
Under review as a conference paper at ICLR 2020

INTERACTIVE CLASSIFICATION BY ASKING INFORMA-
TIVE QUESTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Natural language systems often rely on a single, potentially ambiguous input to
make one final prediction, which may simplify the problem but degrade end user
experience. Instead of making predictions with the natural language query only,
we ask the user for additional information using a small number of binary and
multiple-choice questions in order to better help users accomplish their goals
while minimizing their effort. At each turn, our system decides between ask-
ing the most informative question or making the final classification prediction.
The approach enables bootstrapping the system using simple crowdsourcing an-
notations without expensive human-to-human interaction data. Evaluation demon-
strates that our method substantially increases classification accuracy, while effec-
tively balancing the number of questions with the improvement to final accuracy.

1 INTRODUCTION

Responding to natural language queries through simple, single-step classification has been studied
extensively in many applications, including user intent prediction (Chen et al., 2019; Qu et al., 2019),
and information retrieval (Kang & Kim, 2003; Rose & Levinson, 2004). Typical methods rely on
a single user input to produce an output, missing an opportunity to interact with the user to reduce
ambiguity and improve the final prediction. For example, users may under-specify a request due to
incomplete understanding of the domain; or the system may fail to correctly interpret the nuances
of the input query. In both cases, a low quality input could be mitigated by further interaction with
the user.

In this paper we propose a simple but effective interaction paradigm that consists of a sequence
of binary and multiple choice questions allowing the system to ask the user for more information.
Figure 1 illustrates the types of interaction supported by this method, showcasing the opportunity
for clarification while avoiding much of the complexity involved in unrestricted natural language
interactions. Following a natural language query from the user, our system then decides between
posing another question to obtain more information or finalizing the current prediction. Unlike
previous work which assumes access to full interaction data (Wu et al., 2018; Hu et al., 2018; Lee
et al., 2018; Rao & Daumé III, 2018), we are interested in bootstrapping an interaction system using
simple and relatively little annotation effort. This is particularly important in real-world applications,
such as in virtual assistants, where the supported classification labels are subject to change and
thereby require a lot of re-annotation.

We propose an effective approach designed for interaction efficiency and simple system bootstrap-
ping. Our approach adopts a Bayesian decomposition of the posterior distributions over classifi-
cation labels and user’s responses through the interaction process. Due to the decomposition, we
can efficiently compute and select the next question that provides the maximal expected information
based on the posteriors. To further balance the potential increase in accuracy with the cost of asking
additional questions, we train a policy controller to decide whether to ask additional questions or
return a final prediction. Our method also enables separately collecting natural language annota-
tions to model the distributions of class labels and user responses. Specifically, we crowdsource
initial natural language queries and question-answer pairs for each class label, alleviating the need
for Wizard-of-Oz style dialog annotations (Kelley, 1984; Wen et al., 2016). Furthermore, we lever-
age the natural language descriptions of class labels, questions and answers to help estimate their
correlation and reduce the need for heavy annotation.
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Travel out of country.

Do you need to activate 
global roaming service?

Yes.

Do you want high speed 
data roaming?

No.

Got it! The article below might be helpful: 

How do I sign up for Sprint Global Roaming?

What is the bill length of the bird: 
shorter, similar, or longer than head?

Shorter than head.

Is the bird underpart orange?

Yes.

The identified bird is:

American Redstart

Saw a little black bird with black eyes.

FAQ Suggestion

What data limits apply when roaming internationally?

American Crow Bobolink

…

American Redstart
How do I sign up for Sprint Global Roaming?

. . .

How do I purchase a High Speed Data Roaming Pass?

Bird Identification

Figure 1: Two example use cases of interactive classification system: providing customer the
best trouble-shooting suggestion (left) and helping user identify bird species from text interactions
(right). The top parts show example classification labels: FAQ documents or bird species, where the
ground truth label of each interaction example is shaded. The lower parts show how a user interact
with the system typically. The user starts with an initial natural language query. At each step, the
system asks a clarification question. The interaction ends when the system returns an output label.

We evaluate our method on two public tasks: FAQ suggestion (Shah et al., 2018) and bird identifica-
tion using the text and attribute annotations of the Caltech-UCSD Birds dataset (Wah et al., 2011).
The first task represents a virtual assistant application in a trouble-shooting domain, while the sec-
ond task provides well-defined multiple-choice question annotations and naturally noisy language
inputs. Our experiments show that adding user interactions significantly increases the classifica-
tion accuracy, when evaluating against both a simulator and a real human. With one clarification
question, our system obtains a relative accuracy boost of 40% and 65% for FAQ suggestion and bird
identification compared to no-interaction baselines on simulated evaluation. Given at most five turns
of interaction, our approach improves accuracy by over 100% on both tasks in both simulated and
human evaluation.

2 TECHNICAL OVERVIEW

Notation Our goal is to classify a natural language query as one class label through interactions.
To this end, we treat the classification label y, interaction question q as well as the user response
r as random variables. We denote one possible value or assignment of the random variable using
subscripts, such as y = yi and q = qj . We use superscripts for the observed value of the random
variable at a given time step, for example, qt is a question asked at time step t. Whenever it is
clear from the context, we simply write yi as the short notation of y = yi. For example, p(r|qj , yi)
denotes the conditional distribution of r given y = yi and q = qj , and p(rk|qj , yi) further specifies
the corresponding probability when r = rk.

An interaction starts with the user providing an initial user query x. At each turn t, the system
can choose to select a question qt, to which the user respond with rt. We consider two types of
questions in this work: binary and multiple choice questions. The predefined set of possible answers
for a question qt is R(qt), where R(qt) is {yes, no} for binary questions, or a predefined set of
question-specific values for multiple choice questions. We denote an interaction up to time t as
Xt = (x, (q1, r1), . . . , (qt, rt)), and the set of possible class labels as Y = {y1, . . . , yN}. Figure 1
shows exemplary interactions in our two evaluation domains.

Model We model the interactive process using a parameterized distribution over class labels that
is conditioned on the observed interaction (Section 4.1), a question selection criterion (Section 4.2),
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and a parameterized policy controller (Section 4.5). At each time step t, we compute the belief of
each yi ∈ Y conditioned on Xt−1. The trained policy controller decides between two actions: to
return the current best possible label or to obtain additional information by asking a question. The
model selects the question that maximizes the information gain. After receiving the user response,
the model updates the beliefs over the classification labels.

Learning We use crowdsourced non-interactive data to bootstrap model learning. The crowd-
sourced data collection consists of two sub-tasks. First, we obtain a set of user initial queries Xi for
each label yi. For example, for an FAQ, ‘How do I sign up for Spring Global Roaming’, an annotator
can come up with an initial query as ‘Travel out of country’. Second, we ask annotators to assign
text tags to each yi, and convert these tags into a set of question-answer pairsAi = {(qm, rm)}Mi

m=1.
Here qm denotes a templated question and rm denotes the answer. For example, a question ‘What
is your phone operating system?’ can pair with one of the following answers: ‘IOS’, ‘Android
operating system’, ‘Windows operating system’ or ‘Not applicable’. We denote this dataset as
{(yi,Xi,Ai)}Ni=1. We describe the data collection process in Section 5. We use this data to train our
text embedding model (Section 4.3), to create a user simulator (Section 4.4), and to train the policy
controller to minimize the number of interaction turns while achieving high classification accuracy
(Section 4.5).

Evaluation We report classification accuracy of the model, and study the trade-off between accu-
racy and the number of the turns that the system takes. We run our system against a user simulator
and real human users. When performing human evaluation, we additionally collect qualitative rat-
ings of the interactions.

3 RELATED WORK

Learning from Feedback A lot of recent work have leveraged human feedback to train natural
language processing models, including dialogue learning (Li et al., 2016), semantic parsing (Artzi
& Zettlemoyer, 2011; Wang et al., 2016; Iyer et al., 2017) and text classification (Hancock et al.,
2018). These works collect user feedback after the model-predicting stage and treat user feedback
as extra offline training data to improve the model. In contrast, our model leverages the user in-
teraction and makes model prediction accordingly in an online fashion. Human feedback has been
incorporated in reinforcement learning (Christiano et al., 2017; Nguyen et al., 2018) as well. For
instance, (Christiano et al., 2017) learns a reward function from human preferences to provide richer
rewards and (Nguyen et al., 2018) uses language-illustrated subgoals as indirect interventions in-
stead of conventional expert demonstrations.

Modeling Interaction Language-based interaction has recently attracted a lot of attention in areas
such as visual question answering (De Vries et al., 2016; Lee et al., 2018; Chattopadhyay et al.,
2017; Das et al., 2017; Lee et al., 2019; Shukla et al., 2019), SQL generation (Gur et al., 2018; Yao
et al., 2019), information retrieval (Chung et al., 2018; Aliannejadi et al., 2019) and multi-turn text-
based question answering (Rao & Daumé III, 2018; Reddy et al., 2019; Choi et al., 2018). Many
of these works require learning from full-fledged dialogues (Wu et al., 2018; Hu et al., 2018; Lee
et al., 2018; Rao & Daumé III, 2018) or conducting Wizard-of-Oz dialog annotations (Kelley, 1984;
Wen et al., 2016). Instead of utilizing unrestricted but expensive conversations, we limit ourselves
to a simplified type of interaction consisting of multiple-choice and binary questions. This allows
us to reduce the complexity of data annotation while still achieving efficient interaction and high
accuracy.

Our question selection method is closely related to the prior work of (Lee et al., 2018; Rao &
Daumé III, 2018; Kovashka & Grauman, 2013; Ferecatu & Geman, 2007; Guo et al., 2018). For
instance, (Kovashka & Grauman, 2013) refine image search by asking to compare visual qualities
against selected reference images, and (Lee et al., 2018) perform object identification in image by
posing binary questions about the object or its location. Both works and our system use an entropy
reduction criterion to select the best question. Our work makes use of a Bayesian decomposition of
the joint distribution and can be easily extended to other model-driven selection. We also highlight
the modeling of natural language to estimate information and probabilities. More recently, (Rao &
Daumé III, 2018) proposes a learning-to-ask model by modeling the expected utility obtained by
a question. Our selection method can be considered as a special case when entropy is used as the
utility. In contrast to (Rao & Daumé III, 2018), our work models the entire interaction history instead
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of a single turn of follow-up questioning. Our model is trained using crowdsourced annotations,
while (Rao & Daumé III, 2018) uses real user-user interaction data.

Learning 20Q Game Our task can be viewed as an instance of the popular 20-question game
(20Q), which has been applied to the knowledge base of celebrities (Chen et al., 2018; Hu et al.,
2018). Our work differs in two fold. First, our method models the natural language descriptions of
classification targets, quesitons ans answers, instead of treating them as categorical or structural data
as in knowledge base. Second, instead of focusing on the 20Q game (on celebrities) itself, we aim
to help users accomplish realistic goals with minimal interaction effort.

4 METHOD

We maintain a probability distribution p(y |Xt) over the set of labels Y . At each interaction step,
we first update this belief, decide if to ask the question or return the classification output using a
policy controller and select a question to ask using information gain if needed.

4.1 BELIEF PROBABILITY DECOMPOSITION

We decompose the conditional probability p(y = yi |Xt) using Bayes rule:

p(y = yi |Xt) = p(yi |Xt−1, qt, rt)

∝ p(rt, qt, yi |Xt−1)

= p(rt | qt, yi, Xt−1) · p(qt |yi, Xt−1) · p(yi |Xt−1) .

(1)

We make two simplifying assumptions for Eq. (1). First, we assume the user response only depends
on the provided question qt and the underlying target label yi, and is independent of past interactions.
The assumption simplifies p(rt | qt, yi, Xt−1) as p((rt | qt, yi). Second, we deterministically select
the next question qt given the interaction history Xt−1 (described in Section 4.2). As a result,
p(q = qt |yi, Xt−1) = 1 and otherwise would be zero if q 6= qt. These two assumptions allow us to
rewrite the decomposition as:

p(y = yi |Xt) ∝ p(rt | qt, yi) · 1 · p(yi |Xt−1) = p(yi |x)
t∏

τ=1

p(rτ | qτ , yi); . (2)

That is, predicting the classification label given the observed interaction Xt can be reduced to mod-
eling p(yi |x) and p(rk | qj , yi), i.e. the label probability given the initial query only and the proba-
bility of user response conditioned on the chosen question and class label. This factorization enables
us to leverage separate annotations to learn these two components directly, alleviating the need for
collecting costly full user interactions.

4.2 QUESTION SELECTION USING INFORMATION GAIN

The system selects the question qt to ask at turn t to maximize the efficiency of the interaction.
We use a maximum information gain criterion. Given Xt−1, we compute the information gain on
classification label y as the decrease on entropy by observing possible answers to question q:

IG(y ; q |Xt−1) = H(y |Xt−1)−H(y |Xt−1, q) ,

whereH(· | ·) denotes the conditional entropy. Intuitively, the information gain measures the amount
of information obtained about the variable y by observing the value of another variable q. Because
the first entropy term H(y |Xt−1) is a constant regardless of the choice of q, the selection of qt is
equivalent to

qt = argmin
qj

H(y |Xt−1, qj) = argmin
qj

∑
rk∈R(qj)

p(rk |Xt−1, qj) ·H(y |Xt−1, qj , rk) ,

where

p(rk |Xt−1, qj) =
∑
yi∈Y

p(rk, yi |Xt−1, qj) =
∑
yi∈Y

p(rk | qj , yi) · p(yi |Xt−1) ,

4



Under review as a conference paper at ICLR 2020

H(y |Xt−1, qj , rk) =
∑
yi∈Y

p(yi |Xt−1, qj , rk) · log p(yi |Xt−1, qj , rk) .

Here we use the independent assumption stated in Section 4.1 to calculate p(rk |Xt−1, qj).
Both p(rk |Xt−1, qj) and p(yi |Xt−1, qj , rk) can be iteratively updated utilizing p(yi |x) and
p(rk | qj , yi) as the interaction progresses (Eq. 2), resulting in efficient computation of information
gain.

4.3 MODELING THE DISTRIBUTIONS

We model p(yi |x) and p(rk | qj , yi) by encoding the natural language descriptions of questions,
answers and classification labels1. That is, we do not simply treat the labels, questions and answers
as categorical variables in our model. Instead, we leverage their natural language aspects to better
estimate their correlation, reduce the need for heavy annotation and improve our model in low-
resource (and zero-shot) scenarios. Specifically, we use a shared neural encoder enc(·) to encode
all texts. Both probability distributions are computed using the dot-product score, i.e. S(u, v) =
enc(u)>enc(v) where u and v are two pieces of text.

The probability of predicting the label yi given an initial query x is:

p(yi |x) =
exp(S(yi, x))∑

yj∈Y exp(S(yj , x))
.

The probability of an answer rk given a question qj and label yi is a linear combination of the
observed empirical probability p̂(rk | qj , yi) and a parameterized estimation p̃(rk | qj , yi):

p(rk | qj , yi) = λ · p̂(rk | qj , yi) + (1− λ) · p̃(rk | qj , yi) ,

where λ ∈ [0, 1] is a hyper-parameter. We use the question-answer annotations Ai for each label
yi to estimate p̂(rk | qj , yi) using the empirical count. For example, in the FAQ suggestion task, we
collect multiple user responses for each question and class label, and average across annotator to
estimate p̂ (Section 5). The second term p̃(rk | qj , yi) is estimated using texts:

p̃(rk | qj , yi) =
exp(w · S(qj#rk, yi) + b)∑

rl∈R(qj)
exp(w · S(qj#rl, yi) + b)

,

where qj#rk is a concatenation of the question qj and the answer rk2 and w, b ∈ R are scalar
parameters. Because we do not collect complete annotations to cover every label-question pair, p̃
provides a smoothing of the partially observed counts using the learned encoding S(·).
We estimate the enc(·) with parameters ψ by pre-training using the dataset, {(yi,Xi,Ai)}Ni=1, as
described earlier. We use this data to create a set of text pairs (u, v) to train the scoring function
S(·). For each label yi, we create pairs (x, yi) with all its initial queries x ∈ Xi. We also cre-
ate (qm#rm, yi) for each question-answer pair (qm, rm) annotated with the label yi. We perform
gradient descent to minimize the cross-entropy loss:

L(ψ) = −S(u, v) + log
∑
v′

exp(S(u, v′)) .

The second term requires summation over all v′, which are all the labels in Y . We approximate
this sum using negative sampling that replaces the full set Y with a sampled subset in each training
batch. The parameters ψ, w and b are fine-tuned using reinforcement learning during training of the
policy controller (Section 4.5).

4.4 USER SIMULATOR

The user simulator provides initial queries to the system, responds to the system initiated clarification
questions and judges if the returned label is correct. The simulator is based on held-out dataset

1The text representation of a label is the FAQ document or the bird name for instance.
2For example, for a templated question ‘What is your phone operating system?’ and an answer ‘IOS’, qm =

‘phone operating system’ and rm = ‘IOS’, therefore, qm#rm = ‘phone operating system IOS’.
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Algorithm 1: Full model training
Initialize text encoder, model for p(y |x), and user simulator SIM
for episode = 1 .. M do

Sample (x, ŷ) from dataset
for t = 1 .. T do

Compute p(y |Xt−1) (Equation 2)
action = f(p(y |Xt−1), t− 1; θ)
if action is STOP then

break
else if action is ASK then

qt = argmaxqj∈Q IG(y ; qj |Xt−1)

rt ∼ p′(r | qt, ŷ)
end
y∗ = argmaxyi p(yi |Xt−1)
reward = SIM(y∗, ŷ)
Update w, b, θ using policy gradient

end

{(yi,X ′i ,A′i}Ni=1 of tuples of a goal yi, a set of initial queries X ′i , and a set of question answer
pairs A′i = {(qm, rm)}M

′
i

m=1. We estimate the simulator response distribution p′(rk | qj , yi) using
smoothed empirical counts from the data. While this data is identical in structure to our training data,
we keep it separated from the data used to estimate S(·), p(yi |x) and p(rk | qj , yi) (Section 4.3).

At the beginning of an interaction, the simulator selects a target label ŷ, and samples a query x from
the associated query set to start the interaction. Given a system clarification question qt at turn t, the
simulator responds with an answer rt ∈ R(qt) by sampling from a belief distribution p′(r | qt, ŷ).
Sampling provides natural noise to the interaction, and our model has no knowledge of p′. The
interaction ends when the system returns a target. This setup is flexible in that the user simulator
can be easily replaced or extended by a real human, and the system can be further trained with the
human-in-the-loop setup.

4.5 POLICY CONTROLLER

The policy controller decides at each turn t to either select another question to query the user or
to conclude the interaction. This provides a trade-off between exploration by asking questions and
exploitation by returning the most probable classification label. The policy controller f(·, ·; θ) is a
feed-forward network parameterized by θ that takes the top-k probability values and current turn t
as input state. It generates two possible actions, STOP or ASK. When the action is ASK, a question
is selected to maximize the information gain, and when the action is STOP, the label yi with highest
probability is returned using argmaxyi∈Y p(yi |Xt−1).

We tune the policy controller using the user simulator (Section 4.4). Algorithm 1 describes the
training process. During learning, we use a reward function that provides a positive reward for
predicting the correct target at the end of the interaction, a negative reward for predicting the wrong
target, and a small negative reward for every question asked. We learn the policy controller f(·, ·; θ),
and fine-tune p(rk | qj , yi) by back-propagating through the policy gradient. We keep the enc(·)
parameters fixed during this process.

5 DATA COLLECTION

We design a crowdsourcing process to collect data for the FAQ task using Amazon Mechanical
Turk3. For the Birds domain, we re-purpose an existing dataset. We collect initial queries and tags
for each FAQ document.

Initial Query Collection We ask workers to consider the scenario of searching for an FAQ sup-
porting document using an interactive system. Given a target FAQ, we ask for an initial query that
they would provide to such a system. The set of initial queries that is collected for each document

3https://www.mturk.com/
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yi is Xi. We encourage workers to provide incomplete information and avoid writing a simple para-
phrase of the FAQ. This results in more realistic and diverse utterances because users have limited
knowledge of the system and the domain.

Tag Collection We collect natural language tag annotations for the FAQ documents. First, we
use domain experts to define the set of possible free-form tags. The tags are not restricted to a
pre-defined ontology and can be a phrase or a single word, which describes the topic of the docu-
ment. We heuristically remove duplicate tags to finalize the set. Next, experts heuristically combine
some tags to categorical tags, while leave all the rest tags as binary tags. For example, tags ‘IOS’,
‘Android operating system’ and ‘Windows operating system’ are combined to form a categorical
tag ‘phone operating system’. We then use a small set of deterministic, heuristically-designed tem-
plates to convert tags into questions. For example, the tag ‘international roaming’ is converted into
a binary question ‘Is it about international roaming?’; the categorical tag ‘phone operating system’
is converted into a multi-choice question ‘What is your phone operating system?’. Finally, we use
non-experts to collect user responses to the questions of the FAQ. For binary questions, we ask
workers to associate the tags to the FAQ target if they would respond ‘yes’ to the question. We show
the workers a list of ten tags for a given target as well as ‘none of the above’ option. Annotating
all target-tag combinations is excessively expensive and most pairings are negative. We rank the
tags based on the relevance against the target using S(·) and show only top-50 to the workers. For
multi-choice tags, we show the workers a list of possible answers to a tag-generated question for
a given FAQ. The workers need to choose one answer that they think best applies. They also have
the option of choosing ‘not applicable’. We provide more data collection statistics in Appendix A.1.
The workers do not engage in a multi-round interactive process. This allows for cheap and scalable
collection.

6 EXPERIMENTAL SETUP

Task I: FAQ Suggestion We use the FAQ dataset from (Shah et al., 2018). The dataset contains
517 troubleshooting documents by crawling Sprint’s technical website. In addition, we collect 3, 831
initial queries and 118, 640 tag annotations using the setup described in Section 5. We split the
data into 310/103/104 documents as training, development, and test sets. Only the queries and tag
annotations of the 310 training documents are used for pre-training and learning the policy controller.
We use the queries and tag annotations of the development and test documents for evaluation only.
The classification targets contain all 517 documents during evaluation4.

Task II: Bird Identification Our second set of experiments uses the Caltech-UCSD Birds (CUB-
200) dataset (Wah et al., 2011). The dataset contains 11, 788 bird images for 200 different bird
species. Each bird image is annotated with a subset of 27 visual attributes and 312 attribute val-
ues pertaining to the color or shape of a particular part of the bird. We take attributes with value
count less than 5 as categorical tags, leaving us 8 categorical questions in total. The remaining 279
attributes are treated as binary tags and converted to binary questions. In addition, each image is
annotated with 10 image captions describing the bird in the image (Reed et al., 2016). We use the
image captions as initial user queries and bird species as labels. Since each image often contains
only partial information about the bird species, the data is naturally noisy and provides challenging
user interactions. We do not use the images from the dataset for model training. The images are
only provided for grounding during human evaluation.

Baselines We compare our full model against the following baseline methods:

• No Interact: the best classification label is predicted using only the initial query. We con-
sider two possible implementations: BM25, a common keyword-based scoring model for
retrieval methods (Robertson & Zaragoza, 2009), and a neural model described in Sec-
tion 4.3.

• Random Interact: at each turn, a random question is chosen and presented to the user. After
T turns, the classification label is chosen according to the belief p(y |XT ).

4The target classes from development and test sets are hidden to the model during training. This split is set
up to ensure the model to generalize to newly added or unseen FAQs.
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• Static Interact: questions are picked without conditioning on the initial user query using
maximum information criterion. This is equivalent to using a static decision tree to pick
the question, leading to the same first question, similar to (Utgoff, 1989; Ling et al., 2004).

• Variants of Ours: we consider several variants of our full model. First, we replace the policy
controller with two termination strategies: one which ends interaction when max p(y |Xt)
passes a threshold, and another one which ends interaction after the designated number of
turns. Second, we disable the parameterized estimator p̃(rk | qj , yi) by setting λ to 1.

Evaluation We evaluate our model by running against both the user simulator and a real human.
Given the user simulator, we evaluate the classification performance of our model and baselines
using Accuracy@k, which is the percentage of time the correct target appears among the top-k
predictions of the model. During human evaluation, we ask annotators to interact with our proposed
or baseline models through a web-based interactive interface. Each interaction session starts with
a user scenario5 presented to an annotator (e.g a bird image or a device-troubleshooting scenario
described in text). The annotator inputs an initial query accordingly and then answers follow-up
questions selected by the system. Once the system returns its prediction, the annotator is asked to
provide a few ratings of the interaction, such as rationality – do you feel that you were understood
by the system?. We present more details of the human evaluation in Appendix A.3.

Implementation Details We use a fast recurrent neural network to encode texts (Lei et al., 2018).
The policy controller receives three different rewards: a positive reward for returning the correct
target (rp = 20), a negative reward for providing the wrong target (rn = −10) and a turn penalty
for each question asked (ra = −1, . . . ,−5). We report the averaged results over 3 independent
runs for each model variant and baseline. More details about the model implementation and training
procedure can be found in Appendix A.2.

FAQ Suggestion Bird Identification

Acc@1 Acc@3 Acc@1 Acc@3

No Interact (BM25) 26% 31% N.A. N.A.
No Interact (Neural) 38± 0.5% 61± 0.3% 23± 0.1% 41± 0.2%
Random Interact 39± 0.3% 62± 0.4% 25± 0.1% 44± 0.1%
Static Interact 46± 0.5% 66± 0.6% 29± 0.2% 50± 0.3%
Ours 79± 0.7% 86± 0.8 % 49± 0.3 % 69± 0.5 %

w/ threshold 72± 0.6% 82± 0.7% 41± 0.3% 59± 0.4%
w/ fixed turn 71± 1.0% 81± 0.9% 39± 0.2% 56± 0.4%
w/ λ = 1 66± 0.8% 71± 1.0% 40± 0.1% 56± 0.2%

Table 1: Performance of our system against various baselines, which are evaluated using Accu-
racy@{1, 3}. For all interacting baselines, 5 clarification questions are used. Best performances are
in bold. We report the averaged results as well as the standard deviations from 3 independent runs
for each model variant and baseline.
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Figure 2: Accuracy@1 (y-axis) against turns of interactions (x-axis) for FAQ Suggestion (left) and
Bird Identification (right) tasks

5Each scenario is related to a single groundtruth label and serves as the grounding of user interactions.
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FAQ Suggestion Bird Identification

Count Acc@1 Rationality Count Acc@1 Rationality

Ours 60 59% 0.81 60 45% 0.95
Ours (Fixed Turn) 55 56% 0.45 55 37% 0.55
Static Interact 55 45% 0.41 55 28% 0.85

Table 2: Human evaluation results. Count is the total number of interaction examples. The system
is evaluated with Accuracy@1 and the rationality score ranging from −2 (strongly disagree) to 2
(strongly agree).

7 RESULTS

Simulated Evaluation Table 1 shows the performance of our model against the baselines on both
tasks while evaluating against user simulator. The No Interact (Neural) baseline achieves an Ac-
curacy@1 of 38% for FAQ Suggestion and 23% for Bird Identification. The No Interact (BM25)
baseline performs worst. The Random Interact baseline and the Static Interact baseline barely im-
prove the performance, illustrating the challenge of building an effective interactive model. In con-
trast, our model and its variants obtain substantial gain in accuracy given a few turns of interaction.
Our full model achieves an Accuracy@1 of 79% for FAQ Suggestion and 49% for Bird Identifica-
tion using less than 5 turns, outperforming the No Interact (Neural) baseline by an absolute number
of 41% and 26%. The two baselines with alternative termination strategies underperform the full
model, indicating the effectiveness of the policy controller trained with reinforcement learning. The
model variant with λ = 1, which has fewer probability components leveraging natural language
than our full model, achieves worse Accuracy@1. This result, together with the fact that our model
outperforms the Static Interact baseline, confirms the importance of modeling natural language for
efficient interaction.

Figure 2 shows the trade-off between classification accuracy and the number of the turns the sys-
tem takes. The number of interactions changes as we vary the model termination strategy, which
includes varying turn penalty ra, the prediction threshold, and the predefined number of turns T .
Our model with the policy controller or the threshold strategy does not explicitly control the number
of turns, so we report the average number of turns across multiple runs for these two models. We
achieve a relative accuracy boost of 40% for FAQ Suggestion and 65% for Bird Identification over
no-interaction baselines with only one clarification question. This highlights the value of leverag-
ing human feedback to improve model accuracy in classification tasks. Our approach outperforms
baselines ranging across all numbers of interactions.

Human Evaluation Table 2 shows the human evaluation results of our full model and two base-
lines on the FAQ Suggestion and Bird Identification tasks. The model achieves Accuracy@1 of
30% and 20% for FAQ and Bird tasks respectively, when there is no interaction. Each of the model
variants uses 3 interaction turns on average, and all three models improve the classification result
after the interaction. Our full model achieves the best performance: an Accuracy@1 of 59% for
FAQ Suggestion and 45% for Bird Identification. Qualitatively, the users rate our full model to be
more rational. The human evaluation demonstrates that our model handles real user interaction more
effectively despite being trained with only non-interactive data. Appendix A.3 includes additional
details for human evaluation and exemple interactions.

Learning behavior Figure 3 shows the learning curves of our model with the policy controller
trained with different turn penalty ra ∈ {−0.5,−1,−3}. We observe interesting exploration behav-
ior during the first 1, 000 training episodes in the middle and the right plots. The models achieve
relatively stable accuracy after the early exploration stage. As expected, the three runs end up using
different numbers of expected turns due to the choice of different ra values.

8 CONCLUSION

We propose an approach for interactive classification, where users can provide under-specified nat-
ural language queries and the system can inquire missing information through a sequence of simple
binary or multi-choice questions. Our method uses information theory to select the best question

9
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Figure 3: Learning curves of our full model. We show accumulative reward (left), interaction turns
(middle), and Accuracy@1 (right) on the test set, where x-axis is the number of episodes run (400
trials per episode). The results are compared on different turn penalty ra.

at every turn, and a lightweight policy to efficiently control the interaction. We show how we can
bootstrap the system without any interaction data. We demonstrate the effectiveness of our approach
on two tasks with different characteristics. Our results show that our approach outperforms multiple
baselines by a large margin. In addition, we provide a new annotated dataset for future work on
bootstrapping interactive classification systems.
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A APPENDICES

A.1 DATA COLLECTION

Query collection qualification One main challenge for the collection process lies within famil-
iarizing the workers with the set of target documents. To make sure we get good quality annotation,
we set up a two-step qualification task. The first one is to write paraphrase with complete informa-
tion. After that, we reduce the number of workers down to 50. These workers then generate 19, 728
paraphrase queries. During the process, the workers familiarize themselves with the set of docu-
ments. We then post the second task (two rounds), where the workers try to provide initial queries
with possibly insufficient information. We select 25 workers after the second qualification task and
collect 3, 831 initial queries for the second task.

Attribute Collection Qualification To ensure the quality of target-tag annotation, we use the pre-
trained model to rank-order the tags and pick out the highest ranked tags (as positives) and the
lowest ranked tags (as negatives) for each target. The worker sees in total ten tags without knowing
which ones are the negatives. To pass the qualifier, the workers need to complete annotation on
three targets without selecting any of the negative tags. To make the annotation efficient, we rank
the tag-document relevance using the model trained on the previously collected query data. We then
take the top 50 possible tags for each document and split them into five non-overlapping lists (i.e.
ten tags for each list). Each of the list is assigned to four separate workers to annotate. In the FAQ
task, we observe that showing only the top-50 tags out of 813 is sufficient. Figure A.1 illustrates
this: after showing the top-50 tags, the curve plateaus and no new tags are assigned to a target. Our
annotator agreement is illustrated in A.1 as the Cohen’s κ score.
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Figure A.1: Accumulated number of tags assigned to the targets (y-axis) by AMT against tag ranking
(x-axis). The ranking indicates the relevance of the target-tag pairs from the pre-trained model. The
curve plateaued at rank 50 suggests that the lower ranked tags are less likely to be assigned to the
target by the crowdsourcing workers.

Tag Ranks
1-10 11-20 21-30 31-40 41-50

Mean # of tags 3.31 1.45 0.98 0.61 0.48
N.A. (%) 1.9 30.7 43.6 62.1 65.2
Mean κ 0.62 0.54 0.53 0.61 0.61

Table A.1: Target-tag annotation statistics. We show five sets of tags to the annotators. The higher
ranked ones are more likely to be related to the given target. The row mean # tags is the mean
number of tags that are annotated to a target, N.A. is the percentage of the tasks are annotated as
”none of the above”, and mean κ is the mean pairwise Cohen’s κ score.

A.2 IMPLEMENTATION DETAILS

Learning Components Here we describe the detailed implementation of the text encoder and the
policy controller network. We use a single-layer bidirectional Simple Recurrent Unit (SRU) as the
encoder for the FAQ suggestion task and two layer bidirectional SRU for bird identification task.
The encoder uses pre-trained fastText Bojanowski et al. (2016) word embedding of size 300 (fixed
during training), hidden size 150, batch size 200, and dropout rate 0.1. The policy controller is a
two layer feed-forward network with hidden layer size of 32 and ReLU activation function. We
use Noam learning rate scheduler with initial learning rate 1e − 3, warm-up step 4, 000 and Noam
scaling factor 2.0. The policy controller is a 2 layer feed-forward network with a hidden layer of 32
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dimensions and ReLU activation. The network takes the current step and the top-k values of belief
probabilities as input. We choose k = 20 and allow a maximum of 10 interaction turns.

We use initial queries as well as paraphrase queries to train the encoder, which has around 16K
target-query examples. The breakdown analysis is shown in Table A.2. To see the effectiveness
of the tag in addition to initial query, we generate pseudo-queries by combining existing queries
with sampled subset of tags from the targets. This augmentation strategy is shown to be useful to
improve the classification performance. On the other hand, when we use the set of tags instead
of initial query as text input for a specific target label, the classification performance improves,
indicating the designed tags can capture the target label well. Finally, when we concatenate user
initial query and tags and use that as text input to the classifier, we achieve Accuracy@1 of 76%.
In our full model, we achieve 79% with only querying about 5 tags, indicating effectiveness of our
modelling.

Text Input Init Query Init Query + Tags Init + Paraphrase Query Full Data
init query tags Acc@1 Acc@3 Acc@1 Acc@3 Acc@1 Acc@3 Acc@1 Acc@3

3 7 0.28 0.47 0.32 0.51 0.35 0.60 0.38 0.61
7 3 0.31 0.50 0.57 0.79 0.56 0.74 0.70 0.87
3 3 0.36 0.58 0.55 0.79 0.63 0.81 0.76 0.91

Table A.2: Comparison of the suggestion modules trained with different training data. Each model
is evaluated on three different tasks. First, use initial queries to predict targets. Second, use all
attributes tags to predict targets; third, use both initial queries and tags as text input to predict targets.
Each model is evaluated on Accuracy@{1, 3}.

A.3 HUMAN EVALUATION

Each interaction session starts with presenting the annotator an user scenario (e.g a bird image or
an issue with your phone). The annotator inputs an initial query accordingly and then answers
follow-up questions selected by the system.

FAQ Suggestion We evaluate prediction accuracy, system rationality, and the number of counts by
letting the system interact with human judges. We design user scenario for each target to present to
the worker. At the end of each interaction, the predicted FAQ and the ground truth will be presented
to the user as shown in the top right panel in Figure A.2. The user needs to answer the following
questions: “How natural is the interaction?” and “Do you feel understood by the system during
the interactions?” on the scale of −2 (strongly disagree) to 2 (strongly agree), which we record as
naturalness and rationality in Table A.3. Our full model performs best on Accuracy@1, naturalness,
and rationality. We show human evaluation examples in Table A.4.

Bird Identification The interface for bird identification task is similar to the FAQ suggestion task.
Instead of presenting a scenario, we show a bird image to the user. The user needs to describe
the bird to find out its category, which is analogous to writing an initial query. We allow the user
to reply ‘not visible’ if part of the bird is hidden or occluded. With such reply, the system stops
asking binary questions from the same label group. For example, if user replied ‘not visible’ to a
the question ‘does the bird has black tail?’, then question ‘does the bird has yellow tail?’, ‘does
the bird has red tail?’ etc. won’t be asked again. At the end of the interaction, the predicted
and ground-truth bird images along with their categories are presented to the user as shown in the
bottom right panel in Figure A.2. Again, the user needs to fill out a similar questionnaire as in FAQ
suggestion task. The bird identification task is very challenging due to its fine-grained categories,
where many bird images look almost identical while belonging to different classes. Our full system
improves Accuracy@1 from 20% to 45% against non-interactive baselines after less than 3 turns
of interaction. For Bird Identification, the annotators reported that the predicted image is almost
identical to the true image sometimes. To better understand the task and the model behavior, we
show the confusion matrix of the final model prediction after interaction in Figure A.3. In the 200
bird classes, there are 21 different kinds of sparrows and 25 different warbler. Those fine-grained
bird classes identification induces most model errors. Figure A.4 show how the confusion matrix
change, adding the interactions. The model makes improvement in distinct and also similar bird
types.
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Figure A.2: User interface for FAQ suggestion task (top) and bird identification (bottom) tasks. Left
panel shows the interface at the beginning of the interaction and the right panel shows the inter face
at the end of the interaction
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Dataset Models Count Initial Acc@1 Final Acc@1 Naturalness Rationality

FAQ
Ours 60 30% 59% 0.4 0.81

Ours(Fixed Turn) 55 30% 56% -0.17 0.45
Static Interact 55 28% 45% 0.03 0.41

Bird
Ours 60 21% 45% 0.21 0.95

Ours(Fixed Turn) 55 13% 37% -0.50 0.55
Static Interact 55 25% 28% 0.1 0 0.85

Table A.3: Human evaluation results on FAQ Suggestion and Bird Identification on our proposed
model and several baslines. The three FAQ systems ask 2.8, 3 and 3 turns of questions, respectively.
The three Bird systems ask 3.3, 4 and 4 turns of questions. The system is evaluated with both on
performance and user experience. Performance include the initial and final Accuracy@1. The user
experience score include both naturalness and rationality for both task.

U: How can I text my friends house phone?
S: Text message to landline?
U: Yes.
S: Do you want to send or receive text?
U: Yes.
S: Please read: How do I send a text message to landline?

U: I’m in sprint’s one up and want to upgrade my phone.
S: Do you want annual upgrade option?
U: Yes.
S: Do you want to exercise an option?
U: Yes.
S: Please read: I am enrolled in Sprint One Up. How do I exercise my annual upgrade option?

U: Battery ran out immediately.
S: How can I help you with your phone device?

App or feature information; Fee and charge; Troubleshooting; Not applicable
U: Troubleshooting.
S: Are you using mobile wifi hotspot?
U: Yes.
S: Please read: Does using my phone as a mobile Wi-Fi hotspot drain my battery?

Table A.4: Examples of user interactions for FAQ suggestion human evaluation.
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harris sparrow 
brewer sparrow 

fox sparrow 
savannah sparrow 

nelson sharp tailed sparrow 
field sparrow 

black throated sparrow 
chipping sparrow 

white crowned sparrow 
white throated sparrow 

seaside sparrow 
baird sparrow 

house sparrow 
le conte sparrow 
henslow sparrow 

vesper sparrow 
tree sparrow 

clay colored sparrow 
song sparrow 

lincoln sparrow 
grasshopper sparrow

cape may warbler 
golden winged warbler 
yellow warbler 
magnolia warbler 
chestnut sided warbler 
bay breasted warbler 
palm warbler 
myrtle warbler 
cerulean warbler 
orange crowned warbler 
prairie warbler 
prothonotary warbler 
black and white warbler 
black throated blue warbler 
kentucky warbler 
nashville warbler 
worm eating warbler 
canada warbler 
mourning warbler 
swainson warbler 
pine warbler 
hooded warbler 
wilson warbler 
tennessee warbler 
blue winged warbler

Figure A.3: Confusion matrix of our final output for bird identification task.
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Figure A.4: Confusion matrix difference between the initial query with and without the interactions.
We desire high value in the diagonal part and low value elsewhere.
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