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Abstract
Metal objects in the human heart like implanted pacemakers frequently occur in elderly patients.
Due to cardiac motion, they are not static during the CT acquisition and lead to heavy artifacts
in reconstructed CT image volumes. Furthermore, cardiac motion precludes the application of
standard metal artifact reduction methods which assume that the object does not move. We propose
a deep-learning-based approach for dynamic pacemaker artifact removal which deals with metal
shadow segmentation directly in the projection domain. The data required for supervised learning
is generated by introducing synthetic pacemaker leads into 14 clinical data sets without pacemakers.
CNNs achieve a Dice coefficient of 0.913 on test data with synthetic metal leads. Application of
the trained CNNs on eight data sets with real pacemakers and subsequent inpainting of the post-
processed segmentation masks leads to significantly reduced metal artifacts in the reconstructed CT
image volumes.
Keywords: Cardiac CT, Metal Artifact Reduction, Convolutional Neural Networks

1. Introduction

High-density objects like metallic devices lead to streak-shaped artifacts in reconstructed CT images
which significantly degrade the image quality and the diagnostic value, see Figure 1. These artifacts
are mainly caused by inconsistencies in the projection data due to effects like beam hardening and
photon starvation (Mouton et al., 2013). Therefore, standard procedures for metal artifact reduction
(MAR) are based on sinogram inpainting by treating metal-affected values as missing data. They
comprise the following steps: 1) segmentation of the metal in an initially reconstructed image vol-
ume 2) forward projection of the metal mask to yield the metal shadow in the sinogram 3) inpainting
of the metal shadow 4) reconstruction of the improved image volume with reinserted metal mask
from step 1). A multitude of variants of this method is known (Kalender et al., 1987; Meyer et al.,
2010), but all of them assume that the object is static during acquisition.
In case of implanted pacemakers, motion aggravates the metal artifacts and additionally hampers
the evaluation of neighboring anatomy for example with regard to inflammation or calcification. As
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Figure 1: Pacemakers may lead to heavy streak-shaped artifacts in cardiac CT images. Especially
in ungated CT data, motion aggravates artifacts caused by electrodes and leads.

(a) (b) (c)

Figure 2: Standard MAR procedures are not applicable for moving metal objects like pacemak-
ers. (a) Projection view which contains the metal shadow of two pacemaker leads and
electrodes. (b) The corresponding forward projected pacemaker shadow is perturbed by
cardiac motion artifacts. (c) Duplicated electrode shadows (green circle) as well as shifted
and interrupted lead shadows (yellow cicles) preclude conventional sinogram inpainting.

illustrated in Figure 2, standard MAR procedures fail in the presence of motion due to inconsisten-
cies between the real metal shadow and the estimated one (see Figure 2b) which is obtained by step
2) of the standard MAR procedure.

In this paper, an alternative approach for dynamic MAR is investigated which deals with deep-
learning-based segmentation of the metal shadow directly in projection data. Convolutional neural
networks (CNNs) have been driving advances in several pattern recognition and semantic segmen-
tation tasks (Krizhevsky et al., 2012; Ronneberger et al., 2015). Also in the field of CT MAR they
are increasingly used, e.g. for sinogram correction (Gjesteby et al., 2017) and image-based artifact
reduction (Zhang and Yu, 2018; Xu and Dang, 2018). In contrast to these methods, our dynamic
pacemaker artifact removal (DyPAR) approach does not rely on initially reconstructed image vol-
umes which are potentially motion perturbed, i.e. it is applicable to static and non-static objects.

We use a forward model to synthesize pacemaker lead projection data and train CNNs to seg-
ment the metal directly in the projection domain. Inpainting of the post-processed segmentation
masks and subsequent reconstruction yield CT image volumes with reduced artifacts. The gener-
alization capabilities and transferability to MAR in clinical practice are investigated based on eight
test cases with real pacemakers and two additional test cases without pacemaker.
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2. Data

2.1. Synthetic learning data

Section 3.1 details the generation of projection data with synthetic pacemaker leads and correspond-
ing segmentation masks for subsequent network training. The following described reference data
with pacemakers and target data without pacemakers form the basis of this synthetic learning data.
Leads are inserted into the target data without pacemakers, whereby reasonable lead positions and
pathways are extracted from the reference data with pacemakers.
Reference data with pacemakers Seven reconstructed CT image volumes with pacemakers are
collected for the extraction of pacemaker lead positions with respect to the cardiac anatomy. Dual as
well as triple chamber pacemakers are included, i.e. synthesis of right atrial leads, right ventricular
leads and coronary sinus leads is aimed for.
Target data without pacemakers Synthetic leads are inserted into 14 contrast-enhanced clinical
cardiac CT data sets without pacemakers. The reconstructed image volumes as well as the corre-
sponding raw projection data are required for the insertion process. In all target cases, acquisition
was performed with a 256-slice CT scanner (Brilliance iCT, Philips Healthcare, Cleveland, Oh ,
USA) using a retrospective gating protocol without dose modulation. The helical trajectory exhibits
a gantry rotation speed of 0.272 sec per turn. The pitch and the number of recorded projection views
per turn vary between 0.16/0.18 and 1800/2400, respectively.

2.2. Clinical test data

In order to investigate generalization capabilities of the trained networks and the proposed Dy-
PAR approach in clinical practice, ten additional cardiac CT data sets (i.e. the reconstructed image
volume and the corresponding raw projection data) are collected. Eight data sets exhibit real pace-
makers and allow one to evaluate the robustness of the CNNs with regard to variations in contrast-
enhancement, motion levels, acquisition settings (pitch, w/wo dose modulation, w/wo gating) and
lead pathways. Furthermore, the networks behavior in the presence of unseen features like elec-
trodes or defibrillators is investigated. The remaining two test data sets without pacemakers are
considered to quantify false positives. Both exhibit severe calcifications at the coronary arteries
and the aortic valve. Furthermore, sternal steel wires for median sternotomy closure and a stent at
the left main artery are present in one of these no-pacemaker data sets. The evaluation results are
presented in Section 4.1.

3. Method

CNNs are trained for the task of segmenting pacemaker metal shadows in the projection domain.
The required data for supervised learning is generated using a forward model for synthetic lead
introduction. The Subsections 3.1 and 3.2 detail the data generation and the supervised learning
processes. Finally, the trained networks are integrated into the DyPAR pipeline for application on
clinical test data as described in Subsection 3.3.

3.1. Learning data generation

The data generation process is visualized in Figure 3 and requires one reference case with pacemaker
and one target case without pacemaker. For both CT image volumes, corresponding heart meshes
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Figure 3: Synthetic leads are introduced into the projection data of clinical cases without pacemak-
ers. Consideration of the segmented heart meshes allows sensible insertion.

are obtained by model-based heart segmentation according to (Ecabert et al., 2008). At least ten
B-spline knots are manually selected along each pacemaker lead in the reference case. Based on
the point-to-point correspondences in the segmented heart meshes, thin plate spline smoothing is
performed to transform the B-spline knots from the reference case into the target case. The cor-
responding B-spline curve is determined by cubic B-spline interpolation for each pacemaker lead,
separately. Dilation of the resulting lines with a chosen lead diameter of 2 millimeters and an at-
tenuation value of 4500 HU yields a binary lead mask in the target image geometry. Subsequent
forward projection delivers the corresponding metal shadow in the originally acquired projection
geometry of the target case. The required input data for supervised learning is finally obtained by
summation of the original projection data and the forward projected lead mask. Thresholding with
zero defines the corresponding target segmentation mask.

3.2. Supervised learning

The data generation process is applied two times per reference case as twice as many target cases
are available. An average number of 10 000 views per case is included in the supervised learning
process. Each view contains 128×672 line integrals determined by the detector height and width of
the Brilliance iCT. On average, 1.4% of the projection data contains object voxels. The data is case-
wise separated into the subsets training, validation and testing with a ratio of 6:4:4, or rather 3:2:2
with respect to the corresponding reference cases. By this data separation strategy, it is ensured that
pacemaker geometries and background line integrals are disjoint among the subsets.
Patch sampling During training, the CNN takes 3D patches of size 100 × 100 × 11 voxels as
input and delivers 2D patches of size 20× 20 as output. The first and second dimension of the
network input contain the information of the detector row and column, while the third dimension
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Figure 4: Adapted U-net architecture for 2D lead segmentation from multi-view input patches.
Each box corresponds to a multi-channel feature map. For clarity only five instead of
eleven input views are illustrated. The actual shape of each feature map is denoted at the
lower left edge of the box. The arrows represent the different operations.

corresponds to the projection view. The third patch dimension is equidistantly sampled with respect
to the number of views per gantry turn in such a way that 12 degrees gantry rotation are captured.
Inclusion of neighboring views has the benefit, that the network gets additional information about
the rotation velocity of supposed pacemaker leads, i.e. information about the distance to the rotation
center. The target patch corresponds to the center of the sixth view. In order to compensate the
extreme foreground-background class imbalance, the sampling process is controlled in such a way
that 75% of the training patches contain at least one object voxel. The remaining 25% are randomly
sampled.
Network architecture Figure 4 shows the utilized U-Net architecture adapted from (Ronneberger
et al., 2015). In the contracting path, 2D lead features are extracted for each view, separately.
These features are joint in the bottleneck to exploit the temporal information. In the expanding
path, merely location information of the center slice to be segmented are copied and cropped from
the contracting path. The slim architecture with its shared weights in the contracting path has a
relatively low number of 423 730 learned parameters. The networks output is reduced in the first
two dimensions, as no internal padding is performed. The fully convolutional network design allows
for arbitrary output shapes. During validation and testing, the full detector size of 128×672 voxels
is segmented in a single step by previously enlarging the input projection data sets with respect to
the networks receptive field of 11× 81× 81 pixels using symmetric padding. During parameter
tuning we observed, that in particular the receptive field size and the number of projection views
per patch are crucial to the network performance.
Learning setup The stochastic gradient descent solver Adam (Kingma and Ba, 2015) with an initial
learning rate of 0.01, a mini-batch size of 32 and a momentum of 0.8 is used for network optimiza-
tion. Training is performed over 30 epochs while one epoch is defined by 10e5 processed samples.
The learning rate decreases with a factor of two after every 10th epoch and L2 regularization with
a weight of 0.0002 is used. The learning process is driven by the focal loss (Lin et al., 2018) with
focusing parameter γ = 2.
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Figure 5: Schematic steps for sinogram correction. (a) The pacemaker metal shadow is segmented
by CNNs. (b) The resulting probability map is transformed into a binary mask. (c) Metal-
affected values are inpainted to yield pacemaker-free projection data.

Bagging approach An ensemble of five CNNs is learned using the aforementioned network archi-
tecture and hyper-parameter settings by the following bagging approach:

1. Four validation cases and four test cases are randomly sampled.

2. Network training is performed based on the remaining six clinical cases.

3. After every epoch, the networks generalization capabilities are examined by calculating the
Dice coefficient with a threshold of 0.5 on the validation set.

4. The model with the highest validation metric within 30 epochs of training is selected for
performance evaluation and application in the DyPAR pipeline.

5. Steps 1.-4. are performed five times in total.

3.3. DyPAR pipeline

The proposed dynamic pacemaker artifact removal (DyPAR) approach deals with sinogram correc-
tion and subsequent filtered backprojection (Koken and Grass, 2006). As illustrated in Figure 5, the
sinogram correction comprises three steps:
(a) Metal shadow segmentation In order to increase the robustness of the metal shadow segmenta-
tion, the entire ensemble of five CNNs yielded by the bagging approach is applied on the previously
padded input raw projection data. It has to be noted that merely projection data which is required for
cardiac field-of-view reconstruction is processed. That means, the pulse generator below the clav-
icle, for instance, is not segmented. The output probability map is averaged across the ensemble
and contains values between 0 and 1. In contrast to standard MAR approaches, the segmentation
delivers probability maps which are independent of the 3D motion blur and exactly located on the
real metal shadows.
(b) Post-processing By thresholding the probability map with 0.15 and extracting the largest con-
nected component using a 3×3×3 structure element, a binary inpainting mask is determined. The
choice of the relatively low threshold 0.15 is motivated by the fact that incomplete metal masks may
introduce new artifacts after inpainting and reconstruction. For the task of MAR, false positives are
less severe than false negatives, i.e. the sensitivity is a more important performance measure than
the specificity.
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Table 1: Mean network performance measures (in percent) on training, validation and testing sub-
sets are compared for different post-processing settings, i.e. thresholds t for separation of
object and background voxels and optional largest connected component (LCC) extraction.

subset Dice coefficient sensitivity specificity AUC
t / LCC 0.5 X 0.15 X 0.15 X 0.5 X 0.15 X 0.15 X 0.15 X 0.5 X 0.15 X X

testing 91.27 79.44 84.92 89.63 98.05 97.96 99.90 99.28 99.50 99.86
validation 90.93 78.40 84.23 90.04 98.25 97.88 99.90 99.31 99.54 99.86
training 94.55 80.22 86.32 95.48 99.89 99.87 99.92 99.36 99.98 99.98

(c) Inpainting The predicted metal-affected values (green voxels in Figure 5) are treated as missing
data. The projection data is filled by distance weighted 2D linear interpolation, based on surround-
ing line integrals (blue voxels in Figure 5). Of course, alternative inpainting approaches instead of
view-wise linear interpolation are possible. The focus here is however on the metal shadow seg-
mentation step. Filtered backprojection (Koken and Grass, 2006) of the inpainted projection data
finally delivers the CT image volume without pacemaker and concomitant artifacts.

4. Experiments and results

For all experiments, the Microsoft Cognitive Toolkit (CNTK v2.5+, Microsoft Research, Redmond,
WA, USA) is used as deep learning framework. Table 1 summarizes networks performance mea-
sures during the five-fold bagging approach. Dice coefficients, sensitivity, specificity and the area
under curve (AUC) are considered. These quantitative results illustrate that the CNNs are able to
identify synthetic pacemaker leads in clinical projection data. To further evaluate generalization
capabilities of the bagging ensemble in clinical practice, DyPAR is applied on the clinical test data
described in Section 2.2.

4.1. Evaluation on clinical test data

In order to identify strengths and weaknesses of the trained neural networks, qualitative evaluations
of the segmentation masks and the output image volumes are performed by visual inspection. For
comparison, image-based metal shadow extraction is considered, whereby the metal masks in the
image domain are segmented using 3D hysteresis thresholds of 1000 HU and 1500 HU. The metal
shadow areas are yielded by forward projection and thresholding with zero.

Both metal shadow extraction approaches, the image-based one and ours, are compared in Fig-
ure 6. For both methods, few false negatives are observable (see Figure 6c,h,j,k). In contrast to the
image-based approach, our networks deliver segmentation results which are not affected by blurring
between different motion states (see Figure 6a,g,h,j). Despite the lag of dedicated learning data, the
networks object-background separation also holds for electrodes (see Figure 6a-k) and defibrillators
(see Figure 6b,f). Misinterpretation of spine as lead is identified as one possible error source (see
Figure 6f), whereas metal shadow kinks (see Figure 6d) and moderate noise do not seem to confuse
the neural networks. More severe noise caused by dose modulation is indeed a limiting factor, but
projection views recorded with reduced radiation doses are generally not taken into account during
back projection. In cases with dose modulation, the post-processing step has to be adapted in such
a way that the largest connected component is determined for each high dose segment, separately.
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Figure 6: Example projections with real metal implants and corresponding metal shadow areas pre-
dicted by the image-based approach and during our DyPAR pipeline.

Based on a single projection view, ECG and pacemaker leads are visually hard to distinguish.
The CNNs are remarkably successful in their differentiation and seem also to consider the rotation
velocities (see Figure 6a,c,d). This strength is restricted in case of horizontally aligned ECG leads
(see Figure 6e) as for these segments, the rotation velocity can not be measured locally. False posi-
tives are increasingly present in the image-based metal shadows, e.g. caused by severe calcifications,
ECG-leads and bone (see Figure 6a-c,d,h). In the two no-pacemaker data sets, false positive rates
of 0.1125% and 3.3297% are achieved by the networks. False positive activations are caused by
parts of the ECG leads and the sternal steel wires (see Figure 6l). In contrast to the image-based ap-
proach which exhibits false positive rates of 0.8647% and 3.6866%, calcifications and stents are not
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Figure 7: Axial slices of clinical test cases before and after DyPAR. For comparison, the corre-
sponding results of the image-based MAR approach are considered.

misinterpreted by the networks. The superiority of our method over the image-based is observable
in the projection and the image domain.

Figure 7 shows some results of the DyPAR with significant reduction of the streak-shaped metal
artifacts. Especially in the zoomed regions, evaluation of the neighboring anatomy is facilitated.
The image-based approach is in contrast not robust regarding cardiac motion and leads to increased
blurring in the neighboring anatomy (see Figure 7a), incomplete metal removal (see Figure 7c,d)
and introduction of new severe artifacts (see Figure 7b,e). In fact, our method also introduces
new artifacts whenever the inpainting causes inconsistencies in the projection data (see Figure 7a,
right). Nevertheless, the DyPAR approach demonstrates great generalization capabilities as it is
transferable to different scanner types (also tested: Brilliance 64, Philips Healthcare, Cleveland,
Oh , USA) and ungated CT data sets (see Figure 7b-d). In these cases, contrast enhancement and
acquisition settings like the pitch and the gantry rotation speed vary from the learning data.
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5. Discussion and Conclusion

Establishment or maintenance of consistent projection data is essential for artifact removal or avoid-
ance. As already mentioned in Subsection 3.3, simple 2D linear interpolation should not be the
method of choice as edge preservation is not ensured. Since neural networks also showed great re-
sults in image inpainting (Yang et al., 2017), a deep-learning-based approach should be considered.
Furthermore, metal reinsertion with respect to the cardiac motion is still an issue. So far, the metal
is completely removed from the reconstructed CT image volumes.

The proposed data generation process is in principle extendable to different scanner types, ac-
quisition modes and high-density objects. It enables on-site training for protocol-specific MAR.
Hence, generalization to step-and-shoot data and transferability to other metal implants like artifi-
cial valves or metal clips will be part of future research.

To conclude, dynamic metal artifact removal based on metal shadow segmentation in the pro-
jection domain is feasible. CNNs trained on clinical data with synthetically introduced pacemaker
leads show great generalization capabilities in the segmentation of electrode and defibrillator shad-
ows. Quantitative validation studies are required to assess the transferability of these promising
initial results to pacemaker CT artifact reduction in clinical practice.
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