
Published as a conference paper at ICLR 2019

ADAPTIVE CROSS-MODAL FEW-SHOT LEARNING

Chen Xing
Nankai University, Tianjin, China
Element AI, Montreal, Canada
xingchen1113@gmail.com

Negar Rostamzadeh, Boris N. Oreshkin & Pedro O. Pinheiro
Element AI, Montreal, Canada

ABSTRACT

Metric-based meta-learning techniques have successfully been applied to few-shot
classification problems. However, leveraging cross-modal information in a few-
shot setting has yet to be explored. When the support from visual information is
limited in few-shot image classification, semantic representations (learned from
unsupervised text corpora) can provide strong prior knowledge and context to help
learning. Based on this intuition, we design a model that is able to leverage visual
and semantic features in the context of few-shot classification. We propose an
adaptive mechanism that is able to effectively combine both modalities conditioned
on categories. Through a series of experiments, we show that our method boosts
the performance of metric-based approaches by effectively exploiting language
structure. Using this extra modality, our model bypass current unimodal state-
of-the-art methods by a large margin on miniImageNet and tieredImageNet. The
improvement in performance is particularly large when the number of shots are
small.

1 INTRODUCTION

Deep learning methods have achieved major advances in areas such as speech, language and vi-
sion (LeCun et al., 2015). These systems, however, usually require a large amount of labeled data,
which can be impractical or expensive to acquire. On the other hand, existing evidence suggests that
the human visual system is capable of effectively operating in small data regime: humans can learn
new concepts from a very few samples, by leveraging prior knowledge and context (Landau et al.,
1988; Markman, 1991; Smith & Slone, 2017). The problem of learning new concepts with small
number of labeled data points is usually referred to as few-shot learning (Bart & Ullman, 2005; Fink,
2005; Li et al., 2006; Lake et al., 2011). Most approaches addressing this problem are based on the
meta-learning paradigm (Schmidhuber, 1987; Bengio et al., 1992; Thrun, 1998; Hochreiter et al.,
2001), a class of algorithms and models focusing on learning how to (quickly) learn new concepts.

Recent progress in few-shot classification has primarily been made in the context of unimodal
learning. In contrast to this, strong evidence supports the hypothesis that language helps the learning
of new concepts in toddlers (Jackendoff, 1987; Smith & Gasser, 2005). This suggests that semantic
features can be a powerful source of information in the context of few-shot image classification.
While there have been many applications in combining visual and semantic embeddings to improve
visual recognition tasks (e.g. in zero-shot learning (Frome et al., 2013) or image retrieval (Weston
et al., 2011)), exploiting semantic language structure in the meta-learning framework has been mostly
unexplored.

In this paper, we argue that few-shot classification can be considerably improved by leveraging
semantic information from labels (learned, for example, from unsupervised text corpora). Visual and
semantic feature spaces have heterogeneous structures by definition. For certain concepts, visual
features might be richer and more discriminative than semantic ones. While for others, the inverse
might be true. Moreover, when the support from visual information is limited, semantic features
can provide strong prior knowledge and context to help learning. Based on this idea, we propose
Adaptive Modality Mixture Mechanism (AM3), an approach that effectively and adaptively combines
information from visual and semantic spaces.

1

Published as a conference paper at ICLR 2019

AM3 is built on top of metric-based meta-learning approaches . These approaches perform classifica-
tion by comparing distances in a learned metric space (from visual data). Different from previous
metric-based methods, our model is able to exploit both visual and semantic feature spaces for classi-
fication. The semantic representation is learned from unsupervised text corpora and is easy to acquire.
Our proposed mechanism performs classification in a feature space that is a convex combination
of the two modalities. Moreover, we design the mixing coefficient to be adaptive w.r.t. different
categories. Empirically, we show that our approach achieves considerable boost in performance over
different metric-based meta-learning approaches on different number of shots. Moreover, our method
is able to beat by a large margin current (single-modality) state of the art.

2 RELATED WORK

Many deep meta-learning approaches have been proposed to address few-shot learning problem.
These methods can be roughly divided into two main types: metric-based and gradient-based
approaches. Metric-based approaches aim at learning representations that minimize intra-class
distances while maximizing the distance between different classes. These approaches tend to rely
on an episodic training framework: the model is trained with sub-tasks (episodes) in which there
are only a few training samples for each category. For example, in prototypical networks (Snell
et al., 2017), a metric space is learned where embeddings of queries of one category are close to the
centroid (or prototype) of supports of the same category, and far away from centroids of other classes
in the episode. Due to simplicity and performance of this approach, many methods extended this
work (Ren et al., 2018; Wang et al., 2018; Oreshkin et al., 2018; Dumoulin et al., 2018). Gradient-
based meta-learning methods aim at training models that can generalize well to new tasks with only
a few fine-tuning updates. Most these methods are built on top of model-agnostic meta-learning
(MAML) framework (Finn et al., 2017). Given the universality of MAML, many follow-up works
were recently proposed to improve its performance on few-shot learning (Nichol et al., 2018; Lacoste
et al., 2017; Jiang et al., 2019; Rusu et al., 2019).

Current approaches mentioned above rely solely on visual features for few-shot classification. Our
contribution is orthogonal to current metric-based approaches and can be integrated into them to
boost performance in few-shot classification.

3 METHOD

3.1 PRELIMINARIES

Episodic Training In few-shot learning, the class sets are disjoint between Dtrain and Dtest. The
test set has only a few labeled samples per category. Most successful approaches rely on an episodic
training paradigm: the few shot regime faced at test time is simulated by sampling small samples
from the large labeled set Dtrain during training.

In general, models are trained onK-shot,N -way episodes. Each episode e is created by first sampling
N categories from the training set and then sampling two sets of images from these categories: (i) the
support set Se = {(si, yi)}N×Ki=1 containing K examples for each of the N categories and (ii) the
query set Qe = {(qj , yj)}Qj=1 containing different examples from the same N categories.

The episodic training for few-shot classification is achieved by minimizing, for each episode, the loss
of the prediction on samples in query set, given the support set:

L(θ) = E
(Se,Qe)

−
Q∑
t=1

log pθ(yt|qt,Se) , (1)

where (qt, yt) ∈ Qe and Se are, respectively, the sampled query and support set at episode e and θ
are the parameters of the model.

Prototypical Networks We build our model on top of metric-based meta-learning methods. We
chose prototypical network (Snell et al., 2017) for explaining our model due to its simplicity. We
note, however, that the proposed method can potentially be applied to any metric-based approach.

2

Published as a conference paper at ICLR 2019

Prototypical networks use the support set to compute a centroid (prototype) for each category (in
the sampled episode) and query samples are classified based on the distance to each prototype. The
model is a convolutional neural network (Lecun et al., 1998) f : Rnv → Rnp , parameterized by
θf , that learns a np-dimensional space where samples of the same category are close and those of
different categories are far apart.

For every episode e, each embedding prototype pc (of category c) is computed by averaging the
embeddings of all support samples of class c:

pc =
1

|Sce |
∑

(si,yi)∈Sc
e

f(si) , (2)

where Sce ⊂ Se is the subset of support belonging to class c.

The model produces a distribution over the N categories of the episode based on a softmax (Bridle,
1990) over (negative) distances d of the embedding of the query qt (from category c) to the embedded
prototypes:

p(y = c|qt, Se, θ) =
exp(−d(f(qt),pc))∑
k exp(−d(f(qt),pk))

. (3)

We consider d to be the Euclidean distance. The model is trained by minimizing Equation 1 and the
parameters are updated with stochastic gradient descent.

3.2 ADAPTIVE MODALITY MIXTURE MECHANISM

The information contained in semantic concepts can significantly differ from visual information
content. For instance, ‘Siberian husky’ and ‘wolf’, or ‘komondor’ and ‘mop’, might be difficult to
discriminate with visual features, but might be easier to discriminate with language semantic features.

In the few-shot learning scenario, we hypothesize that both visual and semantic information can
be useful for classification. Because we assume the visual and the semantic spaces have differ-
ent structures, it is desirable that the proposed model exploit both modalities in the best way.

p0
k

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p0
j

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p0
i

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�i
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�j
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�k
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

pi
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

pj
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

pk
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

wi
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

wj
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

wk
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(a)

p0
k

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p0
j

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p0
i

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�i
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�j
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�k
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

pi
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

pj
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

pk
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

wi
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

wj
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

wk
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(b)

p0
k

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p0
j

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p0
i

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�i
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�j
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�k
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

pi
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

pj
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

pk
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

wi
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

wj
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

wk
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(c)

p0
k

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p0
j

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p0
i

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�i
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�j
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�k
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

pi
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

pj
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

pk
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

wi
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

wj
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

wk
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(d)

Figure 1: Qualitative example of how
AM3 works. Assume query sample q has
category i. (a) The closest visual proto-
type to the query sample q is pj . (b) The
semantic prototypes. (c) The mixture
mechanism modify the positions of the
prototypes, given the semantic embed-
dings. (d) After the update, the closest
prototype to the query is now the one of
the category i, correcting the classifica-
tion.

We augment prototypical networks to incorporate lan-
guage structure learned by a word-embedding modelW
(pre-trained on unsupervised large text corpora), contain-
ing label embeddings of all categories in Dtrain ∪ Dtest. In
our model, we modify the prototype representation of each
category by taking into account their label embeddings.

More specifically, we model the new prototype representa-
tion as a convex combination of the two modalities. That
is, for each category c, the new prototype is computed as:

p′
c = λc · pc + (1− λc) ·wc , (4)

where λc is the adaptive mixture coefficient (conditioned
on the category) and wc = g(ec) is a transformed version
of the label embedding for class c. This transformation
g : Rnw → Rnp , parameterized by θg, is important to
guarantee that both modalities lie on the space Rnp of the
same dimension and can be combined.

There are many different ways to adaptively calculate λc
to mix the two modalities. In this work we chose to condi-
tion the mixing coefficient on different categories. A very
structured semantic space is a good choice for condition-
ing. Therefore, we chose a simple model for modulation
conditioned on the semantic embedding space:

λc =
1

1 + exp(−h(wc))
, (5)

where h is the adaptive mixing network, with parameters θh. The mixing coefficient can be condi-
tioned on different variables.

3

Published as a conference paper at ICLR 2019

Table 1: Few-shot classification accuracy on test split of miniImageNet and tieredImageNet. Results
in the top use only visual features. Cross-modal baselines are shown on the middle and our results
(and their backbones) on the bottom part.

Model Test Accuracy

miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

MatchingNets (Vinyals et al., 2016) 43.56 ± 0.84% 55.31 ± 0.73% - -
PrototypicalNets (Snell et al., 2017) 49.42 ± 0.78% 68.20 ± 0.66% - -
Disc-k-shot (Bauer et al., 2017) 56.30 ± 0.40% 73.90 ± 0.30% - -
(Ravi & Larochelle, 2017) 43.44 ± 0.77% 60.60 ± 0.71% - -
Meta-SGD (Li et al., 2017) 50.47 ± 1.87% 64.03 ± 0.94% - -
MAML (Finn et al., 2017) 48.70 ± 1.84% 63.11 ± 0.92% 51.67 ± 1.81% 70.30 ± 0.08%
Proto-k-Means (Ren et al., 2018) 50.41 ± 0.31% 69.88 ± 0.20% 53.31 ± 0.89% 72.69 ± 0.74%
SNAIL (Mishra et al., 2018) 55.71 ± 0.99% 68.80 ± 0.92% - -
CAML (Jiang et al., 2019) 59.23 ± 0.99% 72.35 ± 0.71% - -
LEO (Rusu et al., 2019) 61.76 ± 0.08% 77.59 ± 0.12% 66.33 ± 0.05% 81.44 ± 0.09%

ProtoNets++ 56.52 ± 0.45% 74.28 ± 0.20% 58.47 ± 0.64% 78.41 ± 0.41%
AM3-ProtoNets++ 65.21 ± 0.30% 75.20 ± 0.27% 67.23 ± 0.34% 78.95 ± 0.22%
TADAM (Oreshkin et al., 2018) 58.56 ± 0.39% 76.65 ± 0.38% 62.13 ± 0.31% 81.92 ± 0.30%
AM3-TADAM 65.30 ± 0.49% 78.10 ± 0.36% 69.08 ± 0.47% 82.58 ± 0.31%

The training procedure is similar to that of the original prototypical networks. However, the distances
d (used to calculate the distribution over classes for every image query) are between the query and
the cross-modal prototype p′c Once again, the model is trained by minimizing Equation 1. Note that
in this case the probability is also conditioned on the word embeddingsW . Figure 1 illustrates an
example on how the proposed method works.

4 EXPERIMENTS

4.1 DATASETS

miniImageNet is a subset of ImageNet ILSVRC12 dataset (Russakovsky et al., 2015). It contains 100
randomly sampled categories, each with 600 images. For fair comparison with other methods, we use
the same split proposed by Ravi & Larochelle (2017), which contains 64 categories for training, 16
for validation and 20 for test. tieredImageNet (Ren et al., 2018) is a larger subset of ImageNet.

We use GloVe (Pennington et al., 2014) to extract the semantic embeddings for the category labels.
GloVe is an unsupervised approach based on word-word co-occurrence statistics from large text
corpora. We use the Common Crawl version trained on 840B tokens. We also experimented with
fastText embeddings (Joulin et al., 2016) and observed similar performances.

4.2 COMPARISON TO OTHER METHODS

Table 1 shows classification accuracy on miniImageNet and tieredImageNet. In the top part of each
table, we show recent methods exploiting only visual features and at the bottom we show results of our
method, AM3, with two different backbone architectures: ProtoNets++ and TADAM. We conclude
multiple results from these experiments. First, our approach outperforms its backbone methods by a
large margin in all cases tested. This indicates that language can be effectively leveraged to boost
performance in classification with low number of shots. Second, AM3 (with TADAM backbone)
achieves results superior to current (single modality) state of the art (Rusu et al., 2019). The margin
in performance is particularly remarkable in the 1-shot scenario. Although our approach exploits
semantic embeddings, we note they were learned with unlabeled text corpora. Third, it is clear that
the gap between AM3 and the corresponding backbone gets reduced as the number of shots increases.

4

Published as a conference paper at ICLR 2019

5 CONCLUSION

In this paper, we propose a method that can efficiently and effectively leverage cross-modal infor-
mation for few-shot classification. Our method, AM3, adaptively combines visual and semantic
features, given instance categories. AM3 boosts the performance of metric-based approaches by a
large margin on different datasets and settings. Moreover, by leveraging unsupervised textual data,
AM3 outperforms current unimodal state of the art on few-shot classification by a large margin. We
also show that the semantic features are particularly helpful on the very low (visual) data regime (e.g.
one-shot).

REFERENCES

E. Bart and S. Ullman. Cross-generalization: learning novel classes from a single example by feature
replacement. In CVPR, 2005.

Matthias Bauer, Mateo Rojas-Carulla, Jakub Bartlomiej Swikatkowski, Bernhard Scholkopf, and
Richard E Turner. Discriminative k-shot learning using probabilistic models. In NIPS Bayesian
Deep Learning, 2017.

Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gecsei. On the optimization of a synaptic
learning rule. In Conference on Optimality in Biological and Artificial Networks, 1992.

John Bridle. Probabilistic interpretation of feedforward classification network outputs with re-
lationships to statistical pattern recognition. Neurocomputing: Algorithms, Architectures and
Applications, 1990.

Vincent Dumoulin, Ethan Perez, Nathan Schucher, Florian Strub, Harm de Vries, Aaron Courville,
and Yoshua Bengio. Feature-wise transformations. Distill, 2018.

Michael Fink. Object classification from a single example utilizing class relevance metrics. In NIPS,
2005.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In ICML, 2017.

Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Tomas Mikolov, et al. Devise:
A deep visual-semantic embedding model. In NIPS, 2013.

Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient descent.
In ICANN, 2001.

R Jackendoff. On beyond zebra: the relation of linguistic and visual information. Cognition, 1987.

Xiang Jiang, Mohammad Havaei, Farshid Varno, Gabriel Chartrand, Nicolas Chapados, and Stan
Matwin. Learning to learn with conditional class dependencies. In ICLR, 2019.

Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
Fasttext.zip: Compressing text classification models. arXiv preprint arXiv:1612.03651, 2016.

Alexandre Lacoste, Thomas Boquet, Negar Rostamzadeh, Boris Oreshki, Wonchang Chung, and
David Krueger. Deep prior. NIPS workshop, 2017.

Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua Tenenbaum. One shot learning of
simple visual concepts. In Annual Meeting of the Cognitive Science Society, 2011.

Barbara Landau, Linda B Smith, and Susan S Jones. The importance of shape in early lexical learning.
Cognitive development, 1988.

Yann Lecun, Lon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. In Proceedings of the IEEE, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 2015.

Fei-Fei Li, Rob Fergus, and Pietro Perona. One-shot learning of object categories. PAMI, 2006.

5

Published as a conference paper at ICLR 2019

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for few
shot learning. In arXiv, 2017.

Ellen M Markman. Categorization and naming in children: Problems of induction. MIT Press, 1991.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. In ICLR, 2018.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv,
2018.

Boris N Oreshkin, Alexandre Lacoste, and Pau Rodriguez. Tadam: Task dependent adaptive metric
for improved few-shot learning. In NeurIPS, 2018.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In EMNLP, 2014.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In ICLR, 2017.

Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B Tenenbaum,
Hugo Larochelle, and Richard S Zemel. Meta-learning for semi-supervised few-shot classification.
In ICLR, 2018.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. IJCV, 2015.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero,
and Raia Hadsell. Meta-learning with latent embedding optimization. In ICLR, 2019.

Jurgen Schmidhuber. Evolutionary principles in self-referential learning. on learning now to learn:
The meta-meta-meta...-hook. Diploma thesis, Technische Universitat Munchen, Germany, 1987.

Linda Smith and Michael Gasser. The development of embodied cognition: Six lessons from babies.
Artificial life, 2005.

Linda B Smith and Lauren K Slone. A developmental approach to machine learning? Frontiers in
psychology, 2017.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In NIPS,
2017.

Sebastian Thrun. Lifelong learning algorithms. Kluwer Academic Publishers, 1998.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In NIPS, 2016.

Yu-Xiong Wang, Ross B. Girshick, Martial Hebert, and Bharath Hariharan. Low-shot learning from
imaginary data. In CVPR, 2018.

Jason Weston, Samy Bengio, and Nicolas Usunier. Wsabie: Scaling up to large vocabulary image
annotation. In IJCAI, 2011.

6

	Introduction
	Related Work
	Method
	Preliminaries
	Adaptive Modality Mixture Mechanism

	Experiments
	Datasets
	Comparison to Other Methods

	Conclusion

