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ABSTRACT

Are Graph Neural Networks (GNNs) fair? In many real world graphs, the formation
of edges is related to certain node attributes (e.g. gender, community, reputation).
In this case, standard GNNs using these edges will be biased by this information,
as it is encoded in the structure of the adjacency matrix itself. In this paper, we
show that when metadata is correlated with the formation of node neighborhoods,
unsupervised node embedding dimensions learn this metadata. This bias implies
an inability to control for important covariates in real-world applications, such as
recommendation systems.
To solve these issues, we introduce the Metadata-Orthogonal Node Embedding
Training (MONET) unit, a generalizable neural network architecture for perform-
ing training-time linear debiasing of graph embeddings. MONET achieves this by
ensuring that the node embeddings are trained on a hyperplane orthogonal to that
of the node metadata. This effectively organizes unstructured embedding dimen-
sions into an interpretable topology-only, metadata-only division with no linear
interactions. We illustrate the effectiveness of MONET though our experiments on
a variety of real world graphs, which shows that our method can learn and remove
the effect of arbitrary covariates in tasks such as preventing the leakage of political
party affiliation in a blog network, and thwarting the gaming of embedding-based
recommendation systems.

1 INTRODUCTION

Graph embeddings – continuous, low-dimensional vector representations of nodes – have been
eminently useful in network visualization, node classification, link prediction, and many other graph
learning tasks (10). While graph embeddings can be estimated directly by unsupervised algorithms
using the graph’s structure (e.g. 24; 28; 15; 25), there is often additional (non-relational) information
available for each node in the graph. This information, frequently referred to as node attributes or
node metadata, can contain information that is useful for prediction tasks including demographic,
geo-spatial, and/or textual features.

The interplay between a node’s metadata and edges is a rich and active area of research. Interestingly,
in a number of cases, this metadata can be measurably related to a graph’s structure (21), and in some
instances there may be a causal relationship (the node’s attributes influence the formation of edges).
As such, metadata can enhance graph learning models (31; 20), and conversely, graphs can be used
as regularizers in supervised and semi-supervised models of node features (32; 11). Furthermore,
metadata are commonly used as evaluation data for graph embeddings (8). For example, node
embeddings trained on a Flickr user graph were shown to predict user-specified Flickr “interests"
(24). This is presumably because users (as nodes) in the Flickr graph tend to follow users with similar
interests, which illustrates a potential causal connection between node topology and node metadata.

However, despite the usefulness and prevalence of metadata in graph learning, there are instances
where it desirable to design a system to avoid the effects of a particular kind of sensitive data. For
instance, the designers of a recommendation system may want to make recommendations independent
of a user’s demographic information or location.

At first glance, this may seem like an artificial dilemma – surely one could just avoid the problem by
not adding such sensitive attributes to the model. However, such an approach (ignoring a sensitive
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attribute) does not control for any existing correlations that may exist between the sensitive metadata
and the edges of a node. In other words, if the edges of the graph are correlated with sensitive
metadata, then any algorithm which does not explicitly model and remove this correlation will be
biased as a result of it. Surprisingly, almost all of the existing work in the area (31; 35) has ignored
this important realization.1

In this work, we seek to refocus the discussion about graph learning with node metadata. To this end,
we propose a novel, general technique for extending graph representations with metadata embedding
dimensions while debiasing the remaining (topology) dimensions. Specifically, our contributions are
the following:

1. The Metadata-Orthogonal Node Embedding Training (MONET) unit, a novel GNN al-
gorithm which jointly embeds graph topology and graph metadata while enforcing linear
decorrelation between the two embedding spaces.

2. Analysis which proves that a naive approach (adding metadata embeddings without MONET)
leaks metadata information into topology embeddings, and that the MONET unit does not.

3. Experimental results on real world graphs which show that MONET can successfully
“debias" topology embeddings while relegating metadata information to separate metadata
embeddings.

2 PRELIMINARIES

Early graph embedding methods involved dimensionality reduction techniques like multidimensional
scaling and singular value decomposition (8). In this paper we use graph neural networks trained on
random walks, similarly to DeepWalk (24). DeepWalk and many subsequent methods first generate a
sequence of random walks from the graph, to create a “corpus" of node “sentences" which are then
modeled via word embedding techniques (e.g. word2vec (19) or GloVe (23)) to learn low dimensional
representations that preserve the observed co-occurrence similarity.

Let W be a d-dimensional graph embedding matrix, W ∈ Rn×d, which aims to preserve the low-
dimensional structure of a graph (d << n). Rows of W correspond to nodes, and node pairs i, j with
large dot-products WT

i Wj should be structurally or topologically close in the graph. As a concrete
example, in this paper we consider the debiasing of a recently proposed graph embedding using the
GloVe model (6). Its training objective is:

GloVe(U, V, a, b|C) =
∑
i,j≤n

fα(Cij)(ai + bj + UTi Vj − log(Cij))
2, (1)

where U, V ∈ Rn×d are the “center" and “context" embeddings, a, b ∈ Rn×1 are the biases, C is
the walk-distance-weighted context co-occurrences, and fα is the loss smoothing function (23). We
use the GloVe model in the next section to illustrate topology/metadata embeddings and metadata-
orthogonal training. However, the MONET unit we propose is broadly generalizable. To illustrate
this, we also describe a MONET unit for DeepWalk (24), a popular graph embedding algorithm.

Notation. In this paper, given a matrix A ∈ Rn×d and an index i ∈ 1, . . . , n, Ai denotes the d× 1
i-th row vector of A. Column indices will not be used. 0n×d denotes the n × d zero matrix, and
|| · ||F denotes the Frobenius norm.

3 METADATA EMBEDDINGS AND ORTHOGONAL TRAINING

In this section we present MONET, our proposed method for separating and controlling the effects
of metadata on topology embeddings. First, we begin by outlining the straightforward extension of
metadata to traditional embedding models in Section 3.1. Next, in Section 3.2, we prove that such a
simple model will leak information from the metadata to the topology (structural) embeddings. Then,
in Section 3.3 we present MONET, our proposed approach for training embeddings of a graph’s

1While preparing this manuscript, we have become aware of a recent independent result (5) in this area
for recommender graphs. In contrast to that work, we use a substantially different methodology which offers
guarantees about the debiasing process.
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structure which are not correlated with metadata. Finally, we conclude with some analysis of MONET
in Section 3.4

3.1 JOINTLY MODELING METADATA & TOPOLOGY

A natural first approach to modeling the effects of metadata on the graph is to explicitly include the
node metadata as part of a node embedding model. For instance, to extend Eq. (1), in addition to U
and V (the “topology embeddings"), we can consider the node metadata M directly (M ∈ Rn×m,
row vector Mi is the metadata for node ui). We then can define metadata embeddings X = MT1,
Y = MT2, where T1, T2 are trainable transformations, and propose the concatenations [U,X] and
[V, Y ] as full-graph representations. The GloVe loss with metadata embeddings is:

GloVemeta(U, V, T1, T2, a, b|C,M) =
1

2

∑
i,j≤n

fα(Cij)(ai+bj+UTi Vj+XT
i Yj− log(Cij))

2. (2)

While in this paper we demonstrate metadata embeddings within the GloVe model, they can be
incorporated in any dot-product-based graph neural network. For instance, the well-known DeepWalk
(24) loss, which is based on word2vec (19), would incorporate metadata embeddings as follows:

DeepWalkmeta(U, V, T1, T2|W,M) = −
∑
i,j∈W

log(UTi Vj +XT
i Yj)−

∑
k∈Ki

log(−UTi Vk−XT
i Yk).

(3)
Above,W is the set of context pairs from random walks, andKi is a set of negative samples associated
with node i. For GloVe, DeepWalk, and many other GNNs, this approach augments the overall graph
representation by concatenating metadata-learned dimensions.

However, this naïve approach does not guarantee that the topology embeddings converge to be decor-
related from the metadata embeddings. Suppose that the metadata (like demographic information)
are indeed associated with the formation of links in the graph. In this case, any algorithm which does
not explicitly model and remove the association will be biased as a result of it. In the next section we
formalize this concept, which we call metadata leakage.

3.2 METADATA LEAKAGE IN GRAPH NEURAL NETWORKS

Here, we formally define metadata leakage for general topology and metadata embeddings, and show
how it can occur even in embedding models with separate metadata embeddings. All proofs appear
in the Appendix.

Definition 1. The metadata leakage of metadata embeddings Z ∈ Rn×dZ into topology embeddings
W ∈ Rn×d is definedML(Z,W ) := ||ZTW ||2F . We say that there is no metadata leakage if and
only ifML(Z,W ) = 0.

Without a more nuanced approach, metadata leakage can occur even in embedding models that
explicitly include the metadata, like Eqs. (2) and (3). To demonstrate this, we consider for simplicity
a reduced metadata-aware GloVe loss with W := U = V ∈ Rn×d as the sole topology embedding
and T := T1 = T2 ∈ Rm×dZ as the sole metadata transformation parameter. With Z := MT , the
reduced loss is:

GloVe∗meta(W,T, a|C,M) =
1

2

∑
i,j≤n

(ai + aj +WT
i Wj + ZTi Zj − log(Cij))

2 (4)

We now show that under a random update of the GloVe∗meta model in Eq. (4), the expected metadata
leakage is non-zero. Specifically, let (i, j) be a node pair from C, and define δW (i, j) as the incurred
Stochastic Gradient Descent update W ′ ← W + δW (i, j). Suppose there is a “ground-truth"
metadata transformation B ∈ Rm×dB , and define ground-truth metadata embeddings Z̃ := MB,
which represent the “true" dimensions of the metadata effect on the co-occurrences C. Define
ΣB := BBT and ΣT := TTT . With expectations taken with respect to the sampling of a pair (i, j)
for Stochastic Gradient Descent, define µW := E[Wi] and ΣW := E[WiW

T
i ]. Define µM , ΣM

similarly. Then our main Theorem is as follows:
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Algorithm 1 MONET Unit Training Step
Given: topology embedding W , metadata embedding Z

1: procedure FORWARD PASS DEBIASING(W , Z)
2: Compute Z left-singular vectors QZ and projection PZ ← In×n −QZQTZ
3: Compute orthogonal topology embedding W⊥ ← PZW
4: return debiased graph representation [W⊥, Z]

5: procedure BACKWARD PASS DEBIASING(δW )
6: Compute orthogonal topology embedding update δ⊥W ← PZδW
7: Apply update W⊥ ←W⊥ + δ⊥W
8: return debiased topology embedding W⊥

Theorem 1. Assume ΣW = σW Id for σW > 0, µW = 0d×1, and µM = 0m×1. Suppose for some
fixed θ ∈ R we have log(Cij) = θ + Z̃Ti Z̃j . Let (i, j) be a randomly sampled co-occurrence pair
and W ′ the incurred update. Then if E[MiW

T
i ] = β ∈ Rm×d, we have

E[ML(Z,W ′)] ≥ 2||TT [ΣM (ΣB − ΣT ) + (n− σW )Im]β||2F . (5)

Importantly, ΣT and σW are neural network hyperparameters, so we give a useful Corollary:

Corollary 1. Under the assumptions of Theorem 1, E[ML(Z,W )] = Ω(n||TTβ||2F ) as n→∞.

Note that under reasonable GNN initialization schemes, T and β are random perturbations. Thus,
Corollary 1 implies the surprising result that incorporating feed-forward metadata embeddings is not
sufficient to prevent metadata leakage in practical settings.

3.3 MONET: METADATA-ORTHOGONAL NODE EMBEDDING TRAINING

Here, we introduce the Metadata-Orthogonal Node Embedding Training (MONET) unit for training
joint topology-metadata graph representations [W,Z] without metadata leakage. MONET explicitly
prevents the correlation between topology and metadata, by using the Singular Value Decomposition
(SVD) of Z to orthogonalize updates to W during training.

MONET. The MONET unit is a two-step algorithm applied to the training of a topology embedding
in a neural network, and is detailed in Algorithm 1. The input to a MONET unit is a metadata
embedding Z ∈ Rn×dz and a target topology embedding W ∈ Rn×d for debiasing. Then, let QZ be
the left-singular vectors of Z, and define the projection PZ := In×n −QZQTZ . In the forward pass
procedure, debiased topology weights are obtained by using the projection W⊥ = PZW . Similarly,
W⊥ is used in place of W in subsequent GNN layers. In the backward pass, MONET also debiases
the backpropagation update to the topology embedding, δW , using δ⊥W = PZδW . Figure 1 illustrates
a geometric interpretation of the MONET algorithm.

Straightforward properties of the SVD show that MONET directly prevents metadata leakage:

Theorem 2. Using Algorithm 1,ML(Z,W⊥) = 0 andML(Z, δ⊥) = 0.

We note that in this work we have only considered linear metadata leakage; debiasing nonlinear
topology/metadata associations is an area of future work.

Implementation (MONETG and MONETD). We demonstrate MONET in our experiments by
applying Algorithm 1 to Eq. (2) and Eq. (3). We denote these models respectively by MONETG and
MONETD, for MONET “GloVe" and “DeepWalk". For MONETG, we orthogonalize the input and
output topology embeddings U, V with the summed metadata embeddings Z := X +Y . By linearity,
this implies Z-orthogonal training of the summed topology representation W = U + V . We note
that working with the sums of center and context embeddings is the standard way to combine these
matrices (23). Figure 2 shows an illustration of MONETG. MONETD is implemented similarly, and
is fully described in the Appendix Section A.3.
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Figure 1: Geometric interpretation of MONET.
Both prediction and training for W occur on a
hyperplane orthogonal to Z. In the forward pass,
W is projected onto the Z-orthogonal plane.
When an update δW is proposed, it too is pro-
jected, resulting in the best metadata-orthogonal
update. This allows W to explore the space of
unknown latent structure without bias from Z.

Figure 2: Illustration of MONETG.
U and V are topology embeddings. The
MONET unit adds a feed-forward transforma-
tion of the metadata, resulting in metadata em-
beddings X and Y . Z = X + Y gives the com-
bined metadata representation, used to debias
U and V via PZ . Dotted lines indicate stopped
gradient flow during backpropagation.

3.4 ANALYSIS

Here we address some brief remarks about the algorithmic complexity of MONET, and the interpreta-
tion of its parameters.

Algorithmic Complexity. The bottleneck of MONET occurs in the SVD computation and orthogo-
nalization. In our setting, the SVD is O(nd2z) (29). The matrix PZ need not be computed to perform
orthogonalization steps, as PZW = W − QZ(QTZW ), and the right-hand quantity is O(nddz) to
compute. Hence the general complexity of the MONET unit is O(ndz max{d, dz}). In Table 3 we
compare the wall clock time of MONET and baselines, showing only about a 10% overall time
increase from standard GloVe.

Metadata Parameter Interpretation. The i, j terms in the sum of the loss for GloVe models with
metadata (GloVemeta and MONETG) involve the dot product XT

i Yj = MT
i T1T

T
2 Mj . That expan-

sion suggests that the matrix ΣT := T1T
T
2 contains all pairwise metadata dimension relationships. In

other words, ΣT gives the direction and magnitude of the raw metadata effect on log co-occurrence,
and is therefore a way to measure the extent to which the model has captured metadata information.
We will refer to this interpretation in the experiments that follow. An important experiment will show
that applying the MONET algorithm increases the magnitude of ΣT entries.

Connection to Adversarial Methods. There are now many methods for supervised learning that
use adversarial networks to produce data representations that are invariant to given factors (e.g.
30; 13). Because we are introducing MONET in the unsupervised graph learning setting, none of
these approaches (to our knowledge) apply out-of-the-box to produce a baseline. To give an idea for
how an adversarial approach might work as an alternative to MONET, we craft a adversarial version
of GloVe which attempts to predict the metadata from the topology embeddings. This method, which
to our knowledge is novel, is fully described in Section 4.1 and the Appendix.

4 METADATA DEBIASING EXPERIMENTS

Here we empirically demonstrate Theorems 1 and 2 by confirming the following hypotheses:

1. H1. The MONET unit can remove leakage of metadata information from topology embed-
dings, so that the topology embeddings cannot predict the metadata.

2. H2. The MONET unit can make recommender systems more robust to abuse by removing
malicious user directions from rating graphs.
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For all embedding models, we use the center-context embedding sum of topology embeddings
W := U + V as the graph representation for task evaluation. Note that some standard baselines
(e.g. DeepWalk) do not incorporate metadata and therefore only train topology embeddings. All
GloVe-based models are trained with TensorFlow (1) using the AdaGrad optimizer (12) with initial
learning rate 0.05. DeepWalk models were trained using the gensim software (26).

4.1 QUANTITATIVE EXPERIMENT: POLITICAL BLOGS NETWORK

To address H1, illustrating Theorem 1 and the effect of MONET debiasing, we embed the effect
of political ideology on a blogger network (3). The political blog network2 has has 1,107 nodes
corresponding to blog websites, 19,034 hyperlink edges between the blogs (after converting the graph
to be undirected), and two clearly defined, equally sized communities of liberal and conservative
bloggers.

Methods and Design. In this experiment all graph neural network models were trained on 5 iterations
across 80 random walks per node of length 40 with context window size 10 (MONETD was trained on
20 iterations and used 5 negative samples per positive). Topology embeddings had dimension 16, and
metadata embeddings had dimension 2. As one baseline, we use a random embedding generated from
a 16-dimensional multivariate Normal. As our adversarial baseline, we apply the ideas introduced
in (14) by adding a 2-layer MLP adversary to the GloVe model, referred to as GloVeadversary . The
adversary is trained to predict political party from the topology embeddings (more detail given in
Appendix A.4).

We measure embedding bias by the Macro-F1 score of a linear SVM predicting political party from
the embeddings, using a LIBLINEAR implementation (7). For each embedding set, we compute the
mean and standard deviation Macro-F1 over 10 independent classification repetitions, each trained
using half of the node labels sampled at random. To assess metadata information leakage, we also
track the metadata dimension importance matrix ΣT := T1T

T
2 , recalling its interpretation from

Section 3.

Results. Table 1 shows that the baselines DeepWalk and GloVe are highly effective at predicting
political party, and therefore biased. This is unsurprising, as these methods are trained without
metadata information, and were originally intended to encode low-dimensional structure like that
present in this data set. The bias in DeepWalk and GloVe embeddings is further seen in their metadata
leakage values, computed using political party one-hot vectors as metadata embeddings.

Considering the embedding models with metadata embeddings, we find that, interestingly,
GloVemeta’s topology embeddings are still able to predict political party with 88.3% Macro-F1.
Also, as predicted by Corollary 1, GloVemeta’s metadata leakage remains O(n). This shows that
simply concatenating metadata embeddings is not sufficient to isolate the metadata effect. In contrast,
MONETG and MONETD achieve random Macro-F1 and no metadata leakage (under machine preci-
sion), demonstrating that on this data, the MONET unit is necessary to debias the blog embeddings
from political party. Surprisingly, the MONET-enhanced models show significantly less bias than
random embeddings, reflecting the fact that even random embeddings will not be perfectly linearly
de-correlated from any given sensitive attribute.

The contrast between GloVemetaand MONETG/MONETD is seen in two other ways. First, there is
a noticeable increase in ΣT magnitude when MONET is used, implying that GloVemeta metadata
embeddings are not capturing all possible metadata information. Second, as seen in Fig. 3, the
2-dimensional PCA plots of the GloVemeta embeddings still show political party separation, whereas
the MONETG PCA dimensions reveal strong mixing.

In addition to the metrics in Table 1, we show additional metrics from this experiment in Appendix
Table 3. In particular, that table contains results from a non-linear SVM applied to all embeddings.
Accuracy from that classifier is high even on MONET embeddings, which emphasizes the fact
that MONET only performs linear debiasing. We also report wall times for each method, and the
embdding pairwise distance correlation to the GloVe model. These metrics (respectively) show that
the SVD correction does not add substantial runtime, and that it does not overly corrupt the GloVe
embedding signal.

2Available within the Graph-Tool software (22)
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Model F1 (mean ± std) ΣT = T1T
T
2 (mean ± std) ML

Random 53.23% ±0.73% N/A N/A
DeepWalk 95.59% ±0.07% N/A 2743.9± 36.7

GloVe 95.94% ±0.07% N/A 6598.0± 200.1
GloVeadversary 81.46% ±4.96% N/A 4459.0± 430.4

GloVemeta 88.33% ±0.60%

(
0.108 ±0.006 −0.106± 0.004
−0.108± 0.009 0.106± 0.006

)
1827.6± 289.7

MONETD 48.60% ±0.50%

(
0.144±0.005 −0.140± 0.007
−0.145± 0.06 0.140± 0.006

)
0.001± 0.001

MONETG 49.30% ±0.60%

(
0.180±0.006 −0.178± 0.006
−0.181± 0.008 0.179± 0.006

)
0.018± 0.002

Table 1: Macro-F1 scores from political blog network classifications using graph topology em-
beddings only. MONET is successful in removing all metadata information from the topology
embeddings – the links in the graph are no longer an effective predictor of political party. Comparison
of the metadata transformation product ΣT between GloVemeta and MONETG shows MONET
allows for considerably more metadata information learning. Finally, only MONET removes metadata
leakage to precision error (recallML() is a Frobenius norm).

(a) (b) (c)

Figure 3: PCA of political blog graph embeddings. (a): Party separation clearly visible on stan-
dard GloVe embeddings. (b): Party separation reduces when GloVemeta captures some metadata
information. (c): Party separation disappears with MONETG orthogonalized training.

Model Manipulated Items in Top-20 Embedding Distance
(mean ± std dev) Correlation w/GloVe

DeepWalk 9.9± 0.40 0.385± 0.005
GloVe 9.8± 0.76 1.000± 0.000

GloVemeta 9.8± 0.476 0.852± 0.002
NLP Debiasing (27; 4) (sum) 8.1± 1.7 0.566± 0.004
NLP Debiasing (27; 4) (max) 4.9± 3.4 0.990± 0.003

MONETD 5.7± 2.0 0.560± 0.055
MONETG 1.2± 1.7 0.831± 0.004

Table 2: Results from the shilling attack experiment. Attackers attempt to insert 10 items in the top-20
recommendations of a target video. The results show that MONET can best mitigate the effect of an
attack under incomplete information. We note that there is an implicit trade-off between debiasing
and maintaining correlation with the original (biased) embeddings.

4.2 EXPERIMENT 2: THWARTING ATTACKS ON GRAPH-BASED RECOMMENDATION SYSTEMS

In this experiment we address H2, investigating the effectiveness of MONET to defend against a
shilling attack (9) against graph-embedding based recommender systems (33). In a shilling attack, a
number of users act together to artificially increase the likelihood that a particular influenced item
will be recommended for a particular target item.
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Data. In a single repetition of this experiment, we inject an artificial shilling attack into the MovieLens
100k dataset3. The raw data is represented as a bipartite graph with 943 users, 1682 items, and a
total of 100,000 ratings (edges). Each user has rated at least 20 items. At random, we sample 10
items into an influence set SI , and a target item it to be attacked. We take a random sample of 5%
of the existing users to be the set of attackers, SA. We then create a new graph, Gattacked which in
addition to all the existing ratings, contains new ratings from each attacker ∈ SA to each item ∈ SI
as well as the target video. (Note that this corresponds to several varieties of behavior including both
incentivizing formerly good users, and account takeover.)

Design and Methods. For each embedding method, we perform random walks through the new
bipartite graph Gattacked. As we wish to study item recommendation, in the random walks, we simply
remove user nodes each time they are visited (so the walks contain only pairwise co-occurrence
information over items). With any given network embedding, we measure its bias by the number of
influence items in SI in top-20 embedding-nearest-neighbor list of it. As metadata, we allow MONET
models to know the per-movie attacker rating count for each attacked movie. However, to better
demonstrate real-world performance, we only allow 50% (randomly sampled) attackers from the
original 5% sample to be “known" when constructing these metadata. As non-debiasing baselines, we
compare against DeepWalk and Glove. As debiasing baselines, we applied a generalized correlation
removal framework developed for removing word embedding bias (27; 4). Specifically, we tried two
approaches to “debias” the GloVe embedding of the MovieLens graph – as the “gender" embedding
direction, we tried both (a) the most attacked movie vector and (b) the sum of attacked movie vectors.
All methods use 128 dimensional topology embeddings and are trained on 100 random walks per
node, each walk of length 5.

Results. As seen in Table 2, the topology embeddings from MONETG are the least biased by a large
margin, letting on average only 1.2 influence items in the top-20 neighbors of ti. Interestingly, we
note that this behavior occurs even though the majority of observed co-occurrences for the algorithm
had nothing to do with the attack in question, and only the known 50% of attackers were used to
construct the metadata. MONETD had comparably less efficacy in this experiment. We speculate
that this is due to a harmful effect of negative sampling on the learning of the metadata direction from
the continuous attacker metadata - which would affect MONET’s ability to debias the DeepWalk
embeddings. Further research could investigate appropriate hyperparameter settings for MONETD in
this case.

All other baselines (including those that explicitly model the attacker metadata) left at least around
half of the attacked items in the top-20 list. To measure the extent to which debiased embeddings
retain the original recommendation signal, we compute the pair-wise embedding distances of each
method, and compute their Pearson correlation to the standard GloVe embeddings. We find that
MONET embedding distances achieve high correlation (0.83) to the original distances, showing that
with MONET it is possible to nearly nullify a shilling attack while preserving most of the signal from
the true, un-attacked ratings. We note that the max-attack-embedding baseline higher embedding
distance correlation, but this method let many more attacked items (on average) into higher ranks.
This reveals a trade-off between embedding debiasing and prediction efficacy which has also been
observed in other contexts (33).

5 RELATED WORK

Though graph learning is an immense field, a minority of unsupervised graph embedding techniques
involve graph metadata. To our knowledge, none of these techniques involve either metadata orthogo-
nalization or the capacity to learn arbitrary metadata transformations. (36) is a matrix factorization
approach which uses a shared node embedding matrix to factor both the graph adjacencies and
the raw metadata in a joint loss, with a tunable parameter to control the influence of the metadata
loss. Similarly, (18) pre-computes a metadata similarity matrix and trains shared center-context
embedding matrices on the metadata similarities and random walk similarities. In contrast, we learn
the direction and effect of metadata as neural network parameters, and we separate those parameters
into unique embedding dimensions. (31) and (35) are matrix factorization approaches which factor
an approximation to the co-occurrence matrix into equally-sized metadata and topology embeddings,
and were built mainly for text metadata. Their approaches enforce metric space similarity and

3Available: http://files.grouplens.org/datasets/movielens/ml-100k/
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dimensional homogeneity between metadata and topology representations, restrictions that we do
not rely on and are ill-suited to the setting with multiple types of arbitrarily-sized metadata. (16)
constructs random walks that traverse between the original graph and the metadata freely, an approach
which runs counter to our ability to separate out the effects of metadata on graph adjacencies. (20)
introduce a version of the stochastic block model with metadata priors, and show that the estimated
posteriors yield insight into the influence of metadata on the graph. However, this model estimates
a community partition and in/out-community probabilities - it does not yield embeddings either of
the node topology or the node metadata. There has been work in Natural Language Processing on
removing gender bias from word embeddings (e.g. 4), but these methods operate with pre-computed
embeddings and rely on identification of gendered terminology.

Additionally, there has been a wealth of work studying semi-supervised learning with graphs (e.g.
32) and graph convolutional networks (e.g. 2; 17; 11), which use graph metadata as features. While
most semi-supervised and supervised neural networks for graphs indirectly produce embeddings that
in some cases can be identified with feature and topology dimensions, they are trained as part of
prediction or label propagation tasks. Therefore, the topology embeddings are free to correlate with
features to the extent that this serves the loss function - there is no explicit separation of topology and
metadata dimensions. In this paper, we have studied the benefits of metadata orthogonalization in
the unsupervised setting, and we leave the exploration of our techniques in the semi-supervised and
supervised settings to future work.

As described at the end of Section 3, there are many approaches to data representation learning that
use adversarial networks to produce attribute-invariant embeddings. For instance, (30) and (13) use
an adversary to allow feature embeddings to forget differences in data sources. Similar techniques
have been applied to debias word embeddings from gender information (34) and recommender
graph embeddings from demographic information (5). MONET differs from these approaches in
a few key and consequential ways. First, (to our knowledge) none apply out-of-the-box to the
unsupervised setting, which motivated our introduction of a baseline adversarial version of GloVe.
Second, whereas MONET can accept any metadata in an appropriate design matrix M , different
types of metadata require different adversary losses, which can require cumbersome tuning. Third,
adversarial approaches induce a trade-off between accuracy on the main task and debiasing. In
contrast, our work aims to minimize training error subject to perfect (linear) debiasing.

6 CONCLUSION

In this work, we have shown that unsupervised training of graph embeddings induces bias from
important graph metadata. We proposed a novel solution to address this problem – the Metadata-
Orthogonal Node Embedding Training (MONET) unit. The MONET unit is the first graph learning
technique for training-time debiasing of embeddings, using orthogonalization. Our experimental
results using real datasets showed that MONET is able to encode the effect of graph metadata in
isolated embedding dimensions, and simultaneously remove the effect from other dimensions. This
has immediate practical applications, which we illustrate by mitigating a simulated shilling attack on
a real dataset of movie ratings.

We note that, because MONET only performs linear debiasing, the method is simply a first step in
this area, and does not completely solve the problem of exact metadata independence. That being
said, we argue that this is not a major limitation for many practical uses. As we show in the shilling
attack experiment, MONET seems to greatly reduce bias when embeddings are used for simple
nearest-neighbor lookups, which is a common application in graph-based recommender systems.
Furthermore, advanced non-linear classifiers are not always scalable to graphs commonly found in
industrial applications.

This work was meant to introduce the basic principles underlying the need for the MONET technique,
and show its utility in a shallow graph neural network (GloVe). While we used a shallow network
for instructional purposes, we note that MONET is generalizable, and MONET units can be used to
debias any set of embeddings from another set during training. Subsequent research can explore the
use of MONET in deeper networks and potentially semi-supervised models or graph convolutional
networks. As MONET’s SVD calculation can be expensive with large graphs and large embedding
dimensions, future research could be in assessing the effect of SVD approximations, or training
algorithms that utilize caching of previous metadata embedding SVDs to speed up training.
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A APPENDIX

Proposition 1. Under the assumptions of Theorem 1, we have

E[ZT δW (i, j)] = 2 [ΣM (ΣB − ΣT ) + σW Im]β. (6)

Proof. Derivatives of GloVe∗meta yield that the i-th row of δW (i, j) is dijWT
j , where

dij = log(Cij)− ZTi Zj −WT
i Wj − ai − aj

= θ + Z̃Ti Z̃j − ZTi Zj −WT
i Wj − ai − aj .

(7)

Similarly the j-th row is dijWT
i , and all other rows are zero vectors. Hence

E[ZT δW (i, j)] = E[ZidijW
T
j ] + E[ZjdijW

T
i ]. (8)

We derive the second term on the right-hand side of Equation 8; the first term follows by symmetry.
Note first that EZi(θ − ai − bj)WT

j = 0 by independence and centering assumptions. Second:

E[ZiW
T
i WjW

T
j ] = TTE[MiW

T
i WjW

T
j ] = TTE[MiW

T
i ]E[WjW

T
j ] = TTβσW Id = TTσW Imβ

by independence. Third:

E[ZiZ
T
i ZjW

T
j ] = TTE[MiM

T
i TT

TMjW
T
j ] = TT

(
E[MiM

T
i ]
)
TTT

(
E[MjW

T
j ]
)

= TTΣMΣTβ

by independence, and similarly E[ZiZ̃
T
i Z̃jW

T
j ] = TTΣMΣBβ. Combining these with Equation 7,

we have
E[ZidijW

T
j ] = TT [ΣM (ΣB − ΣT )− σW Id]β. (9)

Applying symmetry to the second term in Equation 8 completes the proof.

A.1 PROOF OF THEOREM 1

Proof. Proposition 1 gives E[ZT δW (i, j)] = 2TT [ΣM (ΣB − ΣT ) + σW Im]β. Second, note that
E[MiW

T
i ] = β ⇒ MTW = nβ and thus ZW = TTMTW = nTTβ. Recalling that W ′ =

W + δW (i, j) we have

E[ZTW ′] = 2 [ΣM (ΣB − ΣT ) + (n− σW )Im]β.

Applying Jensen’s Inequality completes the proof.

A.2 PROOF OF THEOREM 2

Proof. Consider metadata embeddings Z ∈ Rn×dZ and, as in the MONET algorithm, define the
projection PZ = IdZ −QZQTZ , where QZ are the left-singular vectors of Z. By properties of the
SVD, ZTQZQTZ = ZT , and hence ZTPZ = 0n×dZ . This means that ZTW⊥ = ZT δ⊥W = 0dZ×d,
which completes the proof by definition of metadata leakage.
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Model Wall Time (sec) SVM Accuracy Embedding Distance Correlation w/GloVe
Random N/A 0.527 ± 0.000 0.004 ± 0.001

DeepWalk 48.562 ± 0.579 0.896 ± 0.000 0.630 ± 0.006
GloVe 98.487 ± 7.220 0.948 ± 0.000 1.000 ± 0.000

GloVeadversary 162.575 ± 7.042 0.549 ± 0.018 0.432 ± 0.02
GloVemeta 102.387 ± 7.595 0.906 ± 0.000 0.862 ± 0.020
MONETD 595.477 ± 29.66 0.796 ± 0.032 0.035 ± 0.005
MONETG 112.505 ± 7.156 0.899 ± 0.000 0.334 ± 0.017

Table 3: Additional metrics from the political blogs experiment. Wall time is the user wait time during
training. SVM Accuracy is the accuracy on a non-linear SVM with an RBF kernel. Embedding
Distance Correlation with GloVe is the Pearson correlation of the pairwise embedding distances
between each set of embeddings and GloVe embeddings.

A.3 DESCRIPTION OF MONETD : MONET IMPLEMENTED IN DEEPWALK

The implementation of MONETD follows the general procedure laid out in Algorithm 1. As with
MONETG, for DeepWalk the MONET unit adds a feed-forward transformation of the metadata to the
graph representation, resulting in metadata embeddings X and Y (see Eq. 3). Z = X + Y gives the
combined metadata representation, used to debias U and V via PZ (see Algorithm 1 and surrounding
description). MONET does not affect the negative sampling component of DeepWalk’s loss (Eq.
3). MONET debiases the topology embeddings as described, which are then used throughout the
standard DeepWalk model (along with the metadata embeddings).

A.4 ADVERSARIAL BASELINE

As our adversarial baseline, we implemented a 2-layer MLP discriminator following the framework
of (14). The MLP had ReLU activations and an 8 dimensional hidden layer. The MLP was trained to
predict political party from the topology vectors of each batch of input nodes, using cross-entropy
loss (discriminator task). Then, the topology vectors were fed through the discriminators, but their
negative logits were used for prediction (topology task). The discrimnator task and topology task
were evaluated and optimized after each optimization of the GloVe loss.

A.5 ADDITIONAL RESULTS FROM POLITICAL BLOGS EXPERIMENT

In Table 3 we give the following additional metrics computed from the political blogs experiment,
averaged over thirty repetitions:

1. Wall Time (sec): user wait time in seconds from the beginning to end of each method. The
significant increase seen from MONETD is due to DeepWalk’s negative sampling loss.

2. SVM Accuracy: to emphasize the fact that MONET only performs linear debiasing, we
trained a non-linear SVM with an RBF kernel using a randomly-chosen 50% of the nodes as
training points.

3. Embedding Distance Correlation w/GloVe: This metric was also used in the shilling
experiment. In our experiments, GloVemeta and MONETG were implemented into the
GloVe model, so we use the correlation between the pairwise embedding distances between
MONET models and GloVe to measure the amount that metadata embedding and SVD cor-
rection has “corrupted" the embeddings. As the results show, among non-random methods,
MONETG and MONETD are most corrupted. This is because most of the community signal
in the political blogs network is due to the political affiliation attribute, and MONET models
explicitly removes linear correlation with that attribute. That said, we see that MONET
models still preserve a statistically significant amount of signal from the GloVe embeddings
above the random baseline.

Additionally, we perform a variant of the political blogs experiment to test the inductive performance
of MONET. Specifically, we aim to answer the question: if some nodes are not used to train the
MONET model, can we still use the MONET model to debias other embeddings for those nodes?
Given a subset of nodes Na, we train a MONET model on the induced subgraph Ga := G(Na). We
then attempt to debias the DeepWalk embeddings of held-out nodes Nb := N \Na. To do this, we
apply the MONET metadata transformation T1, T2, trained on Ga, to the metadata of Nb. This yields
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inductive metadata embeddings Zb for the nodes Nb. We then apply the de-biasing projection given
in Algorithm 1 to the DeepWalk embeddings for Nb, and compute the linear SVM Macro/Micro-F1
scores to measure embddings bias.

Figure 4 shows the average Macro/Micro-F1 over 5 repetitions per proportion of held-out nodes. For
reference, we also give the accuracy scores for the un-corrected DeepWalk embeddings for Nb. Note
that the linear SVM was trained on a 50% training-test split across Nb only. We find that the MONET
transformation learned from the given nodes is able to properly generalize to and debias the new data
Nb.

Figure 4: Macro/Micro-F1 scores from a linear SVM classifier, trained on “held-out" node embed-
dings from both DeepWalk and inductive MONET.
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