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ABSTRACT

In recent years softmax, together with its fast approximations, has become the de-
facto loss function for deep neural networks with multiclass predictions. However,
softmax is used in many problems that do not fully fit the multiclass framework and
where the softmax assumption of mutually exclusive outcomes can lead to biased
results. This is often the case for applications such as language modeling, next-
event prediction, and matrix factorization, where many of the potential outcomes
are not mutually exclusive, but are more likely to be conditionally independent
given the state. To this end, for the set of problems with positive and unlabeled data,
we propose Partially Mutual Exclusive Softmax (PMES), a relaxation of the original
softmax formulation, where, given the observed state, each of the outcomes are
conditionally independent but share a common set of negatives. Since we operate
in a regime where explicit negatives are missing, we create a cooperatively-trained
model of negatives, and derive a new negative sampling and weighting scheme
which we call Cooperative Importance Sampling (CIS). We show empirically the
advantages of our newly introduced negative sampling scheme by plugging it
into the Word2Vec algorithm and evaluating it extensively against other negative
sampling schemes on both language modeling and matrix factorization tasks, where
we show large lifts in performance.

1 INTRODUCTION

Learning from positive and unlabeled data is a well-defined task in machine learning, known as
positive-unlabeled (PU) learning (Elkan & Noto (2008); Li & Liu (2003); Lee & Liu (2003); Ren
et al. (2014); Paquet & Koenigstein (2013)). The applications of PU learning are numerous, as in
many fields negative data is either too expensive to obtain or too hard to define. This is the case
in language modeling, where one only observes examples of valid sentences and documents, and
tries to learn a generative process. Similarly, in computer vision, with the recent work on Generative
Adversarial Networks (GANs), one tries to learn the underlying generative process that produces
meaningful images. In both cases, the space of negatives (e.g., non-sentences or non-images) is not
clear. Similarly, in matrix factorization, most of the matrices contain pairs of observed interactions,
and there are no available explicit negatives.

In all of the applications enumerated above, it is quite common to encounter solutions that are based
on a softmax loss function. In language modeling, and more recently in matrix factorization, the
Word2Vec algorithm (see Mikolov et al. (2013a)) models the conditional probability of observing all
possible items in the vicinity of a context item as a categorical distribution using the softmax loss.

However, modeling the probability of co-occurrence as a categorical distribution is a very biased
assumption that is clearly refuted by the data, since for all context words there are multiple words
that co-occur at the same time.

In our paper we propose Partially Mutual Exclusive Softmax (PMES), a new model that relaxes the
mutual exclusivity constraint over the outcomes. PMES relaxes this constraint by splitting the set of
all outcomes into a set of possible outcomes that are conditionally independent given the context, and
a set of impossible outcomes which become negative examples.
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The context-dependent negative set is hypothesized but not known, so in our method we introduce a
model for negatives that is used to weight the sampled candidate negatives. The training algorithm is
based on the simultaneous training of two neural networks. The first network is a generator that fits
the positives and the sampled negatives. The second network is the discriminator, which is trained to
separate the true positive pairs from generated pairs, and is used as the model of the probability that
an example would receive a negative label.

The resulting solution has many similarities with other recent negative sampling methods for approx-
imating full softmax. However, unlike most of the previous methods, our method is not trying to
faithfully approximate the full softmax formulation, but to fix some of its over-simplifying assump-
tions. Furthermore, we believe that the observed lift in performance of some of the negative sampling
work over the full softmax can be explained through the prism of Partially Mutual Exclusive Softmax.

Our hypothesis is further confirmed by experiments on language modeling and matrix factorization,
where we show a big lift in performance over previous work on negative sampling and full softmax.
We validate some of our intuitions on the advantages of our sampling procedure on an artificial
dataset where the support sets are known, and show that our sampling scheme correctly approximates
the support, which is not the case for other softmax variants.

Overall, the main contributions of this paper are the following:

• We propose Partially Mutual Exclusive (PME) Softmax, a modified version of the softmax
loss that is a better fit for problems with positive and unlabeled data.

• We derive a new negative sampling scheme based on an cooperatively-trained models of
negatives which we denote as Cooperative Importance Sampling (CIS)

• We show empirically the validity of our proposed approach by plugging our new loss into the
Word2Vec model, and evaluating this enhanced Word2Vec model against classical sampling
schemes for Word2Vec on language modeling and matrix factorization tasks across six
real-world datasets.

We discuss related work on Word2Vec, negative sampling schemes for softmax and GANs in Section
2 of this paper. In Section 3 we formally introduce our PME-Softmax loss and the associated CIS
negative sampling scheme, and describe the training algorithm. We highlight the performance of our
method in Section 4, and conclude with ideas and directions for future work in Section 5.

2 RELATED WORK

2.1 WORD2VEC, SOFTMAX AND NEGATIVE SAMPLING SCHEMES

With the introduction of Word2Vec, Mikolov et al. (2013b;a) achieved state-of-the-art results in terms
of the quality of the words embeddings for various language modeling tasks. In the last couple of
years, Word2Vec became a widely embedding method, that is used in various setups from language
modeling to matrix factorization. Since then, it is important to note the progress made in improving
words embeddings (Bojanowski et al. (2016); Pennington et al. (2014)), especially more recently
with the FastText model (Joulin et al. (2016)) that also leverages n-gram features.

When dealing with the training of multi-class models with thousands or millions of output classes,
one can replace softmax by candidate sampling algorithms. Different methods can speed up the
training by considering a small randomly-chosen subset of candidates for each batch of training
examples. Gutmann & Hyvärinen (2010) introduced Noise Contrastive Estimation (NCE) as an
unbiased estimator of the softmax loss, and it has been shown to be efficient for learning word
embeddings Mnih & Teh (2012). In Mikolov et al. (2013b), the authors propose a negative sampling
loss not to approximate softmax and but to learn high-quality vectors. Defined in Bengio et al.
(2003), sampled softmax can also be used to train these language models. Benchmarked in ((Bengio
& Senécal, 2008; Jean et al., 2014)), the authors have have shown state-of-the-art results in terms
of performance and time complexity. Indeed, sampled softmax avoids computing scores for every
possible continuation. Here, one chooses a proposal distribution from which it is cheap to sample,
and performs a biased importance sampling scheme for approximating the softmax.
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Most previous work has focused on generic sampling methods such as uniform sampling and unigram
sampling. More recently, in Chen et al. (2018), the authors provide an insightful analysis of negative
sampling. They show that negative samples that have high inner product scores with the context
word are more informative in terms of gradients on the loss function. They show analytically and
empirically the benefits of sampling from the unigram distribution. Leveraging this analysis, the
authors propose a dynamic sampling method based on inner-product rankings.

2.2 GANS

First proposed by in 2014 in Goodfellow et al. (2014), GANs have been quite successful at generating
realistic images (Ledig et al. (2016); Radford et al. (2015); Miyato et al. (2018)). GANs can be
viewed as a framework for training generative models by posing the training procedure as a minimax
game between the generative and discriminative models.

Our approach leverages recent work on discrete GANs. Bose et al. (2018) describes an approach for
adversarial contrastive estimation, where discrete GANs are leveraged to implement an adversarial
negative sampler. However, our approach differs as in our method, called cooperative importance
sampling, both the generator and the discriminator are trained to work cooperatively.

3 OUR APPROACH

3.1 CONCEPTS AND NOTATION

We begin this section by formally defining the task. We denote by I and J two sets of objects. These
objects can potentially represent sets of users, items or words. Given an i ∈ I sampled uniformly
from I , we denote by P (.|i) the unknown conditional generative process that generates the set of
j ∈ J and by X the resulting joint distribution over I × J . In our data, we assume that we only
observe a finite sample of pairs (i, j) ∼ X .

We denote G = {Gθ}θ∈Θ as the family of functions, with parameters Θ ⊂ Rp. The model Gθ takes
an input in I × J and outputs a score Gθ(i, j) ∈ R. The objective is to learn a generative model Gθ
that fits the conditional process observed in the data.

3.2 SOFTMAX ASSUMPTION : MODELING THE DATA AS A 1D RANDOM VECTOR

Usually, one tries to model the process X with a softmax formulation (see eq 1), defining a multino-
mial distribution P (.|i) ∈ P (J). Therefore, for a given context i and any two targets (j1, j2), P (j1|i)
and P (j2|i) are not independent since the sum of all conditional probabilities over the target set must
sum to 1. That means, that under this formulation, the probability of observing j2 given we already
observed j1 in the context of i goes to zero. We denote this property mutual exclusivity.

∀i ∈ I, gθ(j|i) =
exp(Gθ(i, j))

exp(Gθ(i, j)) +
∑
j′∈J\j exp(Gθ(i, j′))

(1)

In order to fit this model, for a given i ∈ I , one tries to perform Kullback-Leibler divergence
minimization between the true distribution P (.|i) and the model of the distribution gθ:

argmin
θ∈Θ

KL(Pi||gθ(.|i)) = argmax
θ∈Θ

Ej∼Pi [ln (gθ(j|i))] (2)

argmax
θ∈Θ

Ej∼Pi Gθ(i, j)− ln
∑
j′∈J

exp(Gθ(i, j
′)) (3)

In the case of multi-class and single-label tasks it is natural to use the softmax formulation. However,
when it comes to language modeling and sequence prediction, most of the tasks fall in the multi-
labeled settings. For a given context i, one does not observe one target item j but rather a subset of
target items {j1, ..., jk} ∈ Jk. For example, in a word2vec setting, the subset of targets is defined by
the sliding window parameter. We generalize the current formulation to the multi-labeled settings as
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follows:

P ({j1..jk}|i) =

k∏
x=1

gθ(jx|i), with
∑
j∈J

gθ(j|i) = 1 (4)

Inspired from textual analysis, Ueda & Saito (2003); Blei et al. (2003) suggested that words in
sequences can be regarded as a mixture of distributions related to each of the different categories of
the vocabulary, such as "sports" and "music". Building upon this example, we effectively search over
an enlarged class of models to better represent the multiplicity of the data. As detailed in the next
subsection, we now train a product of independent distributions to learn this set generative process.

3.3 PME SOFTMAX : MODELING THE DATA AS A N-DIMENSIONAL RANDOM VARIABLE

We propose to directly model the joint conditional distribution over a set of target items. More
formally, we now model the output P (.|i) as a n-dimensional (n = card(J)) random vector
of Bernoulli random variables, each with a parameter gθ(j|i). Consequently, for a given set
{j1, ..., jk} ∈ Jk, k 6 n, we have:

P ({j1..jk}|i) =

k∏
x=1

gθ(jx|i) with no constraint on
∑
j∈J

gθ(j|i) (5)

The problem now is to find the right parameter gθ(j|i) of each Bernoulli variable. We assume that :

∀(i, j) ∈ I × J, gθ(j|i) =
exp(Gθ(i, j))

exp(Gθ(i, j)) +
∑
j′∈¬j exp(Gθ(i, j′)))

(6)

where ¬j is the set of items mutually exclusive with j given i.

It is not obvious how to define the set ¬j. Softmax assumes that all other events are mutually
exclusive and we would like to relax this assumption.

Partially Mutual Exclusive Softmax For a pair (i, j), only a subset of words are very unlikely to
co-occur with i given that the target j already co-occurs with i. For example, we assume that words
that share the same grammatical category or semantic context with j might not co-occur with i. As
a first version, we simplify this model by assuming that for every context i ∈ I , there is a set of
negatives that will not co-occur with i independently of the observed target word j. This means that
we model gθ(j|i) with the following PME-Softmax formulation:

∀(i, j) ∈ I × J, gθ(j|i) =
exp(Gθ(i, j))

exp(Gθ(i, j)) +
∑
j′∈¬Si exp(Gθ(i, j′))

(7)

where Si is defined as the true but unknown support set of items j possibly co-occuring with i.
Contrary to the softmax formulation, for all items j in Si, each Bernoullis with parameter gθ(j|i) are
independent.

In this formulation, the normalization factor is computed over the positive pair (i, j) and the sum
of the probabilities over the negative pairs. However, since in reality we do not have access to the
support Si, we replace it with a probabilistic model Di. In this way we replace the exact formulation
of the PME-Softmax with a probabilistic one, where all of the j′ items sampled are weighted by the
probability Di(j) of being in the negative set:

Probabillistic Partially Mutual Exclusive Softmax

∀(i, j) ∈ I × J, gθ(j|i) =
exp(Gθ(i, j))

exp(Gθ(i, j)) +
∑
j′∈Vi exp(Gθ(i, j′))×Di(j′)

(8)

where Di is the probabilistic model of ¬Si and Vi is a given subset of targets. This loss is very close
to the Sampled Softmax loss defined in Bengio et al. (2003) but is not an approximation of softmax.
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3.4 THE COOPERATIVE GAME

In order to have a model of these negatives, we leverage recent work on GANs by training simultane-
ously a generator and a discriminator.

We denote D = {Dα}α∈A as the family of functions, with parameters A ⊂ Rp. The model Dα takes
an input (i, j) ∈ I×J and outputs a scoreDα(i, j) ∈ R. Dα is be trained with a binary cross-entropy
loss function (BCE), to discriminate between positive data sampled from X and negatives sampled
by our generator.

argmax
α∈A

E(i,j)∼X ln σ(Dα(i, j)) +

k∑
j=1

Ej∼gθ(.|i) [ln σ(−Dα(i, j))] (9)

where σ is the sigmoid function.

In our sampling model, for a given i ∈ I , we use the modeled softmax conditional distribution
gθ(.|i) ∈ P (J) to sample negatives. It is true that sampling with gθ requires computing the score
for every possible continuation, but it is an effective way to sample negatives that are close to the
decision boundary. However, as the model improves during training, the likelihood of sampling
positives gets higher. To fix this, Dα is used in a second step, to oversample the samples that are true
negatives. This model called cooperative importance sampling, has the following training loss:

argmax
θ∈Θ

E(i,j)∼X Gθ(i, j)− ln

∑
j∈V

exp(Gθ(i, j))× σ(−D(i, jk))

 (10)

where V := {j}
⋃
{j1, ..., jn}, j1, ..., jn ∼ gθ(.|i).

Improved gradient via g and D Intuitively, we want to find true hard negatives that will be
informative in terms of gradient. Ideally, we would only sample negatives that are mutually exclusive
with j given the context i. When deriving the sampled softmax loss, we have the following gradient:

∇Gθ(i, j)−
∑

(i,j)∈V

p
θ,α
∣∣V (j|i)∇Gθ(i, j) (11)

where p
θ,α
∣∣V (j|i) = exp(Gθ(i,j))×Dα(i,j)∑

j∈V exp(Gθ(i,j))×Dα(i,j) , a distribution whose support lies in V .

We see that if the negatives sampled are too easily distinguishable from real data, then they will be
far from the decision boundary, have low gradients and therefore will not enable Gθ to improve itself.
Consequently, our sampling method guarantees to have meaningful samples, and D ensures us to
oversample the true negatives in V .

3.5 ALGORITHM

A description of our algorithm can be found in Algorithm 1. We empirically show improvements
with this procedure in the following section.

4 EXPERIMENTS

We compare our CIS negative sampling scheme against full softmax and the negative schemes listed
below on three types of datasets, namely a 2D artifical dataset where we know the true support, a
text datasets on which we evaluate word ranking, word similarity and word analogy and five matrix
factorization datasets.

The different baselines are the following: Full Softmax where one uses for every context all items
as negatives (FS), Uniform sampling where the negatives are sampled uniformly (UniS), Popularity
sampling where the sampling distribution is a log-uniform distribution based on popularity ranking
(PopS). The Selfplay method (SP) is defined by sampling the negative samples in the softmax
distribution gθ of our model like in our cooperative importance sampling scheme except that we do
not correct the weights with the help of the discriminator Dα. Sampling within its own distribution
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Algorithm 1 AIS
Require: generator Gθ; discriminator Dα; a generative process X .

Initialize Gθ , Dα with random weights θ, α.

repeat
for g-steps do

Sample pairs (i, j) ∼ X
Generate samples from the softmax distribution gθ(.|i)
Train the generator Gθ with Eq. (10)

end for
for d-steps do

Sample pairs (i, j) ∼ X
Generate samples (j1, ..., jn) from gθ(.|i)
Train the discriminator Dα with Eq. (9)

end for
until AIS converges

Method Blobs (r1 = 0.25) Blobs (r2 = 0.60) Blobs (r3 = 0.75) Swiss Roll
FS 69.0 ± 0.2 77.0 ± 0.2 84.5 ± 0.3 89.1 ± 0.1
UniS 72.3 ± 0.1 70.1 ± 0.1 75.1 ± 0.2 87 ± 0.2
PopS 75.2 ± 0.2 65.0 ± 0.1 77.2 ± 0.1 88.2 ± 0.1
Selfplay 75.7 ± 0.3 76.5 ± 0.1 84.5 ± 0.1 88.5 ± 0.1
CIS 78.5 ± 0.1 86.1 ± 0.2 89.5 ± 0.1 90.2 ± 0.1

Table 1: Table showing the Accuracy results on the synthetic datasets with different ratios (r1, r2, r3)
of positive data. CIS outperforms other models on every dataset but by a smaller margin when the
underlying manifold is easier to learn like in the Swiss-Roll dataset.

allows us to sample negatives close to the decision boundary. However, without D’s reweighting, we
expect the Selfplay method to perform worse than the CIS model.

Across all experiments, embedding size is kept fixed at 150. Also, we always hold out 20% of the
dataset for the test. The MPR refers to the standard Mean Percentile Rank as defined and, Prec@k
refers to the fraction of instances in the test set for which the target falls within the top-k predictions.

4.1 LEARNING 2D DISCRETE DISTRIBUTION: SYNTHETIC DATASETS

To verify our intuition around true support modeling, we defined a set of 2D artificial datasets where
all positive pairs live in 2D shapes and the task of the Word2Vec is to learn these shapes from samples
of positives and unlabeled data. The 2D shapes we experimented with are the Swiss Roll, the S Curve
and overlapping blobs of various size. An advantage of the blobs-based simulations is that they allow
us to better control the ratio r of positive data. One can look in the Appendix, where we present
different figures showing how well the different methods learn the underlying distribution.

We report the accuracy of our predictions in the Table 1 below. We observe that our cooperative
importance sampling is systematically better than other sampling methods and on par with full
softmax. Furthermore, it is interesting to note that when the underlying distribution is quite easy to
learn the impact of CIS is smaller, as D cannot fully correct the sampling of positive data.

4.2 LANGUAGE MODELING TASKS

For the language modeling tasks, we ran experiments on the text8 dataset, a textual data excerpt from
Wikipedia taken from Matt Mahoney’s page. We ran two experiments where we only kept respectively
the 12,000 and 30,000 most-occuring words in the data and ran Skip-Gram Word2Vec with a window
size 1 (after removing the rare words) and the versions of negative sampling listed above. We ran
experiments on threee different tasks: next word prediction, similarity task and analogy task. We also
compared to the FastText (FT) model implemented by Joulin et al. (2016), which is considered to
provide state-of-the-art results. We trained it on the same data and benched on different parameters.
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Next word prediction In the next word prediction task, we use the model to predict the target word
for a given context. We report both the Mean Percentile Rank (MPR) and Precision@1 metrics. We
see that on these two metrics our model beats the different sampling methods, including full softmax.

Method Text8 (12000) Text8 (30000)
FS 85.1 ± 0.08 ‖ 7.2 ± 0.15 89.4 ± 0.08 ‖ 7.5 ± 0.15
UniS 87.4 ± 0.07 ‖ 6.0 ± 0.12 90.6 ± 0.07 ‖ 5.5 ± 0.17
PopS 87.6 ± 0.06 ‖ 7.2 ± 0.13 90.7 ± 0.06 ‖ 7.1 ± 0.18
Selfplay 88.2 ± 0.04 ‖ 8.9 ± 0.10 88.7 ± 0.05 ‖ 8.6 ± 0.16
CIS 88.7 ± 0.08‖ 8.9± 0.10 91.6 ± 0.08 ‖ 9.3 ± 0.09

Table 2: Table showing the MPR and P@1 for the different models on the two text datasets. We see
that even using the selfplay method helps us sample hard negatives.

The words similarity task In terms of qualitative results, we show in Table 3 a set of 6 query
words and their 6-nearest neighbours in terms of the cosine distance in the embedding space in the
30k different words dataset. We can see that the full softmax and our cooperative sampling method
have some similarities in terms of results, except that softmax sometimes lacks coherence, especially
as we increase this number of neighbors. On the other hand, FastText and our importance cooperative
sampling tend to have very different results. More similarities between words are shown in Appendix.

Method CIS FastText Full Softmax
senate, legislature assembl, assemblies government, system

assembly parliament, seats assemble, assembling union, party
cabinet, democracy assembler, assembled council, parliament

poet, writer authored, writer writer, actor
author composer, historian authors, novelist scholar, poet

philosopher, novelist authorship, poet artist, actress
canada, scotia australis, australiasia island, canada

australia usa, indonesia australians, australasian day, georgia
bulgaria, argentina zealand, queensland kingdom, party
meaning, essence untrue, truth meaning, case

true false, truth false, truths possible, definition
sense, existence theistic, falsehood or, understanding

bibliography, thinking essays, essai treatise, downloads
essay essays, prophecy essayist essayists interviews, mentor

story, poetry critique, treatises essays, pupil
previous, latest finale, finals previous, last

final next, first finalized, penultimate first, another
last, second last, eventual initial, second

Table 3: In this table, we show qualitative results for the Similarity task results. We can see that
FastText focuses more on N-grams similarities and shows less diversity.

The word analogy task The goal of the word analogy task is to compare the different embedding
structures. With the pair based method, given word i and its analogy j, one has to find, given a third
word i′, its analogy j′. Usually, we consider two types of analogy tasks: semantic and syntactic
analogies. To test analogies, we used the Google analogy test set developed by Mikolov et al. (2013b).
Semantic analogies test the robustess of our embeddings to transformations like "man" to "woman"
while syntactic analogies focuse on transformations like "run" to "runs". In terms of quantitative
results we show the Prec@1, Prec@5 and Prec@15 in the Table 6 of CIS against the baseline models
and see a clear uplift in terms of quality. As FastText relies on the n-gram information, they manage
to beat CIS on the syntactic analogy task, especially on the 30k different words dataset.

4.3 MATRIX FACTORIZATION EXPERIMENTS : SHOPPING BASKETS AND MOVIES DATASETS

For the matrix factorization application we performed our experiments on four different public
datasets: two shopping datasets listing products purchased together (the Belgian Retail dataset and the
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12,000 most-occuring words

Method CIS SP FT FS
Semantic
P@1 14.8 9.3 0.0 1.1
P@5 19.7 14.3 4.4 7.1
P@15 21.4 18.7 17.0 11.0
Syntactic
P@1 1.1 1.7 0.6 0.1
P@5 4.2 6.8 1.7 1.7
P@15 6.8 10.2 9.3 3.8

30,000 most-occuring words

Method CIS SP FT FS
Semantic
P@1 14.75 10.8 1.9 10.7
P@5 20.6 22.2 17.0 16.0
P@15 35.8 35.3 41.17 21.9
Syntactic
P@1 1.9 2.7 8.9 1.2
P@5 7.15 8.9 26.7 5.1
P@15 11.80 16.1 46.0 8.7

Table 6: On this table we present the results for the Analogy task on respectively the 12k and 30k
different words datasets. On both datasets, CIS/SP are ahead in the Semantic tasks on the Prec@1/5
metrics. However, when increasing the number of Nearest Neighbors, FastText catches up which
might indicate a better structure in the tail.

UK retail dataset with respectively 16,470 and 4,070 different items) and two movie recommandation
datasets (the Movielens and the Netflix datasets) listing movies seen by the same user. For the movie
datasets, we only kept the movies ranked over respectively 4 and 4.5 stars keeping therefore 17,128
and 17770 movies. From these, we create positive only co-occurence datasets from all the possible
pair combinations of items. Therefore, we transform this into an implicit task where we only have
access to positive data.

On these datasets, we report the Prec@1 on the test data as shown in Table 7. CIS outperforms all
baselines and gets relatively better when the vocabulary size of the dataset increases.

Method Belgian UK Movielens Netflix
FS 10.8 ± 0.1 2.7 ± 0.1 2.2 ± 0.1 2.2 ± 0.1
UniS 10.2 ± 0.2 2.4 ± 0.1 1.4 ± 0.3 1.4 ± 0.2
PopS 10.6 ± 0.1 2.4 ± 0.2 2.5 ± 0.1 1.4 ± 0.2
Selfplay 10.8 ± 0.1 2.5 ± 0.1 2.5 ± 0.1 2.2 ± 0.1
CIS 11.2 ± 0.2 3.1 ± 0.1 3.7 ± 0.1 2.6 ± 0.1

Table 7: This table shows the P@1 for the 4 different models (Full Softmax, Uniform Sampling,
Popularity Sampling, Selfplay and CIS) on the real datasets on the Item-Items task. On the task of
Prec@1, CIS consistently outperfoms the full softmax.

5 CONCLUSIONS

In this paper, we have proposed Partially Mutual Exclusive Softmax, a relaxed version of the full
softmax that is more suited in cases with no explicit negatives, e.g., in cases with positive and
unlabeled data. In order to model the new softmax we proposed a cooperative negative sampling
algorithm. Based on recent progress made on GANs in discrete data settings, our cooperative training
approach can be easily applied to models that use standard sampled softmax training, where the
generator and discriminator can be of the same family of models. In future work we will investigate
the effectiveness of this training procedure on more complex models, and also try to make our
mutually exclusive set model more contextual and dependent on both objects i and j within a pair.
For example, for a given pair context/target, one might want to use the closest neighbors of the target
in the embedding space as negatives. This could enable us to obtain a negative distribution that fits
both the context and the target.
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A EXPERIMENTS

A.1 LEARNING 2D DISCRETE DISTRIBUTION

Here we show the different heatmaps regarding the different conditional models learned by the model
on 4 different methods: Popularity sampling, Selfplay sampling, Full Softmax and our Cooperative
Importance Sampling. See Image 1 and Image 2.

Figure 1: Learning the conditional distribution for one of the blobs dataset r2 = 0.6. From the top
left to the bottom right: the Popularity based sampling, the Selfplay model (top left) the Softmax
and the CIS model. We see the impact of the CIS model on the learning of the right conditional
distribution as the distinction between true data (inside the blobs) and negative data is clearer.

A.2 THE WORDS SIMILARITY TASK

Here we present some other similarities between words generated from three different methods: Full
Softmax, FastText and our CIS model. See Figure 8.
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Figure 2: Learning the conditional distribution for one of the blobs dataset r3 = 0.75. From the top
left to the bottom right: the Popularity based sampling, the Selfplay model (top left) the Softmax and
the CIS model. Again, on this image, we see the impact of the CIS model on the learning of the right
conditional distribution as the distinction between true data (inside the blobs) and negative data is
clearer.

Method AIS FastText Full Softmax
bacteria, humans animal, animalia methods, species

animals beings, structures mammals, humans techniques, practices
organisms, plants vertebrates, carnivores things, plants

son, grandson brothers, broth son, b
brother daughter, father brotherhood, father countess, maria

mother, uncle father, mother prince, nephew
robert, henry charley, charleston henry, erasmus

charles edward, elizabeth charlie, charlotte peter, thomas
peter, james frederick, louise james, john

monarch, prussia constantine, constantinus carthage, emperors
constantinople ruins, athens constantin, adrianople reformation, dynasty

prague, antioch nicaea, chalcedon ks, bohemia
hate, sociology freedoms, freed free, learning

freedom acceptance, resistance freedmen, edom fairness, anymore
conscious, subject liberty, free huygens, technology

Table 8: Table showing results for the Similarity task results : in some cases we can see that the CIS
model does reflect more the meaning of the word.
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