affects the LLMs, we employ
three statistical analysis metrics:

(1) Efficient Rank (ERank): The effective rank of a non-
zero matrix A ∈ Rd×N is defined as

eRank(A) = exp

(
−

Q∑
i=1

σi∑Q
j=1 σj

log

(
σi∑Q
j=1 σj

))
,

(4)
where Q = min{N, d}, and σ1, σ2, . . . , σQ denote the sin-
gular values of the matrix A. This measure quantifies the
distribution of the singular values and provides a notion of
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Figure 3: Comparison of format performance differences
between (left) quantized and (right) sparse model architec-
tures

the matrix’s effective dimensionality.

(2) Top-K Ranking Consistency: For a given input, let
T (o)
k and T (c)

k be the sets of top-k tokens according to z(o)

and z(c) respectively. We measure ranking consistency us-
ing the Jaccard similarity:

Jk =
|T (o)

k ∩ T (c)
k |

|T (o)
k ∪ T (c)

k |
(5)

(3) Energy-based Analysis: Many OOD detection meth-
ods (Lee et al., 2018; Liu et al., 2020) utilize the energy-
based model to calculate the energy score as the confidence
of the model on the input data x. Let f(x) : RD → RK be
a discriminative neural classifier that maps an input x ∈ RD

to K logits. For both original model f (o) and compressed
model f (c), the categorical distribution is derived using the
softmax function:

p(y|x) = efy(x)/T∑K
i=1 e

fi(x)/T
(6)

where fy(x) indicates the y-th logit corresponding to class
label y, and T is the temperature parameter. The energy
function E(x; f) for a given input x is defined as:

E(x; f) = −T · log
K∑
i=1

efi(x)/T (7)

We compare the energy distributions between original and
compressed models using ∆E = |E(x; f (o))−E(x; f (c))|,
where lower ∆E indicates better preservation of model con-
fidence patterns.

3. Statistical Analysis of Compression Effects
Efficient Rank Analysis. We visualize the ERank (Wei
et al., 2024) of LLaMA-2-7B and Mistral-7B in Figure 2.
We separately evaluate the ERank under varying weight
quantization levels (W2, W3, W4, W8, W16) and KV Cache
precisions (KV4, KV8, KV16). Our findings indicate that
both models exhibit similar trends in their effective rank

Figure 4: Top-k Ranking Consistency Analysis for quan-
tized Phi-3.5.

across these configurations. Specifically, the ERank de-
creases as the quantization precision reduces, suggesting a
loss of information and structural complexity in the weight
matrices. This behavior highlights the impact of quantiza-
tion on the intrinsic dimensionality of the models’ represen-
tations, which may contribute to the performance trade-offs
observed in downstream tasks. As shown in Table 2, this
relationship holds across model scales - from 125M to 6.7B
parameters, where we observe ERank values ranging from
13.898 to 17.877 for 4-bit quantized models. Notably, the
ERank values correlate positively with model accuracy, with
larger models generally maintaining higher ERank values
post-compression. For instance, the 6.7B model achieves
the highest ERank of 17.877 and correspondingly strong
accuracy of 0.360, while the 2.7B model shows a lower
ERank of 13.898 despite having comparable accuracy. This
suggests that larger models may be more robust to compres-
sion, maintaining their structural complexity better. The
Diff-ERank metric, measuring the change in effective rank
after compression, also shows a consistent trend, increasing
with model size from 1.410 to 2.280, indicating that larger
models undergo more significant structural changes during
compression while still preserving performance.

Top-K Ranking Consistency Analysis. We quantitatively
assess the discrepancy between compressed and uncom-
pressed LLMs through top-k ranking consistency metrics.
As depicted in Figure 4, we evaluate the ranking consis-
tency using both Kendall’s Tau and Spearman Correlation
coefficients. Our analysis reveals a notable pattern: as k
decreases from 10 to 3, the ranking consistency exhibits
increasing instability and degradation. This finding is par-
ticularly significant for LLM text generation, where the
top-3 tokens are crucial as they represent the most probable
next-token predictions. This degradation in ranking con-
sistency for the most probable tokens provides a potential
explanation for the observed performance deterioration in
downstream tasks when using compressed LLMs. Addition-
ally, Figure 5 demonstrates the strong Spearman correlation
between perplexity and Top-k ranking correlation metrics
across different model sizes and quantization levels, validat-
ing the metrics’ ability to capture meaningful performance
characteristics.
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Figure 5: Spearman correlation analysis between perplexity
and Top-k ranking correlation metrics across model sizes
and quantization levels.

OPT 125M 1.3B 2.7B 6.7B

ACC 0.276 0.332 0.370 0.360
∆ Loss 5.734 6.138 6.204 6.258
Diff-ERank 1.410 2.140 2.338 2.280
ERank (4bit) 15.462 15.589 13.898 17.877
Energy 2.738 2.746 2.631 2.883

Table 2: Comparison of metrics across model sizes demon-
strating correlation between ERank, Energy and model per-
formance.

Energy-based Analysis. We visualize the distribution of
energy scores of compressed and uncompressed LLMs for
a series of tokens. As shown in Appendix C.7, we observed
that the quantized LLM has a distinct energy distribution
compared with uncompressed ones in the initial stage, while
they begin to merge in the subsequent stage. The higher neg-
ative energy means high confidence in the prediction. The
results show that in the initial decoding stage of the com-
pressed LLM, the confidence distribution is polarized, with
some over-confidence on certain tokens and some under-
confidence on others. During the late decoding stage, both
compressed and uncompressed LLMs regard tokens as low
confidence. As shown in Table 2, we observe consistent
energy scores across different model sizes, indicating that
this behavior is inherent to the compression process rather
than model scale dependent.

4. Evaluation on Action Execution
4.1. Experimental Setups

We evaluate the impact of quantization and pruning on
LLMs’ agent action execution capabilities, focusing on func-
tion calling and tool use. We utilize T-Eval (Chen et al.,
2023c), which assesses six core competencies: planning,
reasoning, retrieval, understanding, instruction following,
and reviewing. Additional results can be found in Table 8 in
Appendix C.2.

4.2. Effects of Compression

Quantization Under Same Bit Budget. Figure 7 presents
a comparative analysis of model performance under equiva-
lent bit budgets. For instance, a 7B model in FP16 and a 14B
model in FP8/INT8 occupy similar memory footprints, en-
abling us to evaluate the effectiveness of quantization versus
training larger models from scratch at FP16 precision. While
this comparison cannot perfectly control for all variables
such as training data and quantization methods, it reveals
important trends. For smaller model sizes (1.5B-3B parame-
ters), base models trained from scratch with BF16 precision
generally demonstrate superior performance. However, as
model size increases to around 7B parameters, quantized
versions of larger models (e.g., AWQ-quantized 32B mod-
els) begin to show significant advantages. This suggests
that quantization becomes increasingly valuable for larger
model architectures, highlighting its crucial role in making
larger, more capable models practically deployable while
maintaining strong performance characteristics.

Model Compression Significantly Impacts Structured
Output Generation. Our experimental results in Table 8
demonstrate significant performance variations between
JSON and string format outputs under different compression
techniques. The analysis reveals that model performance
consistently degrades more severely when generating JSON-
structured outputs compared to string formats. As evidenced
in Figure 3, this performance disparity is particularly pro-
nounced in both InternLM2.5-7B and Qwen2.5-7B architec-
tures.

Quantization Preserves Tool Use Capabilities Better
Than Sparsification Methods. The empirical evidence
presented in Table 8 indicates that quantization approaches,
specifically GPTQ and AWQ, maintain model performance
more effectively than sparsification techniques such as
SparseGPT and Wanda. However, it is noteworthy that
Wanda (Sun et al., 2024c) achieves comparable performance
to quantization methods when implemented with unstruc-
tured pruning parameters.

Tool Use Capabilities Vary Significantly Across Model
Architectures. From Table 8, the experimental results re-
veal substantial performance differentials among model ar-
chitectures, with InternLM2.5-7B and Qwen2.5-7B demon-
strating superior tool use capabilities compared to Mistral-
7B. This observation suggests that architectural advance-
ments in newer models contribute significantly to enhanced
tool use proficiency.

Distillation from a reasoning model lead to performance
degradation in agent scenarios. Despite the theoretical
advantages of incorporating explicit reasoning processes,
our experiments with the DeepSeek-R1-Distilled variant of
Qwen2.5-7B reveal a degradation in performance. As shown
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Figure 6: Performance Evaluation of InternLM-2.5-7B and Qwen-2.5-7B Models Across Different Sparsification (left) and
Quantization (right) Techniques for Tool Use

Figure 7: Comparison of average F1 scores across different model sizes and configurations. The models are evaluated based
on their performance with approximately 1.5B, 3B, 7B, and 14B parameters. The configurations include AWQ(INT4), FP16,
GPTQ(INT4), GPTQ(INT8), and SmoothQ(W8A8). Each bar represents the average F1 score achieved by the respective
model configuration at different parameter sizes.

in Table 8, we observe a substantial decline in average accu-
racy from 70% to 43.6%, contradicting conventional expec-
tations regarding the benefits of knowledge distillation.

Compression Strategy Recommendations. Based on our
empirical analysis, quantization emerges as the most effec-
tive compression approach for maintaining tool use capabil-
ities across diverse scenarios. When available, GPTQ with
4-bit precision or FP8 representation demonstrates supe-
rior performance characteristics. For applications requiring
sparsification, our findings suggest that Wanda with 2:4 spar-
sity patterns provides an optimal trade-off between model
performance and compression efficiency.

5. Evaluation on Workflow Generation
5.1. Experimental Setups

Our experimental evaluation is conducted using Worf-
Bench (Qiao et al., 2024), a comprehensive benchmark that
employs a graph-based workflow representation. This frame-
work enables us to systematically assess both workflow gen-

eration capabilities and execution performance in multi-turn
conversational settings. The evaluation encompasses four
distinct categories of tasks: function calling, embodied in-
teraction, problem-solving, and open-grounded scenarios.
For compression techniques, we evaluate three quantization
methods - AWQ (Lin et al., 2023), GPTQ (Frantar et al.,
2022), and SmoothQuant (Xiao et al., 2023), alongside three
pruning approaches - Magnitude pruning, SparseGPT (Fran-
tar & Alistarh, 2023a), and Wanda (Sun et al., 2024b). De-
tailed experimental results are presented in Table 10 in Ap-
pendix C.4.

5.2. Effects of Compression

Model Compression Shows Minimal Impact on Work-
flow Generation Capabilities. Our experimental results, as
presented in Table 10, demonstrate that most compression
methods maintain model performance within a 5% degra-
dation margin, with only magnitude-based pruning show-
ing significant performance deterioration. This resilience
suggests that workflow generation tasks primarily rely on
high-level planning capabilities that remain largely intact
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Figure 8: Performance Comparison between DeepSeek-R1-Qwen2.5-7B and Qwen2.5-7B across four evaluation benchmarks.
The distilled version performs worse in most cases.

under compression. Among the evaluated architectures,
Mistral-7B and Qwen2.5-7B demonstrate notably superior
performance compared to InternLM2.5-7B, indicating that
architectural differences may be more influential than com-
pression effects.

Robust Performance Maintained for OS and Webshop
Tasks Under Compression. Our analysis reveals that mod-
els maintain approximately 80% performance across all
compression methods for operating system and e-commerce
tasks. This robustness likely stems from the structured na-
ture of these domains and the relatively constrained action
space. Based on these findings and considering the compute
efficiency trade-offs, we recommend GPTQ and AWQ as
optimal compression choices for these applications.

Model Size Influences Compression Sensitivity in Spe-
cialized Tasks. In Alfworld and Lumos tasks, which require
fine-grained language understanding and complex reason-
ing, we observe a clear correlation between model size
and compression resilience. Smaller architectures, such as
Qwen2.5-3B, experience substantial performance degrada-
tion of up to 50% under GPTQ and AWQ compression. In
contrast, larger models like Qwen2.5-32B maintain their per-
formance under quantization, occasionally showing slight
improvements. This suggests that larger models possess
redundant capacity that helps preserve critical capabilities
under compression.

Distilled Models Shows inferior Performance than undis-
tilled Version. Our evaluation of DeepSeek-R1 distilled
models reveals significant performance regression compared
to their undistilled versions. For example, DeepSeek-R1-
Distilled-Qwen2.5-7B achieves only a 20% average F1
score, substantially lower than the 44% achieved by the
undistilled Qwen2.5-7B. This counter-intuitive finding sug-
gests that current distillation techniques may not effectively
preserve complex reasoning capabilities. Interestingly, the
smaller DeepSeek-R1-Distilled-Qwen2.5-1.5B outperforms
its larger 7B and 8B counterparts, indicating that model
size alone does not determine distillation effectiveness. Fur-

thermore, we observe that the uncompressed Megrez-3B
demonstrates insufficient capability for workflow generation
tasks, highlighting the importance of architectural design
beyond parameter count.

6. Evaluation on Long-Context Understanding
6.1. Experimental Setups

We evaluate long-context capabilities across three bench-
marks: (1) LongBench (Bai et al., 2024), a multi-task
benchmark spanning Single/Multi-Doc QA, Code Compre-
hension, Synthetic Reasoning, Summarization, and Few-
shot Learning, with analyses of quantization (Table 3),
sparsification (Table 4), and small/distilled models (Ta-
ble 5); (2) LongGenBench (Liu et al., 2024a), designed
for extreme-length generation with multi-shot in-context
examples, tested via quantized/pruned models (Table 6)
and lightweight architectures (Table 7); (3) Needle-in-the-
Haystack (Kamradt, 2023), a retrieval-focused task probing
fine-grained contextual understanding, visualized across
varying context lengths in Appendix C.5.

6.2. Effects of Compression

LongBench Analysis: Our experimental results demon-
strate that quantization and sparsification exhibit minimal
impact on few-shot learning, synthetic task performance,
and code completion capabilities for models exceeding 7B
parameters. As evidenced by Table 3 and 4, most com-
pression methods induce negligible performance degrada-
tion, with the exception of magnitude-based sparsification.
However, smaller architectures (Qwen2.5-1.5B, Qwen2.5-
3B, MiniCPM-4B, and Gemma-2B) exhibit significantly re-
duced baseline capabilities, often failing to complete funda-
mental tasks even prior to compression. Notably, the Merge-
3B model achieves state-of-the-art performance among sub-
7B models. The DeepSeek-R1-Distilled series are particular
sensitivity to compression, with substantial performance
drop in single-document QA, multi-document QA, and syn-
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thetic tasks compared to uncompressed ones.

LongGenBench Findings: In a more challenging bench-
mark LongGenBench, AWQ consistently outperforms other
compression methodologies. While Wanda and SparseGPT
achieve competitive performance with AWQ on Qwen2.5-
7B (Table 7), this parity does not extend to InternLM2.5-
7B, where only AWQ maintains baseline-equivalent per-
formance. Intriguingly, compressed Qwen2.5-3B models
demonstrate MMLU scores comparable to 7B counterparts,
yet suffer catastrophic performance collapse in GSM8K
reasoning (61% → 11%). Smaller models (<3B) exhibit
near-zero accuracy on both MMLU and GSM8K. A notable
discrepancy emerges between Qwen2.5-7B (61% GSM8K,
64% MMLU) and its DeepSeek-R1-Distilled variant (near-
zero scores), suggesting that reasoning patterns may signifi-
cantly impact long-context comprehension capabilities.

Needle-in-the-Haystack Evaluation: Both quantization
and sparsification adversely affect long-context information
retrieval, as detailed in Appendix C.5. Magnitude-based
pruning induces particularly severe performance degrada-
tion. Our 40K-context experiments reveal consistent perfor-
mance boundaries at 32K tokens across all compressed mod-
els, suggesting architectural limitations inherent to LLM
designs and training paradigms.

7. Evaluation on Real-World Applications
7.1. Experimental Setup

Our empirical evaluation of compressed LLMs encompasses
real-world agent tasks utilizing the AgentBoard frame-
work (Ma et al., 2024). The evaluation spans three primary
domains: (1) Embodied AI, with a focus on the Science-
World environment for physical interaction simulation; (2)
Game Interaction, incorporating both Jericho text-based
adventures and PDDL planning scenarios; and (3) Tool Use,
which examines both tool querying and operational capa-
bilities. For more details, please refer to the experimental
results in Table 9 of Appendix C.3.

7.2. Effects of Compression

Compressed LLMs face significant challenges in han-
dling most real-world scenarios. Through comprehensive
evaluation detailed in Table 9, we assessed various quanti-
zation and pruning techniques applied to 7B LLMs. The
results demonstrate that these compressed models generally
exhibit substantial degradation in real-world task perfor-
mance. Among the compression methods evaluated, only
AWQ and Wanda maintained acceptable performance levels,
while alternative approaches showed marked deterioration
in capability across multiple task domains.

DeepSeek-R1-Distilled model series exhibited minimal

progress and success rates in practical applications. As
illustrated in Table 9, the distilled models experienced a
significant degradation in functional performance across
practical tasks. For instance, the progress rate on the Pddl
benchmark for the DeepSeek-R1-Distilled-Qwen2.5-7B
model dropped markedly from 33% to 1%. In contrast,
smaller models such as Qwen2.5-3B, when enhanced with
AWQ, achieved a 23% progress rate. This stark performance
gap can be attributed to two key factors. First, the DeepSeek-
R1 teacher model used for distillation lacked robust agentic
capabilities in its training, particularly for tool use and prac-
tical task execution. As a result, the distillation process
could not effectively transfer these crucial agentic skills
to the student model. Second, the limited model capacity
creates an inherent trade-off during distillation - when the
process prioritizes core reasoning skills like mathematical
problem-solving, it necessarily deprioritizes the preserva-
tion of agentic capabilities like function calling and tool
manipulation. As presented in Figure 8, we compare the
undistilled Qwen2.5-7B with its distilled counterpart across
LongBench, T-Eval, WorfBench, and AgentBoard, revealing
consistent degradation in practical task performance despite
improvements in traditional reasoning tasks. These findings
highlight the need to develop distillation techniques that can
better balance the preservation of both abstract reasoning
and practical agentic capabilities.

8. Conclusion
In this paper, we introduce ACBench, the first benchmark
for evaluating LLM compression’s impact on agentic capa-
bilities, including action execution, workflow generation,
long context understanding and some real-world applica-
tions. By introducing ERank, Top-k Correlation, and En-
ergy metrics, we systematize compression analysis for agent
tasks. ACBench provides a practical tool for efficient LLM
deployment, and inspires future LLM compression to focus
more on real-world LLM based agentic applications.

9. Limitations
Our study is limited to examining post-training quantization
and sparsification for agentic capabilities, and does not in-
volve quantization-aware training (QAT) approaches. We
restrict our analysis to compression methods compatible
with vLLM (Kwon et al., 2023), excluding promising tech-
niques like QuaRot (Ashkboos et al., 2024) due to their com-
putational overhead. Additionally, we employ default con-
figurations throughout our experiments without exploring
variations in parameters such as group size. Consequently,
our findings and recommendations should be interpreted
within the context of these specific experimental conditions
and may not necessarily extend to other scenarios or tasks.
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Impact Statement
The findings of this work have significant implications for
the future development and deployment of LLMs in real-
world agentic applications. By systematically evaluating the
impact of compression techniques on key agentic capabili-
ties, our work sheds light on the complex trade-offs involved
in compressing LLMs while preserving their performance
in critical tasks such as planning, reasoning, tool use, and
long-context understanding.

The introduction of the Agent Compression Benchmark
(ACBench) provides a foundational tool for the evaluation
of compressed models in agentic settings, an area that has
been largely overlooked in prior research. This benchmark
paves the way for more targeted research into optimizing
LLM compression for specific agent tasks, helping to bridge
the gap between state-of-the-art compression methods and
the practical requirements of real-world deployments.

Our comprehensive comparison of quantization and pruning
techniques highlights the importance of selecting appropri-
ate compression configurations based on the specific needs
of agentic tasks. The novel analytical tools we introduce,
including ERank, Top-k Ranking Correlation and Energy,
provide new insights into the internal workings of com-
pressed models and enable a more granular understanding
of the impact of compression on model performance and
decision-making.

This work has the potential to influence the design of more
efficient LLMs, allowing for their deployment in resource-
constrained environments where computational and memory
resources are limited. Furthermore, the ability to maintain
agentic capabilities even in compressed models will facili-
tate the broader adoption of LLMs in practical applications
such as robotics, autonomous systems, and interactive AI
agents. By providing a systematic framework for evaluating
and optimizing compressed LLMs, we hope to contribute to
the ongoing efforts to make AI models more accessible and
capable in real-world scenarios, paving the way for their

integration into a wide range of industries and applications.
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A. More Related Works
In this section, we provide more related works for the topics discussed in this paper.

A.1. LLM Compression

Broadly speaking, LLM compression comprises various techniques such as quantization, pruning, knowledge distillation,
low-rank decomposition, and more. These methods aim to reduce the size and computational requirements of large language
models without substantially sacrificing their performance. By employing these compression strategies, researchers and
practitioners can make LLMs more accessible and deployable in resource-constrained environments, thereby broadening
their applicability across different platforms and devices.

Pruning. Pruning (Frantar & Alistarh, 2023b; Sun et al., 2024c; Shao et al., 2024; Zhang et al., 2024d; Dong et al., 2024b;
Tang et al., 2020; Dong et al., 2024a; Lai et al., 2025) involves systematically removing less important parameters or
connections within a large language model (LLM) to reduce its size and computational requirements. This technique helps
enhance the model’s efficiency without significantly compromising its performance by eliminating redundancies. Pruning
can be categorized into several types, including unstructured pruning (Sun et al., 2024c; Shao et al., 2024), which targets
individual weights, and structured pruning (Molchanov et al., 2019; Ma et al., 2023; Kim et al., 2024), which removes entire
neurons, channels, or layers. Additionally, dynamic pruning (Zhang et al., 2024d; Han et al., 2015) methods adjust the
sparsity level during training or inference, allowing for more flexible compression tailored to specific deployment needs.
Research has shown that judicious pruning can maintain or even sometimes improve model generalization by removing
overfitting parameters.

Quantization. Quantization (Park et al., 2024; Frantar & Alistarh, 2022; Lee et al., 2024; Du et al., 2024a; Kim et al.,
2023; Lin et al., 2023; Dong et al., 2024c; Gu et al., 2025; Du et al., 2024b; Li et al., 2024f) reduces the precision of
the model’s weights and activations from high-precision formats (like 32-bit floating-point) to lower-bit representations
(such as 8-bit integers). This reduction in numerical precision helps decrease the model’s memory footprint and speeds
up inference times, making LLMs more deployable in resource-constrained environments. Quantization can be applied in
various forms, including uniform quantization, which uses the same scale for all weights, and non-uniform quantization,
which allows different scales for different layers or weight groups. Advanced techniques like quantization-aware training
(QAT) integrate the quantization process into the training phase, enabling the model to better adapt to lower precision and
mitigate performance degradation. Research in post-training quantization (PTQ) explores methods to quantize pre-trained
models without retraining, preserving accuracy while achieving significant compression.

Knowledge Distillation. Knowledge distillation (Hinton et al., 2015b; Li et al., 2024b; 2023b; Liu et al., 2023c; Tian
et al., 2022) is a process where a smaller, student model is trained to replicate the behavior of a larger, teacher model. By
transferring the knowledge from the teacher to the student, the resulting compressed model retains much of the performance
and capabilities of the original while being more efficient in terms of computation and memory usage. This technique
involves training the student model using a combination of the original training data and the outputs (such as logits or
probability distributions) produced by the teacher model. Various distillation strategies, including teacher-student learning
and self-distillation, have been developed to optimize the efficiency and effectiveness of the process. Recent advancements
focus on multi-teacher distillation, where multiple teacher models contribute to the training of a single student model,
enhancing the diversity and robustness of the compressed model.

Low-Rank Decomposition. Low-rank decomposition techniques (Yuan et al., 2023; Zhang et al., 2024b; Wang et al.,
2024e; 2025b) aim to approximate the weight matrices of LLMs with lower-rank matrices, effectively reducing the number
of parameters and computational operations required during inference. By decomposing large matrices into products of
smaller matrices, these methods exploit the inherent redundancy and low-rank structure present in many neural network
architectures. Singular Value Decomposition (SVD) is a widely used technique for low-rank approximation, where a matrix
is factorized into three components with reduced dimensionality. Other methods, such as tensor decomposition and matrix
factorization, have also been explored to facilitate efficient compression. Low-rank decomposition not only diminishes the
model size but also accelerates inference by simplifying the mathematical operations involved, making it a valuable tool for
deploying LLMs in real-time applications.
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A.2. LLM-based Agents

Large Language Model (LLM)-based agents like MetaGPT (Hong et al., 2023), AutoGen (Wu et al., 2023), AgentVerse (Chen
et al., 2023b), and MegaAgent (Wang et al., 2024b) are sophisticated AI systems that leverage the powerful natural language
understanding and generation capabilities of LLMs as their core reasoning engine to perform complex, autonomous tasks
through interaction with their environment. These agents typically integrate LLMs with additional components such as
planning modules, tool use capabilities, and memory systems to create more versatile and capable autonomous systems.
The combination of these elements allows LLM-based agents to not only generate human-like text but also engage in
goal-directed behavior, adapt to dynamic environments, and utilize external resources to achieve specified objectives.

LLM-based agents operate by receiving inputs or prompts that define their goals or tasks (Chen et al., 2024a; 2023a;
Tesfatsion, 2023; Wen et al., 2024; Chan et al., 2024; Park et al., 2023), processing this information through the LLM to
generate plans or actions (Chen et al., 2023a; Wang et al., 2024b;c), and then executing these actions in their environment.
For instance, an LLM agent designed for web navigation might interpret user queries, plan a sequence of web interactions to
gather information, and utilize browser automation tools to execute these interactions effectively. Similarly, an LLM agent
tasked with information gathering can autonomously search, retrieve, and synthesize data from various sources to provide
comprehensive insights or summaries.

Recent advancements in LLM-based agents have demonstrated remarkable abilities in diverse applications (Hong et al.,
2023; Wu et al., 2023; Chen et al., 2023b; Wang et al., 2024b;c), ranging from automated customer service bots that
can handle complex queries to virtual assistants capable of managing schedules, composing emails, and even providing
personalized recommendations. In more specialized domains, LLM agents have been employed for scientific research
assistance (Jennings et al., 1998; Chen et al., 2024a), coding support (Huang et al., 2023; Zhang et al., 2023a;b), and creative
content generation (Chen et al., 2024a; 2023a), showcasing their flexibility and adaptability.

However, the development and deployment of LLM-based agents also raise important considerations regarding reliabil-
ity (Zheng et al., 2023b; Huang et al., 2024a; Xue et al., 2024; Tonmoy et al., 2024), safety (Andriushchenko et al., 2024;
Tonmoy et al., 2024), and ethical implications (Hua et al., 2023; Andriushchenko et al., 2024). Ensuring that these agents
act responsibly and ethically requires robust mechanisms for oversight, error correction, and adherence to guidelines that
prevent misuse or unintended harmful behaviors. Moreover, the integration of planning and memory systems necessitates
careful design to maintain data privacy, security, and compliance with regulatory standards.

Furthermore, performance optimization and resource management (Dasgupta et al., 2023; Samsi et al., 2023a; Zhang
et al., 2024a; Xia et al., 2023; Liu et al., 2023a) are critical for the efficient functioning of LLM-based agents, especially
when deployed in environments with limited computational resources (Samsi et al., 2023a; Tang et al., 2019; Stojkovic
et al., 2024; You et al., 2022). Techniques such as distributed computing (You et al., 2022; Wilkins et al., 2024), edge
computing (Babakniya et al., 2023), token optimization (Liu et al., 2023a; Xue et al., 2024; Liu et al., 2024b; Zhang et al.,
2024a), and model compression (Dong et al., 2024b;c; Hinton et al., 2015a) strategies play a pivotal role in enhancing
the scalability and responsiveness of these agents, thereby facilitating their broader adoption across various industries and
applications.

A.3. Reasoning

Reasoning capabilities (Paul et al., 2023; Wei et al., 2022b; Wang et al., 2024c; 2022; Yao et al., 2024; Besta et al., 2024;
Luo et al., 2023; Zhou et al., 2023; Zhang et al., 2023d; Xu et al., 2023) in LLMs refer to their ability to process information
logically, make inferences, and arrive at conclusions through structured thought processes (Jiang et al., 2023b; Sun et al.,
2023; Zhou et al., 2023; Han et al., 2022; Sun et al., 2024a). This encompasses various forms of reasoning, including
deductive reasoning (drawing specific conclusions from general principles) (Han et al., 2022; Pan et al., 2023), inductive
reasoning (forming generalizations based on specific observations) (Sun et al., 2024a; Xu et al., 2024; 2023), and analogical
reasoning (applying knowledge from familiar situations to novel ones) (Xu et al., 2024; 2023; Amirizaniani et al., 2024).
The sophistication of reasoning in LLMs is primarily facilitated by their extensive training on diverse textual data, which
enables them to recognize patterns, understand contexts, and simulate logical progression (Han et al., 2022; Pan et al., 2023;
Xu et al., 2024).

Deductive reasoning (Xu et al., 2023) in LLMs allows them to apply established rules or premises to derive specific outcomes.
For example, given the premises ”All humans are mortal” and ”Socrates is a human,” an LLM can deduce that ”Socrates
is mortal.” Inductive reasoning (Sun et al., 2024a; Xu et al., 2024; 2023) enables LLMs to make generalized statements
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based on specific instances, such as inferring that ”The sun will rise tomorrow” based on past observations. Analogical
reasoning (Xu et al., 2024; 2023; Amirizaniani et al., 2024) involves drawing parallels between different scenarios, aiding
LLMs in transferring knowledge from one domain to another, which is particularly useful in problem-solving and creative
tasks.

Recent research has demonstrated that LLMs can showcase sophisticated reasoning abilities through techniques like chain-
of-thought prompting (Wei et al., 2022a; Yao et al., 2024; Besta et al., 2024), where the model generates intermediate
reasoning steps that lead to the final answer. This not only improves the transparency of the model’s decision-making
process but also enhances the accuracy of its responses. Self-consistency (Wang et al., 2023c;b; 2022) checking (Koa et al.,
2024; Shinn et al., 2024; Madaan et al., 2024; Li et al., 2024g; 2023c), another technique, involves generating multiple
reasoning paths (Leblond et al., 2021; Chakraborty et al., 2024) and selecting the most consistent or probable one, thereby
mitigating errors and improving reliability.

However, challenges persist in ensuring that LLMs maintain reliable and consistent logical reasoning across different
contexts and domains. Factors such as ambiguous inputs (Lee & Tiwari, 2024; Lu et al., 2023; Gehman et al., 2020), lack of
real-world grounding (Zheng et al., 2023a; Xie et al., 2024; Qin et al., 2023b), and limitations in factual knowledge (Li
et al., 2024a; Chen et al., 2022; Sachdeva et al., 2024) can impact the quality of reasoning. To address these issues, ongoing
research focuses on integrating structured reasoning frameworks (Sun et al., 2023; Luo et al., 2023; Jiang et al., 2023b),
enhancing model architectures to better capture logical relationships (Xu et al., 2024), and incorporating external knowledge
sources (Jeong et al., 2024; Soudani et al., 2024; Gao et al., 2023a; Chen et al., 2024b; Asai et al., 2024; Wang et al., 2023d;
Yu et al., 2024) that provide factual accuracy and context.

Moreover, the interpretability of reasoning in LLMs is a critical area of interest. Developing methods to visualize
and understand the internal reasoning processes of these models can lead to better insights into their decision-making
mechanisms, facilitating improvements in both performance and trustworthiness. Ensuring that LLMs can reason effectively
and transparently is essential for their application in high-stakes environments such as healthcare, law, and scientific research,
where accurate and explainable reasoning is paramount.

A.4. Planning

Planning capabilities (Zhou et al., 2023; Chen et al., 2023a; Song et al., 2023; Rivera et al., 2024; Valmeekam et al.,
2022; Zhang et al., 2023c) in LLMs involve the ability to break down complex tasks into manageable steps and determine
appropriate sequences of actions to achieve specific goals. This includes both high-level strategic planning and more detailed
tactical planning, enabling LLMs to approach problems systematically and execute multi-step processes effectively. The
integration of planning mechanisms enhances the autonomy and efficiency of LLM-based systems, making them more
robust and adaptable to a variety of applications.

Recent advances have shown that LLMs can engage in various forms of planning, from simple task decomposition (Li et al.,
2024c; Wang et al., 2024b), where a task is broken down into subtasks, to more complex hierarchical planning (Zhou et al.,
2023; Wang et al., 2024b) approaches that involve multiple layers of strategy and execution. Techniques like tree-of-thought
reasoning (Zhou et al., 2023) allow LLMs to explore different branches of possible actions and evaluate their outcomes,
fostering more informed decision-making (Xie et al., 2024). Recursive planning enables models to refine and adapt their
plans based on intermediate results or feedback, enhancing their ability to handle dynamic and uncertain environments.

Applications of planning in LLMs span various domains, including robotics (Song et al., 2023; Wang et al., 2023a;
Zhang et al., 2024c), where autonomous agents must navigate and interact with physical environments; software develop-
ment (Huang et al., 2024b), where complex coding tasks require structured approaches (Zhang et al., 2023c); and creative
industries (Xie et al., 2024), where planning is essential for content creation and project coordination. In each of these areas,
the ability to plan effectively enables LLMs to execute tasks with greater precision, efficiency, and reliability.

Continuous research and development are focused on refining planning algorithms (Hong et al., 2024; Zhou et al., 2023; Ge
et al., 2023), integrating advanced cognitive frameworks, and leveraging hybrid models that combine symbolic reasoning (Pan
et al., 2023; Wang et al., 2024d) with neural network-based approaches.

A.5. Tool Use

Tool use capability refers to an LLM’s ability to effectively utilize external tools and APIs (Zhang et al., 2023a; Schick
et al., 2024; Liu et al., 2023b; Patel et al., 2024; Tang et al., 2023a; Shi et al., 2024; Yang et al., 2023b; Qin et al., 2023b) to
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accomplish tasks beyond its native capabilities. This includes interfacing with web browsers, calculators, databases, and
other specialized software tools. By integrating external tools, LLMs can extend their functionalities, enabling them to
perform complex computational tasks, access up-to-date information, and interact with various systems seamlessly.

External tool integration involves several key components:

Selection of Appropriate Tools. LLMs must be capable of determining which tools are best suited for a given task. This
involves understanding the requirements of the task and matching them with the functionalities offered by available tools.
For instance, a task requiring numerical computations might prompt the use of a calculator API, while a task involving data
retrieval might utilize a database query tool (Qin et al., 2023b; Shi et al., 2024; Schick et al., 2024; Liu et al., 2023b; Zhang
et al., 2023a).

Constructing Valid API Calls. Once an appropriate tool is identified, the LLM must be able to construct valid API calls to
interact with the tool. This requires understanding the syntax and parameters of the API, as well as the ability to format
requests correctly (Qin et al., 2023b; Tang et al., 2023a; Shi et al., 2024). Proper API call construction ensures that the tool
is utilized effectively and returns the desired outcomes.

Interpreting Tool Outputs. After executing an API call, the LLM needs to interpret the output provided by the external
tool. This involves parsing the returned data, understanding its structure, and integrating it with the ongoing task or response
generation (Zhang et al., 2023a; Schick et al., 2023). Effective interpretation enables the LLM to provide coherent and
contextually appropriate results based on the tool’s output.

Recent developments have shown significant progress in enhancing LLMs’ tool use capabilities. Techniques such as
tool-specific fine-tuning (Schick et al., 2024; Liu et al., 2023b; Tang et al., 2023a; Shi et al., 2024), where models are trained
on the usage patterns of specific tools, have improved the accuracy and reliability of tool interactions. Additionally, the
incorporation of contextual understanding allows LLMs to dynamically select and switch between tools based on the task
requirements and the context in which the task is being performed.

Applications of tool use in LLMs are diverse and impactful (Zhang et al., 2023a; Schick et al., 2024; Qin et al., 2023b). In
customer service, LLMs equipped with tool use capabilities can access knowledge bases, perform troubleshooting steps, and
process transactions autonomously, providing efficient and effective support. In data analysis, LLMs can interface with
analytical tools and databases to perform complex queries, generate reports, and derive insights from large datasets. In
creative industries, tool integration enables LLMs to interact with content creation software (Zhang et al., 2023a), facilitating
tasks such as graphic design, video editing, and multimedia production (Liu et al., 2023b).

Furthermore, the ability to utilize tools enhances the problem-solving capabilities of LLMs, allowing them to address a
broader range of challenges by leveraging specialized functionalities that are beyond their inherent design (Shi et al., 2024;
Schick et al., 2024; Qin et al., 2023b). This synergy between LLMs and external tools leads to more robust, versatile, and
capable AI systems that can perform intricate tasks with higher accuracy and efficiency.

A.6. Retrieval Augmented Generation

Retrieval-Augmented Generation (RAG) is an advanced technique that enhances the capabilities of large language models
(LLMs) by integrating external knowledge sources during the generation process. Unlike traditional LLMs that rely solely
on the information encoded within their parameters, RAG leverages a retrieval component to fetch relevant documents or
data from expansive databases or knowledge bases (Jeong et al., 2024; Soudani et al., 2024; Gao et al., 2023a; Chen et al.,
2024b; Asai et al., 2024; Wang et al., 2023d; Yu et al., 2024). This approach addresses the limitations of fixed-parameter
models, enabling them to access up-to-date and domain-specific information dynamically.

The architecture of RAG typically comprises two primary components: a retriever and a generator (Jeong et al., 2024; Wang
et al., 2023d). The retriever utilizes dense or sparse retrieval methods to identify and extract pertinent information related to
a given query or prompt from the external corpus. Techniques such as dense vector representations (Pan et al., 2024), which
encode semantic similarities, or traditional keyword-based approaches, can be employed to optimize the retrieval process.
Once the relevant documents are retrieved, the generator, often powered by transformer-based architectures, assimilates this
information to produce coherent and contextually accurate responses.

One of the significant advantages of RAG is its ability to mitigate issues related to factual inaccuracies and hallucinations
commonly observed in generative models. By grounding the generation process in retrieved factual data, RAG models can
produce more reliable and verifiable outputs. This is particularly beneficial for applications in areas such as healthcare, legal,
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and scientific research, where precision and accuracy are paramount.

Recent advancements in RAG have focused on improving the integration between the retrieval and generation stages (Gao
et al., 2023b). Innovations such as end-to-end training frameworks allow the retriever and generator to be optimized jointly,
enhancing the overall performance and coherence of the generated content. Additionally, scalability challenges are being
addressed by developing more efficient retrieval mechanisms that can handle vast and diverse datasets without compromising
speed or accuracy.

Applications of Retrieval-Augmented Generation are diverse and rapidly expanding. In customer service, RAG-powered
chatbots can provide more informed and relevant responses by accessing a company’s knowledge base in real-time. In
academic research (Wang et al., 2023d; Zhang et al., 2023b; Gao et al., 2023b), RAG can assist in literature reviews by
retrieving and summarizing pertinent studies (Pipitone & Alami, 2024). Furthermore, in creative industries, such as content
creation (Wu et al., 2024a) and journalism (Wang et al., 2023d), RAG can aid in generating well-informed and contextually
rich narratives (Wu et al., 2024a).

A.7. Long Context

Processing and understanding long contexts is a formidable challenge in the realm of large language models (LLMs).
Traditional transformer architectures, while effective in handling short to moderately long sequences, face scalability issues
as the input length increases. This limitation arises primarily due to the quadratic complexity of self-attention mechanisms,
which hampers efficiency and computational feasibility for extended texts.

To overcome these challenges, several innovative approaches and architectural modifications have been proposed to enhance
the long-context capabilities of LLMs:

Sparse Attention Mechanisms Sparse attention reduces the computational burden by limiting the scope of attention to a
subset of tokens rather than considering all possible token pairs. Techniques such as Longformer’s sliding window attention
and BigBird’s combination of global and random attention patterns enable models to process longer sequences efficiently
while maintaining performance on downstream tasks.

Memory-Augmented Networks Memory-augmented models incorporate external memory structures that allow the model
to store and retrieve information across longer spans. Transformer-XL, for instance, introduces a recurrence mechanism that
reuses hidden states from previous segments, effectively extending the context window without a proportional increase in
computational resources.

Hierarchical Models Hierarchical approaches decompose the processing of long texts into multiple levels of abstraction.
By first encoding smaller chunks of text (e.g., sentences or paragraphs) and then aggregating these encodings at a higher
level, models can capture long-range dependencies more effectively. This method not only enhances comprehension but also
facilitates better information retention across lengthy documents.

Receptive Field Modifications Adjusting the receptive field of the attention mechanism allows models to maintain a
broadened scope of context without incurring significant computational costs. Techniques like dynamic attention span,
where the model learns the optimal span of attention based on the input, contribute to more flexible and efficient long-context
processing.

Efficient Positional Encoding Positional encodings play a crucial role in maintaining the order of tokens in sequences.
For long contexts, standard positional encodings become less effective. Innovations such as relative positional encodings
and rotary embeddings help preserve positional information over extended sequences, ensuring that the model retains a
coherent understanding of the text structure.

Segment-Based Processing Breaking down long documents into manageable segments and processing them iteratively is
another strategy to handle long contexts. This approach involves processing each segment independently while maintaining
a summary or representation that captures the essential information from previous segments. Models like Reformer employ
such techniques to sustain context over extended inputs.
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Adaptive Computation Adaptive computation strategies allow models to allocate computational resources dynamically
based on the complexity and relevance of different parts of the input. By focusing more on critical segments and allocating
fewer resources to less pertinent sections, models can efficiently manage long contexts without compromising performance.

The ability to effectively handle long contexts is pivotal for numerous applications, including document summarization (Jiang,
2024), in-depth question answering, narrative generation, and complex dialogue systems. Enhancing long-context processing
not only improves the performance of LLMs on tasks requiring extended reasoning and memory but also expands their
applicability across diverse domains where understanding large volumes of information is essential.

Continuous research and development in this area are driving the evolution of more sophisticated models that can seamlessly
integrate and interpret long-range dependencies, ultimately leading to more intelligent and contextually aware AI systems.

B. Detailed Experiment Settings
B.1. Details of Quantization and Sparsification

For our quantization and sparsification experiments, we evaluated several state-of-the-art compression methods across
different model architectures:

Quantization Methods We employed two primary quantization approaches: (1) AWQ (Activation-aware Weight Quanti-
zation) (Lin et al., 2023), which adaptively determines quantization parameters based on activation patterns during inference;
and (2) GPTQ (Frantar et al., 2022), a post-training quantization method that uses second-order information to optimize
quantization parameters. We employed the LLMC (Gong et al., 2024) framework for unified quantization and aligned the
settings in LLMC.

Sparsification Methods We investigated both structured and unstructured pruning approaches: (1) Magnitude Pruning,
both unstructured (Mag(Un)) and structured 2:4 (Mag(2:4)) variants, which remove weights based on their absolute values;
(2) Wanda (Sun et al., 2024b), applied in both unstructured (Wanda(Un)) and structured 2:4 (Wanda(2:4)) configurations,
offering layer-wise adaptive pruning; and (3) SparseGPT (Frantar & Alistarh, 2023a), implemented in unstructured
(SparseGPT(Un)) and structured 2:4 (SparseGPT(2:4)) formats, using gradient information for pruning decisions. We
employed Wanda (Sun et al., 2024b) as the repository for Magnitude, Wanda, and SparseGPT.

All compression methods were applied to pre-trained models without additional fine-tuning. For structured pruning, we
maintained the 2:4 sparsity pattern (50% sparsity) across all layers. Unstructured pruning targeted similar overall sparsity
levels but allowed for flexible weight removal patterns.

B.2. Details of Small Language Models and Distilled Models

We evaluated several categories of compressed models:

Small Language Models (1) Qwen2.5-3B (Yang et al., 2024b), a smaller variant of Qwen, evaluated with both AWQ
and GPTQ quantization; (2) Megrez-3B, a 3B parameter model showing strong performance on multi-doc QA tasks;
(3) MiniCPM-4B (Hu et al., 2024), a compact model optimized for efficiency; (4) Gemma-2B (Team, 2024b), Google’s
lightweight model focused on general-purpose tasks; and (5) Phi-3.5 (Li et al., 2023d), Microsoft’s small-scale model
emphasizing reasoning capabilities.

Distilled Models We examined three DeepSeek distilled models (Team, 2024a): (1) DeepSeek-R1-Distill-LLama3.1-8B, a
distilled version of LLaMA, showing moderate performance on few-shot learning tasks; (2) DeepSeek-R1-Distill-Qwen2.5-
1.5B, a heavily compressed version of Qwen, optimized for efficiency; and (3) DeepSeek-R1-Distill-Qwen2.5-7B, a larger
distilled variant maintaining better performance than its smaller counterpart. All models were evaluated across various tasks,
including long-context understanding, tool use, and real-world applications, to assess their capabilities and limitations under
different scenarios.

B.3. Details of Tool Use Experiments

We mainly employ the T-Eval (Chen et al., 2023c) to conduct experiments. In this dataset, 15 tools were carefully selected
from domains such as Research, Travel, Entertainment, Web, Life, and Financials, ensuring high availability and usage
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rate, as well as complete documentation. The dataset includes 553 high-quality query-solution annotation pairs, resulting
in a total of 23,305 test cases across the Instruct, Plan, Reason, Retrieve, Understand, and Review subsets. The dataset is
designed to provide a comprehensive and fine-grained evaluation of tool utilization capabilities, with an average of 5.8 tool
calling steps per query, ensuring generalization and discrimination for tool utilization evaluation.

B.4. Details of Long Context Understanding Experiments

LongBench: LongBench (Bai et al., 2024) is a comprehensive benchmark for evaluating the long-context capabilities of
LLMs. It consists of 12 tasks across five categories: Single-Doc QA, Multi-Doc QA, Summarization, Few-shot Learning, and
Synthetic tasks. The benchmark features documents ranging from 2K to 32K tokens in length. Single-Doc QA tasks include
NarrativeQA and Qasper, which test comprehension of long narratives and scientific papers. Multi-Doc QA encompasses
HotpotQA and MultiNews, evaluating cross-document reasoning. The summarization tasks (e.g., GovReport, QMSum)
assess models’ ability to distill key information from lengthy documents. Few-shot learning tasks test the model’s capacity to
learn from examples within extended contexts, while synthetic tasks measure specific capabilities like information retrieval
and counting in long sequences. The benchmark spans diverse domains including healthcare, legal, scientific research, and
creative writing, providing a comprehensive evaluation of long-context understanding.

LongGenBench: LongGenBench (Liu et al., 2024a) is a synthetic benchmark designed to evaluate long-context generation
capabilities of language models. Unlike existing long-context benchmarks that focus primarily on retrieval-based tasks (e.g.,
locating specific information within large input contexts), LongGenBench specifically targets a model’s ability to produce
coherent, contextually accurate, and structurally sound text over extended outputs. The benchmark supports customizable
context length configurations and evaluates models on generating single, unified long-form responses. This fills an important
gap in long-context evaluation by providing a standardized framework for assessing generation rather than just retrieval
capabilities. The benchmark enables systematic analysis of how different model architectures handle the challenges of
maintaining coherence and accuracy in long-form text generation.

Needle-in-the-haystack: This benchmark (Kamradt, 2023) specifically tests models’ ability to locate and utilize critical
information embedded within lengthy contexts. The test suite includes documents ranging from 4K to 64K tokens, with
key information deliberately placed at varying positions (beginning, middle, end) and with different levels of surrounding
distractor content. Tasks include fact retrieval, where specific details must be located within long documents; reasoning
chains, where multiple pieces of information must be connected across the document; and verification tasks, which test
the model’s ability to find evidence supporting or contradicting given claims. The benchmark employs various document
structures (narrative, technical, dialogue) and information patterns (explicit statements, implicit connections, numerical
data) to comprehensively evaluate information retrieval capabilities in long contexts. Performance is measured not only on
accuracy but also on efficiency in identifying relevant information without being misled by distractors.

B.5. Details of Workflow Generation Experiments

In this paper, we employ WorfBench (Qiao et al., 2024) to evaluate the workflow generation capabilities, which encompass
planning and reasoning processes. WorfBench is a comprehensive benchmark containing 18k training samples, 2146
test samples, and 723 held-out tasks across four types of scenarios: function call, problem-solving, embodied planning,
and open-grounded planning. The benchmark features multi-faceted scenarios and complex graph-structured workflows,
addressing limitations of existing benchmarks that focus only on linear workflows. WorfBench is accompanied by WorfEval,
a systematic evaluation protocol that uses subsequence and subgraph matching algorithms to accurately quantify workflow
generation abilities. This evaluation framework has revealed significant gaps between linear and graph planning capabilities
in current LLMs, with even advanced models showing up to 15% performance differences. The benchmark’s diverse
scenarios and evaluation metrics make it particularly suitable for assessing both the quality of generated workflows and their
practical applicability in real-world tasks.

B.6. Details of Real-World Applications Experiments

In this paper, we employ the AgentBoard (Ma et al., 2024) to evaluate real-world applications. The benchmark is designed
to comprehensively evaluate large language models (LLMs) as generalist agents, comprising a diverse set of 9 unique
tasks and 1013 environments. These tasks cover a wide range of scenarios, including embodied AI tasks (AlfWorld,
ScienceWorld, BabyAI), game environments (Jericho, PDDL), web-based tasks (WebShop, WebArena), and tool-oriented
tasks (Tool-Query, Tool-Operation). Each environment is carefully crafted to ensure multi-round interactions and partially

25



Can Compressed LLMs Truly Act? An Empirical Evaluation of Agentic Capabilities in LLM Compression

Figure 9: Performance comparison of sparse compression methods on tool use tasks

observable characteristics, with subgoals defined or annotated to track detailed progress. The benchmark also introduces a
fine-grained progress rate metric to capture incremental advancements, providing a more nuanced evaluation beyond just the
final success rate. Additionally, AgentBoard offers an open-source evaluation framework with an interactive visualization
panel to support detailed analysis of agent abilities across various dimensions.

C. More Experiment Results
C.1. Long-Context Understanding

Table 3 presents a comparative analysis of the AWQ and GPTQ quantization methods applied to two large language models
(LLMs), InternLM2.5-7B and Qwen2.5-7B, across various long-context understanding tasks sourced from LongBench.

For InternLM2.5-7B, the application of the AWQ results in significant performance enhancements across most evaluated
tasks. Specifically, in Single-Doc QA tasks such as NrtvQA, Qasper, and MF-en, AWQ boosts the scores from 0 to 25.08,
29.27 to 45.16, and 22.92 to 47.72, respectively. Similarly, in Multi-Doc QA and Summarization tasks, AWQ consistently
improves performance metrics, with notable increases in TriviaQA (from 48.1 to 84.69) and Code Completion (from 50
to 99.5). In contrast, the GPTQ method yields more modest improvements. While GPTQ enhances some scores, such as
Qasper from 29.27 to 30.16 and MF-en from 22.92 to 30.04, the gains are less pronounced compared to AWQ. Additionally,
GPTQ shows slight decreases in certain areas, such as Lcc, which drops from 58.2 to 56.62.

Examining Qwen2.5-7B, both AWQ and GPTQ quantization methods demonstrate varying levels of performance enhance-
ment. AWQ provides consistent, albeit smaller, improvements across most tasks. For example, Qasper increases from 13.12
to 14.18, and MF-en decreases slightly from 30.29 to 26.12. On the other hand, GPTQ offers substantial performance
gains in several areas, notably increasing Qasper from 13.12 to 38.94 and MF-en from 30.29 to 47.53. However, similar to
InternLM2.5-7B, GPTQ also results in slight performance declines in specific tasks, such as a reduction in Lcc from 62.28
to 57.44.

Overall, AWQ tends to provide more stable and consistent improvements across a broad range of tasks for both models,
making it a reliable choice for enhancing long-context understanding capabilities. GPTQ, while offering significant boosts
in certain key areas, presents more variability in performance outcomes. These findings suggest that the choice between
AWQ and GPTQ should be informed by the specific performance requirements and the nature of the tasks at hand.

Table 4 presents a detailed comparison of various sparsification methods applied to InternLM2.5-7B and Qwen2.5-7B
across different long-context understanding tasks from LongBench. For InternLM2.5-7B, unstructured sparsification
methods consistently outperform their structured (2:4) counterparts across most tasks. Among the unstructured approaches,
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Figure 10: Performance comparison of quantization methods on tool use tasks

Table 3: Performance Comparison of AWQ and GPTQ Quantization Methods on Long-Context Understanding Tasks from
LongBench

LLMs Quantization Single-Doc QA Multi-Doc QA Summarization Few-shot Learning Synthetic Task Code Completion
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InternLM2.5-7B
- 0 29.27 22.92 4.43 22.51 15.26 12.8 16.04 12.15 24.03 9.82 41.5 48.1 18.53 21.75 50 0 58.2

AWQ 25.08 45.16 47.72 36.52 36.18 25.6 26.26 28.64 24.17 25.82 17.21 69.5 84.69 30.88 42.5 99.5 0 61.68
GPTQ 12.29 30.16 30.04 18.53 37.22 21.75 25.84 16.51 11.98 24.21 10.03 40.75 56.04 17.52 20.75 50 0.05 56.62

Qwen2.5-7B
- 7.99 13.12 30.29 10.78 10.42 32.32 33.96 21.85 24.93 17.3 74 85.17 49.48 42.5 98.67 62.28

AWQ 8.4 14.18 26.12 11.84 10.95 7.36 33.3 33.16 21.72 24.57 17.26 74 87.73 46.17 41.75 93.75 1.43 59.52
GPTQ 28.34 38.94 47.53 54.53 38.88 21.73 30.77 33.31 24.16 25.84 18.26 72.5 89.04 45.45 42.08 95 8 57.44

Wanda(un) demonstrates superior performance, achieving the highest scores in several categories including NrtvQA (23.94),
Qasper (41.21), and MF-en (45.07). The model also maintains strong performance in synthetic tasks and code completion,
with scores of 99.5 for PRE and 58.49 for Lcc respectively. SparseGPT(un) follows closely behind, showing particularly
strong results in Multi-Doc QA tasks.

For Qwen2.5-7B, the performance pattern differs notably. Magnitude pruning, both structured and unstructured, shows
significant degradation across most tasks, with scores dropping to near-zero in many cases. However, SparseGPT and
Wanda methods maintain relatively robust performance. Wanda(un) achieves the best overall performance, particularly in
Single-Doc QA tasks (16.3 for NrtvQA) and code completion metrics (45.14 for Lcc). SparseGPT(un) also demonstrates
strong performance, especially in few-shot learning tasks, achieving 89.35 on TriviaQA and maintaining high scores on
synthetic tasks (92.54 on PRE).

Table 5 presents a comprehensive evaluation of small language models and distilled DeepSeek models on LongBench.
Among the small models, Qwen-3B demonstrates strong performance across most tasks, particularly when quantized with
GPTQ, maintaining comparable performance to its base model. For instance, GPTQ-quantized Qwen-3B achieves 21.39 on
NrtvQA and 49.29 on MF-en, showing minimal degradation from the base model’s 22.05 and 49.6 respectively. However,
AWQ significantly impacts its performance, with near-zero scores on several tasks.

Megrez-3B (Infinigence, 2024) stands out among small models with exceptional performance on multi-doc QA tasks (67.62
on HotpotQA, 57.7 on 2WikiMQA) and few-shot learning (82.5 on TREC). In contrast, newer models like MiniCPM-4B,
Gemma-2B, and Phi-3.5 show limited capabilities on long-context tasks, particularly struggling with single-doc and multi-
doc QA tasks. The distilled models (DeepSeek-LLama-8B, DeepSeek-Qwen-1.5B, DeepSeek-Qwen-7B) generally show
moderate performance, with DeepSeek-LLama-8B performing better on few-shot learning tasks (87.55 on TriviaQA) but all
showing significant degradation in QA and summarization tasks compared to their teacher models.
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Table 4: Performance Comparison of Sparsification Methods Across Different Tasks for InternLM2.5-7B and Qwen2.5-7B
on LongBench

LLMs Sparification Single-Doc QA Multi-Doc QA Summarization Few-shot Learning Synthetic Task Code Completion

Nrtv
QA

Qasp
er

M
F-en

Hotp
otQ

A

2W
iki

M
QA

M
us

iqu
e

Dure
ad

er

Gov
Rep

ort

QM
Sum

M
ult

iN
ew

s

VCSum
TREC

Triv
iaQ

A

SAM
Sum

LSHT
PRE

Pco
un

t
Lcc

RB-P

In
te

rn
L

M
2.

5-
7B

Mag(2:4) 8.01 17.88 33.58 24.72 23.35 12.42 15.62 16.31 21.13 21.47 6.74 45.5 58.54 30.11 20.5 66.85 3.96 26.76 38.06
Mag(un) 18.49 23.11 39.73 31.59 25.29 19.37 20.67 28.44 25.39 26.2 13.59 60.5 79.26 29.28 27.5 96.25 3.33 49.72 45.66

SparseGPT(2:4) 9.58 23.01 29.03 15.39 26.57 13.23 11.55 19.03 16.72 23.12 10.75 55.33 70.84 26.35 41.5
SparseGPT(un) 21.16 40.13 44.44 34.21 35.69 21.22 26.78 30.85 24.74 26.11 16.57 65 84.43 22.49 42.5 99 0.45 49.42 49.31

Wanda(2:4) 19.34 34.45 44.19 25.98 25.61 13.53 27.6 27.49 25.42 24.59 14.8 67.5 83.55 31.63 42.25 99 0.5 31.45 41.53
Wanda(un) 23.94 41.21 45.07 32.65 34.06 20.1 29.63 29.61 25.23 25.87 18.05 65 87.44 23.75 41 99.5 0 58.49 51.94

Q
w

en
2.

5-
7B

Mag(2:4) 0.72 1.08 3.25 2.43 2.49 1.48 8.01 1.85 1.9 3.23 3.65 16 9.21 2.92 14 0.25 0 12.36 12.01
Mag(un) 0.84 0.28 4.77 1.81 2.95 0.53 9.89 1.43 1.72 2.01 11.3 36.5 21.87 10.96 18 0.5 0 10.6 16.59

SparseGPT(2:4) 3.36 9.16 24.45 11.2 10.92 6.3 26.1 30.5 23.45 26.16 14.63 69 84.76 43.75 42 75.46 5.12 30.41 35.92
SparseGPT(un) 4.95 12.59 27.35 11.82 12.27 6.39 29 33.52 22.67 25.77 16.47 69.5 89.35 45.51 39 92.54 3.11 39.7 42.13

Wanda(2:4) 2.21 6.32 23.28 8.91 9.27 5.4 32.43 28.61 24.01 26.06 16.17 76.5 84.39 43.1 44.5 83.23 2.46 39.34 42.19
Wanda(un) 16.3 11.81 29.32 10.86 11.86 7.7 33.19 32.13 24.43 26.97 17.03 75.5 88.7 46.11 41.5 93.92 1.02 45.14 46

Table 5: Performance Comparison of Small Language Models and Distilled DeepSeek Models on LongBench

LLMs Compression Single-Doc QA Multi-Doc QA Summarization Few-shot Learning Synthetic Task Code Completion
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Qwen-3b
- 22.05 35.12 49.6 46.82 37.33 20.5 34.92 33.71 25.44 25.3 15.66

AWQ 0 10.41 13.78 1.29 3.5 0 0 2.84 0.11 21.39 2.62 14.5 9.7 6.96 0 0 0 44.46 5.75
GPTQ 21.39 33.77 49.29 45.74 39.02 23.9 32.61 34.1 26.44 25.62 15.49 68.5 83.08 44.72 41 23 2.5 50.41 51.47

Qwen-1.5b
- 21.22 37.77 49.38 41.74 32.58 23.24 30.84 30.58 24.87 25.8 15.88 74 84.08 44.02 35 29.5 2.5 37.56 45.67

AWQ 0 11.99 15.86 1.62 4.72 0 0 2.79 0.06 22.26 2.69 13.5 10.16 6.26 0 0 0 20.22 3.2
GPTQ 0 13.04 13.21 1.62 4.14 0 0 2.62 0.08 22.55 2.67 12.5 10.56 6.53 0 0 0 28.14 4.84

Megrez-3b - 23.7 42.74 50.45 67.62 57.7 44.31 49.43 38.33 21.81 20.08 15.44 82.5 1 38.34 80 94 18.5 0 0.31
MiniCPM-4b - 0 13.81 12.99 1.12 2.89 0 0 2.23 0.12 21.01 2.85 11 9.25 1.37 0 0 0 37.29 0.84
Gemma-2b - 0 21.82 20.58 4.26 13.54 0.62 0.91 7.18 1.55 22.33 2.46 28.25 18.95 8.5 0.75 0 0 56.6 13.02

Phi-3.5 - 0 12.74 13.26 0.91 2.77 0 0.05 2.07 0.09 20.2 0.35 24.5 16.04 4.17 4.5 0 0 50.97 16.18

DS-LLama-8b Distilled 3.62 9.24 12.5 2.57 7.6 1.77 16.31 27.55 17.65 22.42 11.75 67.5 87.55 42.73 44 0 1.5 45.07 46.34
DS-Qwen-1.5b Distilled 4.54 12.32 16.29 5.77 6.3 3.73 6.5 15.02 8.54 8.04 10.95 51 46.46 32.72 20.25 4.75 0.05 30 35.28
DS-Qwen-7b Distilled 3.45 9.77 11.95 2.8 7.68 2.01 12.7 26.8 16.72 22.18 13.14 66.5 78.42 35.59 23.75 1 0.83 37.92 41.79

Table 6 presents the performance comparison of various quantization and sparsification methods on LongGenBench. For
Qwen2.5-7B, AWQ achieves the best performance among all compression methods, with 52.67 on GSM8K and 64.39 on
MMLU, which is very close to the base model’s performance (61.33 and 64.65 respectively). However, magnitude-based
pruning methods (both unstructured and 2:4) completely fail on these tasks, achieving 0 scores. Wanda and SparseGPT show
moderate performance degradation, with unstructured variants generally performing better than 2:4 structured pruning. For
InternLM2.5-7B, most compression methods lead to significant performance drops, with only AWQ maintaining reasonable
performance (6.50 on GSM8K and 59.12 on MMLU compared to base model’s 10.50 and 61.49).

Table 6: Performance Comparison of Quantization and Sparsification Methods on LongGenBench

LLM Compression GSM8K MMLU LLM Compression GSM8K MMLU

Qwen2.5-7B

Base 61.33 64.65

InternLM2.5-7B

Base 10.50 61.49
Mag(Un) 0.00 0.00 Mag(Un) 1.67 4.91
Mag(2:4) 0.00 0.00 Mag(2:4) 0.00 0.00
Wanda(Un) 35.00 57.54 Wanda(Un) 7.00 7.02
Wanda(2:4) 2.17 37.02 Wanda(2:4) 3.33 3.33
SparseGPT(Un) 18.00 58.86 SparseGPT(Un) 6.00 10.09
SparseGPT(2:4) 7.67 43.16 SparseGPT(2:4) 0.17 1.23
GPTQ 47.50 37.28 GPTQ 5.50 10.18
AWQ 52.67 64.39 AWQ 6.50 59.12

C.2. Tool Use

In Table 8, we present a comprehensive evaluation of various compression methods across different LLMs on tool use tasks.
The results reveal several key findings: (1) InternLM2.5-7B demonstrates strong overall performance, with AWQ achieving
the best results (68.6%) among compression methods, closely followed by GPTQ (71.8%) and the base model (71.4%).
(2) For Mistral-7B, unstructured pruning methods (Mag(Un), SparseGPT(Un), Wanda(Un)) generally outperform their
structured counterparts, though with lower absolute performance compared to InternLM2.5-7B. (3) Qwen2.5-14B shows
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Table 7: Performance Comparison of Small Language Models and DeepSeek Distilled Models on LongGenBench

LLM Compression GSM8K MMLU

Qwen2.5-1.5B
GPTQ(W8) 3.67 32.89
GPTQ(W4) 1.17 35.61
AWQ 2.17 16.49

Qwen2.5-3B
GPTQ(W8) 11.83 54.39
GPTQ(W4) 11.83 50.18
AWQ 14.67 51.93

Small LM Phi-3.5 3.33 -1.00
Megrez-3b 1.67 6.14

Distilled LM
DS-Qwen-7b 0.00 0.00
DS-Qwen-1.5b 0.00 0.09
DS-LLama-8b 3.67 2.28

impressive resilience to compression, with SparseGPT(Un) maintaining performance close to FP16 (77.0% vs 77.5%). (4)
Among smaller models, Qwen2.5-7B exhibits strong performance with AWQ and GPTQ (around 70%), while distilled
models generally underperform. (5) Across all models, string format tasks typically see better performance than JSON
format, suggesting that compression methods better preserve natural language processing capabilities compared to structured
format handling.

C.3. Real-World Applications

The AgentBoard evaluation results in Table 9 reveal several key insights about model compression performance. For
Qwen2.5-7B, AWQ and GPTQ maintain relatively strong performance compared to the base model, with AWQ achieving
19.73% and 47.16% on Jericho and Tool-query tasks, respectively. However, magnitude-based pruning (Mag) shows
significant degradation, dropping to near 0% across most tasks. For InternLM2.5-7B, the base model performs moderately
with 14.23% on Jericho and 31.64% on Tool-query, but compression methods like Wanda and SparseGPT see notable drops
in performance. Distillation approaches (DeepSeek-Qwen-7B, DeepSeek-Qwen-1.5B, DeepSeek-LLama-8B) show very
poor performance across all tasks, suggesting that knowledge distillation may not be suitable for these complex agent-based
scenarios. Overall, the results indicate that while quantization methods like AWQ and GPTQ can maintain reasonable
performance, aggressive pruning and distillation lead to significant capability loss on agent-based tasks.

C.4. Workflow Generation

The WorfBench evaluation results in Table 10 reveal several key insights about model compression performance. For
Qwen2.5-7B, quantization methods like AWQ and GPTQ maintain relatively strong performance with F1 scores around
0.44-0.46, while pruning methods like Wanda and SparseGPT achieve similar F1 scores in the 0.46 range. However,
magnitude-based pruning (Mag) shows complete degradation with 0.00 F1 scores across all tasks. Larger models like
Qwen2.5-32B demonstrate better compression robustness, with AWQ and GPTQ maintaining F1 scores around 0.69-0.71
compared to the base model’s 0.72. Distillation approaches (DeepSeek-R1-Distill models) show significant performance
drops with F1 scores between 0.20-0.43. The results suggest that while quantization methods can effectively compress
models with minimal performance impact, aggressive pruning and distillation lead to substantial capability loss on workflow
generation tasks.

C.5. Needle-in-the-haystack Test

The needle-in-haystack test results reveal several key insights about model compression methods and their impact on
long-range attention capabilities. For InternLM-2.5-7B (Figure 11), we observe that while GPTQ and AWQ maintain
relatively stable attention patterns similar to the base model, Wanda and SparseGPT exhibit some degradation in capturing
long-range dependencies, particularly beyond the 20k token range. Magnitude pruning shows the most severe impact, with
significant attention pattern distortion. For Qwen-2.5-7B (Figure 12), the results demonstrate better compression robustness,
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InternLM-2.5-7B Base Model (Uncompressed) InternLM-2.5-7B with GPTQ

InternLM-2.5-7B with AWQ InternLM-2.5-7B with Wanda (2:4)

InternLM-2.5-7B with Magnitude (2:4) InternLM-2.5-7B with SparseGPT (2:4)

Figure 11: Visualization of attention patterns in needle-in-haystack tests across different compression methods for InternLM-
2.5-7B. The heatmaps demonstrate how various compression techniques affect the model’s ability to maintain attention over
long sequences (40k tokens), with darker colors indicating stronger attention weights.

with both GPTQ and AWQ preserving attention patterns remarkably well across the full 40k context. However, structured
pruning methods like Magnitude and SparseGPT still show noticeable degradation in long-range attention. The smaller and
distilled models (Figure 13) generally exhibit weaker long-range attention capabilities compared to their larger counterparts,
though DeepSeek-Qwen-7B shows promising results in maintaining attention patterns. These visualizations highlight the
trade-offs between model compression and the preservation of long-range attention mechanisms, suggesting that careful
selection of compression methods is crucial for maintaining model performance on long-context tasks.

C.6. Logits Visualization

Figure 14 presents a comprehensive visualization of logits distributions across different sequence positions in compressed
models. The analysis reveals how the models’ prediction confidence and token probability distributions evolve throughout
the sequence. At early positions (token 2), we observe relatively focused distributions, indicating strong initial predictions.
As we progress through the sequence (tokens 82 and 134), the distributions become more diverse, suggesting that the models
maintain their ability to consider multiple plausible continuations. Notably, even at later positions (tokens 184, 225, and
246), the compressed models demonstrate stable logits patterns, indicating that they preserve their predictive capabilities
across longer contexts. This visualization helps validate that model compression techniques maintain coherent probability
distributions across sequence lengths.

C.7. Energy Visualization

Figure 15 illustrates the energy distributions across different sequence positions in compressed models. The visualization
reveals interesting patterns in how the models’ energy landscapes evolve throughout token generation. At the initial position
(token 1), we observe a relatively concentrated energy distribution, suggesting focused model attention. As the sequence
progresses through intermediate positions (tokens 64 and 117), the energy distributions show increased spread, indicating the
models maintain flexibility in considering multiple possible token paths. At later positions (tokens 175, 244, and 252), the
energy patterns remain stable and well-structured, demonstrating that the compressed models preserve their energy-based
decision-making capabilities even in longer sequences. This analysis validates that our compression techniques successfully
maintain the models’ ability to capture meaningful energy landscapes across different sequence lengths.
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Qwen-2.5-7B Base Model (Uncompressed) Qwen-2.5-7B with GPTQ

Qwen-2.5-7B with AWQ Qwen-2.5-7B with RTN

Qwen-2.5-7B with Magnitude (2:4) Qwen-2.5-7B with SparseGPT (2:4)

Figure 12: Comparative analysis of attention patterns in Qwen-2.5-7B under different compression schemes. The visualiza-
tions illustrate the preservation or degradation of attention mechanisms across a 40k token context window, highlighting the
varying impacts of different compression methods on long-range dependency modeling.

DeepSeek-Qwen-1.5B DeepSeek-Qwen-7B

Qwen-1.5B with GPTQ (INT4) Qwen-1.5B with GPTQ (INT8)

Qwen-3B with GPTQ (INT4) Megrez-3B

Figure 13: Attention pattern analysis for smaller and distilled models across 40k context length. The visualizations
demonstrate the varying capabilities of different model architectures and sizes in maintaining coherent attention patterns
over long sequences, with particular focus on the effects of model distillation and parameter efficiency.
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Table 8: Performance Comparison of Quantization and Sparsification Methods on Tool Use Tasks under String and JSON
Formats

LLMs Compression Instruct Plan Reason Retrieve Understand Review OverallString Json String Json String Json String Json String Json Choice
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Mag(2:4) 27.2 13.3 29.3 0.6 41.4 5.0 73.2 1.6 62.8 7.9 10.5 24.8
Mag(Un) 57.8 73.2 27.7 23.1 59.2 19.6 86.4 20.6 73.2 24.2 60.6 47.8
SparseGPT(2:4) 73.2 33.3 26.6 0.1 52.0 12.8 71.1 8.0 41.6 9.8 64.1 35.7
SparseGPT(Un) 84.5 80.3 42.4 62.3 63.6 39.7 90.9 47.4 74.7 41.5 57.3 62.2
Wanda(2:4) 78.5 46.4 50.6 11.2 59.6 21.9 95.8 18.1 59.7 21.4 61.4 47.7
Wanda(Un) 83.7 90.6 49.0 72.4 66.3 32.6 96.5 42.2 76.4 39.5 62.0 64.7
AWQ 98.6 98.7 48.5 45.3 65.8 46.5 85.6 66.7 79.6 56.3 63.2 68.6
FP16 98.6 98.6 44.3 73.7 67.5 51.0 85.7 66.4 81.9 56.0 70.4 72.2
FP8 98.6 98.6 44.3 73.7 65.9 50.3 83.3 65.5 79.4 55.1 70.4 71.4
GPTQ 96.5 98.4 53.9 76.2 66.9 44.5 93.7 56.9 81.2 49.5 72.5 71.8
Base 98.6 98.6 44.3 73.7 65.9 50.3 83.3 65.5 79.4 55.1 70.4 71.4

M
is

tr
al

-7
B

Mag(2:4) 3.9 0.3 22.5 0.7 38.1 0.5 45.4 0.2 0.0 1.0 16.0 11.7
Mag(Un) 0.4 4.2 44.9 33.4 42.5 3.8 37.1 7.1 0.0 6.0 54.4 21.3
SparseGPT(2:4) 3.6 15.3 43.6 9.9 46.1 3.5 41.0 2.8 0.1 3.7 10.9 16.4
SparseGPT(Un) 92.0 40.8 59.2 56.6 45.8 8.2 28.9 13.9 0.0 13.7 77.8 39.7
Wanda(2:4) 74.4 30.8 42.1 51.0 44.9 2.5 48.2 1.0 0.1 4.3 21.6 29.2
Wanda(Un) 88.8 27.3 61.8 70.1 47.0 7.5 29.3 9.8 0.1 9.0 68.4 38.1
AWQ 28.7 0.0 43.9 0.0 53.0 4.7 85.4 7.3 43.9 7.2 1.8 25.1
FP16 28.7 0.0 43.9 0.0 54.8 5.0 88.1 7.5 45.2 7.4 1.8 25.7
FP8 28.7 0.0 43.9 0.0 53.0 4.7 85.4 7.3 43.9 7.2 1.8 25.1
GPTQ 28.7 0.0 43.9 0.0 53.0 4.7 85.4 7.3 43.9 7.2 1.8 25.1

Q
w

en
2.

5-
14

B

FP16 98.8 98.5 68.6 82.4 65.0 64.3 94.5 78.7 69.9 67.4 64.3 77.5
Mag(2:4) 11.7 2.8 29.3 4.0 32.6 5.3 62.5 5.7 34.8 4.5 17.0 19.1
Mag(Un) 85.8 59.6 59.4 54.8 49.0 15.1 74.4 19.5 50.4 15.0 72.9 50.5
SparseGPT(2:4) 80.0 43.9 52.1 7.0 60.4 31.1 73.0 24.2 68.3 27.0 83.0 50.0
SparseGPT(Un) 98.3 98.5 67.4 84.8 63.1 60.3 89.4 77.2 67.6 67.3 73.5 77.0
Wanda(2:4) 90.0 63.3 61.0 73.8 61.0 45.2 90.4 51.5 69.6 43.2 78.6 66.1

Q
w

en
2.

5-
7B

AWQ 95.0 53.3 67.6 69.8 63.5 57.5 94.9 72.0 62.5 62.4 72.9 70.1
FP16 95.0 53.3 67.0 66.7 63.5 57.8 94.8 72.1 62.4 62.8 74.1 70.0
FP8 95.0 53.3 67.0 66.7 63.5 57.8 94.8 72.1 62.4 62.8 74.1 70.0
GPTQ 80.5 75.7 65.3 72.8 62.1 59.3 91.4 74.7 63.9 64.8 70.4 71.0
Mag(2:4) 0.0 0.0 7.0 0.0 14.8 0.0 20.0 0.0 0.9 0.1 0.6 3.9
Mag(Un) 0.1 0.1 2.0 0.0 15.2 0.0 47.6 0.2 14.1 0.1 0.6 7.3
SparseGPT(2:4) 27.5 23.4 59.2 6.1 55.8 33.2 90.2 34.5 68.4 32.0 60.0 44.6
SparseGPT(Un) 56.3 52.6 66.2 68.2 61.3 50.0 92.5 55.6 65.1 48.1 67.8 62.2
Wanda(2:4) 38.4 39.1 63.0 33.8 60.4 44.7 89.7 45.3 68.1 44.2 57.7 53.1
Wanda(Un) 68.2 51.6 65.3 32.6 62.0 54.1 95.2 65.2 68.5 57.9 64.3 62.3

DS-LLama-8B FP16 6.1 1.0 37.7 15.2 60.3 34.3 76.8 31.7 0.0 28.0 8.8 27.3
DS-Qwen-1.5B FP16 10.8 13.8 33.3 8.7 42.4 24.7 55.2 16.9 49.6 16.6 5.1 25.2
DS-Qwen-7B FP16 44.6 54.0 42.2 22.8 54.1 42.3 71.6 37.8 66.7 34.0 9.2 43.6

32



Can Compressed LLMs Truly Act? An Empirical Evaluation of Agentic Capabilities in LLM Compression

Table 9: Task Performance Comparison Across Models and Compression Methods on AgentBoard

LLMs Compression Jericho Pddl Tool-query Tool-Operation Scienceworld
P S P S P S P S P S

Qwen2.5-7B

- 8.21% 0.00% 33.56% 13.33% 44.00% 18.33% 20.00% 0.00% 26.79% 12.22%
Wanda(Un) 11.22% 0.00% 14.00% 3.33% 38.79% 8.33% 15.04% 0.00% 14.98% 6.67%
Wanda(2:4) 1.25% 0.00% 0.56% 0.00% 11.86% 0.00% 3.79% 0.00% 1.80% 0.00%
SparseGPT(Un) 17.39% 0.00% 20.13% 3.33% 35.87% 8.33% 16.58% 0.00% 14.78% 3.33%
SparseGPT(2:4) 5.71% 0.00% 7.46% 1.67% 20.41% 0.00% 7.46% 0.00% 7.89% 0.00%
Mag(Un) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Mag(2:4) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
GPTQ 12.56% 0.00% 22.89% 10.00% 42.27% 15.00% 15.71% 0.00% 26.41% 13.33%
AWQ 19.73% 0.00% 27.14% 13.33% 47.16% 25.00% 21.46% 0.00% 17.33% 5.56%

InternLM2.5-7B

- 14.23% 0.00% 17.64% 0.00% 31.64% 8.33% 7.67% 0.00% 13.91% 2.22%
Wanda(Un) 6.96% 0.00% 9.96% 1.67% 30.67% 3.33% 18.00% 0.00% 9.79% 1.11%
Wanda(2:4) 0.71% 0.00% 10.72% 1.67% 10.28% 1.67% 14.92% 0.00% 0.00% 0.00%
SparseGPT(Un) 6.34% 0.00% 3.67% 0.00% 18.89% 0.00% 14.63% 0.00% 8.98% 2.22%
SparseGPT(2:4) 0.00% 0.00% 0.00% 0.00% 15.77% 0.00% 1.25% 0.00% 0.00% 0.00%
Mag(Un) 4.55% 0.00% 4.44% 1.67% 18.40% 0.00% 14.00% 0.00% 3.58% 0.00%
Mag(2:4) 4.58% 0.00% 0.00% 0.00% 11.03% 0.00% 1.33% 0.00% 0.00% 0.00%
GPTQ 12.68% 0.00% 25.29% 6.67% 21.69% 5.00% 14.21% 0.00% 15.12% 4.44%
AWQ 11.22% 5.00% 18.67% 3.33% 34.48% 8.33% 2.08% 0.00% 13.81% 3.33%

DS-Qwen-7b Distilled 1.96% 0.00% 1.11% 0.00% 8.52% 0.00% 2.67% 0.00% 2.57% 0.00%
DS-Qwen-1.5b Distilled 3.21% 0.00% 0.00% 0.00% 5.65% 0.00% 4.67% 0.00% 0.00% 0.00%
DS-LLama-8b Distilled 0.00% 0.00% 0.00% 0.00% 1.07% 0.00% 0.87% 0.00% 1.24% 0.00%

Qwen2.5-3B GPTQ 11.31% 0.00% 14.61% 3.33% 30.37% 11.67% 13.20% 0.00% 17.40% 3.20%
AWQ 8.84% 0.00% 23.35% 6.67% 30.65% 6.67% 7.00% 0.00% 16.82% 2.22%

Table 10: Task Performance Comparison Across Models and Compression Methods on WorfBench

Alfworld Lumos OS ToolAlpaca ToolBench Webshop AverageLLMs Compression P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

SmoothQ(W8A8) 0.46 0.56 0.48 0.51 0.64 0.57 0.77 0.92 0.81 0.03 0.04 0.03 0.00 0.00 0.00 0.81 0.70 0.75 0.43 0.48 0.44
GPTQ(INT4) 0.48 0.54 0.48 0.50 0.63 0.56 0.77 0.93 0.83 0.02 0.02 0.02 0.00 0.00 0.00 0.81 0.69 0.74 0.43 0.47 0.44
AWQ(INT4) 0.55 0.58 0.54 0.51 0.64 0.57 0.77 0.91 0.81 0.07 0.07 0.07 0.00 0.00 0.00 0.81 0.70 0.74 0.45 0.48 0.46
Wanda(Un) 0.55 0.55 0.52 0.67 0.73 0.70 0.73 0.84 0.75 0.08 0.08 0.08 0.00 0.00 0.00 0.79 0.69 0.73 0.47 0.48 0.46
Wanda(2:4) 0.53 0.49 0.49 0.63 0.68 0.65 0.82 0.84 0.79 0.09 0.09 0.08 0.00 0.00 0.00 0.78 0.67 0.71 0.47 0.46 0.46
SparseGPT(Un) 0.49 0.51 0.48 0.62 0.68 0.65 0.78 0.91 0.82 0.08 0.07 0.07 0.00 0.00 0.00 0.80 0.71 0.74 0.46 0.48 0.46
SparseGPT(2:4) 0.60 0.45 0.50 0.59 0.66 0.63 0.82 0.81 0.78 0.09 0.10 0.09 0.00 0.00 0.00 0.82 0.70 0.75 0.49 0.45 0.46

Qwen2.5-7B

Mag(2:4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GPTQ(INT8) 0.39 0.36 0.36 0.41 0.39 0.40 0.72 0.87 0.76 0.61 0.73 0.64 0.68 0.76 0.68 0.76 0.64 0.68 0.60 0.62 0.59
GPTQ(INT4) 0.37 0.35 0.34 0.39 0.37 0.38 0.69 0.90 0.76 0.48 0.68 0.54 0.66 0.73 0.66 0.73 0.62 0.64 0.55 0.61 0.55

Qwen2.5-3B

AWQ(INT4) 0.41 0.42 0.40 0.42 0.38 0.40 0.75 0.86 0.78 0.57 0.71 0.61 0.69 0.76 0.69 0.28 0.30 0.28 0.52 0.57 0.53
GPTQ(INT4) 0.52 0.58 0.53 0.64 0.64 0.64 0.81 0.89 0.83 0.69 0.68 0.66 0.78 0.77 0.75 0.80 0.69 0.74 0.71 0.71 0.69
AWQ(INT4) 0.56 0.62 0.57 0.69 0.68 0.69 0.82 0.90 0.83 0.74 0.71 0.70 0.74 0.77 0.72 0.81 0.69 0.74 0.72 0.73 0.71

Qwen2.5-32B

- 0.55 0.62 0.57 0.69 0.68 0.68 0.84 0.91 0.85 0.74 0.71 0.70 0.76 0.79 0.75 0.82 0.71 0.75 0.73 0.74 0.72
GPTQ(INT4) 0.28 0.22 0.24 0.36 0.38 0.37 0.36 0.54 0.42 0.43 0.40 0.40 0.24 0.30 0.26 0.49 0.42 0.45 0.36 0.38 0.36
AWQ(INT4) 0.60 0.58 0.57 0.76 0.67 0.71 0.81 0.89 0.82 0.66 0.66 0.63 0.70 0.66 0.66 0.80 0.70 0.74 0.72 0.69 0.69

Qwen2.5-14B

- 0.55 0.59 0.54 0.71 0.70 0.70 0.82 0.88 0.83 0.63 0.67 0.62 0.77 0.74 0.73 0.79 0.67 0.72 0.71 0.71 0.69
GPTQ(INT8) 0.62 0.52 0.54 0.66 0.71 0.68 0.80 0.84 0.79 0.44 0.66 0.50 0.44 0.68 0.51 0.81 0.70 0.75 0.63 0.68 0.63
GPTQ(INT4) 0.63 0.45 0.51 0.70 0.69 0.69 0.77 0.84 0.78 0.45 0.64 0.50 0.50 0.73 0.58 0.82 0.71 0.76 0.65 0.68 0.64

Qwen2.5-1.5B

AWQ(INT4) 0.61 0.50 0.53 0.61 0.69 0.65 0.78 0.82 0.77 0.39 0.69 0.48 0.39 0.62 0.46 0.82 0.70 0.75 0.60 0.67 0.61
SmoothQ(W8A8) 0.64 0.63 0.61 0.66 0.68 0.67 0.67 0.85 0.72 0.00 0.00 0.00 0.00 0.00 0.00 0.77 0.70 0.73 0.46 0.48 0.46
GPTQ(INT8) 0.62 0.63 0.61 0.67 0.70 0.68 0.66 0.83 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.77 0.70 0.72 0.45 0.48 0.45
GPTQ(INT4) 0.54 0.57 0.54 0.66 0.69 0.68 0.67 0.86 0.73 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.70 0.74 0.45 0.47 0.45

Mistral-7B-v0.3

AWQ(INT4) 0.59 0.63 0.59 0.67 0.70 0.69 0.72 0.86 0.76 0.00 0.00 0.00 0.00 0.00 0.00 0.79 0.69 0.73 0.46 0.48 0.46
Wanda(Un) 0.00 0.00 0.00 0.00 0.00 0.00 0.69 0.75 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.13 0.12
Wanda(2:4) 0.20 0.19 0.19 0.01 0.00 0.01 0.74 0.77 0.73 0.00 0.00 0.00 0.00 0.00 0.00 0.41 0.35 0.38 0.23 0.22 0.22
SparseGPT(Un) 0.48 0.46 0.46 0.01 0.01 0.01 0.71 0.83 0.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.22 0.20
SparseGPT(2:4) 0.33 0.47 0.38 0.34 0.36 0.34 0.63 0.78 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.76 0.65 0.70 0.34 0.38 0.35
Mag(Un) 0.00 0.00 0.00 0.00 0.00 0.00 0.54 0.46 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.08 0.08

InternLM-2.5-7B

Mag(2:4) 0.00 0.00 0.00 0.00 0.00 0.00 0.68 0.65 0.64 0.00 0.00 0.00 0.00 0.00 0.00 0.53 0.45 0.48 0.20 0.18 0.19

DS-R1-Distill-Qwen-7B Distilled 0.00 0.00 0.00 0.01 0.01 0.01 0.69 0.88 0.75 0.12 0.22 0.15 0.24 0.40 0.28 0.00 0.00 0.00 0.18 0.25 0.20
DS-R1-Distill-Qwen-1.5B Distilled 0.16 0.30 0.20 0.54 0.63 0.56 0.69 0.85 0.73 0.24 0.51 0.32 0.05 0.07 0.05 0.80 0.68 0.73 0.41 0.51 0.43
DS-R1-Distill-Llama-8B Distilled 0.05 0.04 0.05 0.00 0.01 0.00 0.80 0.81 0.77 0.16 0.28 0.19 0.31 0.44 0.34 0.36 0.31 0.33 0.28 0.31 0.28

Megrez-3Btruct - 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.82 0.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.14 0.12
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Logits Distribution at token 2 Logits Distribution at token 82 Logits Distribution at token 134

Logits Distribution at token 184 Logits Distribution at token 225 Logits Distribution at token 246

Figure 14: Logits distribution visualization across different sequence positions in compressed models

Energy Distribution at token 1 Energy Distribution at token 64 Energy Distribution at token 117

Energy Distribution at token 175 Energy Distribution at token 244 Energy Distribution at token 252

Figure 15: Energy distribution analysis at various sequence positions in compressed models
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