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Abstract

A fundamental task in active learning involves performing a sequence of tests to
identify an unknown hypothesis that is drawn from a known distribution. This
problem, known as optimal decision tree induction, has been widely studied for
decades and the asymptotically best-possible approximation algorithm has been
devised for it. We study a generalization where certain test outcomes are noisy,
even in the more general case when the noise is persistent, i.e., repeating a test gives
the same noisy output, disallowing simple repetition as a way to gain confidence.
We design new approximation algorithms for both the non-adaptive setting, where
the test sequence must be fixed a-priori, and the adaptive setting where the test
sequence depends on the outcomes of prior tests. Previous work in the area
assumed at most a logarithmic number of noisy outcomes per hypothesis and
provided approximation ratios that depended on parameters such as the minimum
probability of a hypothesis. Our new approximation algorithms provide guarantees
that are nearly best-possible and work for the general case of a large number of
noisy outcomes per test or per hypothesis where the performance degrades smoothly
with this number. Our results adapt and generalize methods used for submodular
ranking and stochastic set cover. We evaluate the performance of our algorithms
on two natural applications with noise: toxic chemical identification and active
learning of linear classifiers. Despite our theoretical logarithmic approximation
guarantees, our methods give solutions with cost very close to the information
theoretic minimum, demonstrating the effectiveness of our methods.

1 Introduction

The classic optimal decision tree (ODT) problem involves identifying an initially unknown hypothesis
x̄ that is drawn from a known probability distribution over a set of m possible hypotheses. We can
perform tests in order to distinguish between these hypotheses. Each test produces a binary outcome
(positive or negative) and the precise outcome of each hypothesis-test pair is known beforehand. 3 So
an instance of ODT can be viewed as a ±1 matrix with the hypotheses as rows and tests as columns.
The goal is to identify hypothesis x̄ using the minimum number of tests in expectation.

As a motivating application, consider the following task in medical diagnosis [25]. A doctor needs
to diagnose a patient’s disease by performing tests. Given an a priori probability distribution over
possible diseases, what sequence of tests should the doctor perform? Another application is in active
∗Su Jia and Fatemeh Navidi contributed equally to this work.
†Research of F. Navidi and V. Nagarajan partly supported by NSF grant CCF-1750127.
3We consider binary test outcomes only for simplicity: our results also hold for finitely many outcomes.
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learning [10]. Given a set of data points, one wants to learn a classifier that labels the points correctly
as positive and negative. There is a set of m possible classifiers which is assumed to contain the true
classifier. In the Bayesian setting, which we consider, the true classifier is drawn from some known
probability distribution. The goal is to identify the true classifier by querying labels at the minimum
number of points (in expectation). Other applications include entity identification in databases [6]
and experimental design to choose the most accurate theory among competing candidates [14].

An important issue that is not considered in the classic ODT model is that of unknown or noisy
outcomes. In fact, our research was motivated by a dataset involving toxic chemical identification
where the outcomes of many hypothesis-test pairs are stated as unknown (one of our experimental
results is also on this dataset). Prior work incorporating noise in ODT [14] is restricted to settings
with very sparse noise. In this paper, we design approximation algorithms for the noisy optimal
decision tree problem in full generality.

We consider a standard model for persistent noise. Certain outcomes (i.e., entries in the hypothesis-
test matrix) are random with a known distribution: for simplicity we treat each noisy outcome as
an unbiased ±1 random variable. Our results extend directly to the case when each noisy outcome
has a different probability of being ±1. Persistent noise means that repeating the same test always
produces the same ±1 outcome. We assume that the instance is identifiable, i.e., a unique hypothesis
can always be identified irrespective of the noisy outcomes. (This assumption can be relaxed: see §6.)

We consider both non-adaptive policies (where the test sequence is fixed upfront) and adaptive
policies (where the test sequence is built incrementally and depends on observed test outcomes).
Clearly, adaptive policies perform at least as well as non-adaptive ones.4 However, non-adaptive
policies are very simple to implement (requiring minimal incremental computation) and may be
preferred in time-sensitive applications. Our main contributions are:

• an O(logm)-approximation algorithm for non-adaptive ODT with noise.
• an O(min(h, r) + logm)-approximation algorithm for adaptive ODT with noise, where h

(resp. r) is the maximum number of noisy outcomes for any hypothesis (resp. test).
• an O(logm)-approximation algorithm for adaptive ODT with noise when every test has at

least m−O(
√
m) noisy outcomes.

• experimental results on applications to toxic chemical identification and active learning.

We note that both non-adaptive and adaptive versions (even for usual ODT) generalize the set cover
problem: so an Ω(logm) approximation ratio is the best possible (unless P=NP).

Related Work The optimal decision tree problem (without noise) has been extensively studied
for several decades [11, 20, 25, 24, 1, 2, 7, 18]. The state-of-the-art result [18] is an O(logm)-
approximation, for instances with arbitrary probability distribution and costs. It is also known that
ODT cannot be approximated to a factor better than O(logm), unless P=NP [6].

The application of ODT to Bayesian active learning was formalized in [10]. There are also several
results on the statistical complexity of active learning. e.g. [4, 19, 29], where the focus is on proving
bounds for structured hypothesis classes. In contrast, we consider arbitrary hypothesis classes and
obtain computationally efficient policies with provable approximation bounds relative to the optimal
(instance specific) policy. This approach is similar to that in [10, 15, 12, 14, 9, 22].

The noisy ODT problem was studied previously in [14]. Using a connection to adaptive-
submodularity [12], they obtained an O(log2 1

pmin
)-approximation algorithm for noisy ODT in

the presence of very few noisy outcomes; here pmin ≤ 1
m is the minimum probability of any hy-

pothesis.5 In particular, the running time of the algorithm in [14] is exponential in the number of
noisy outcomes per hypothesis, which is polynomial only if this number is at most logarithmic in the
number of hypotheses/tests. Our result provides the following improvements (i) the running time is
polynomial irrespective of the number of noisy outcomes and (ii) the approximation ratio is better by
at least one logarithmic factor. We note that a better O(logm) approximation ratio (still only for very
sparse noise) follows from subsequent work on the “equivalence class determination” problem by [9].

4There are also instances where the relative gap between the best adaptive and non-adaptive policies is Ω̃(m).
5The paper [14] states the approximation ratio as O(log 1/pmin) because it relied on an erroneous claim in

[12]. The correct approximation ratio, based on [28, 13], is O(log2 1/pmin).
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For this setting, our result is also an O(logm) approximation, but the algorithm is simpler. More
importantly, ours is the first result that can handle any number of noisy outcomes.

Other variants of noisy ODT have also been considered, e.g. [27, 5, 8], where the goal is to identify
the correct hypothesis with at least some target probability. The theoretical results in [8] provide
“bicriteria” approximation bounds where the algorithm has a larger error probability than the optimal
policy. Our setting is different because we require zero probability of error.

Many algorithms for ODT (including ours) rely on some underlying submodularity properties. We
briefly survey some background results. The basic submodular cover problem was first considered by
[31], who proved that the natural greedy algorithm is a (1 + ln 1

ε )-approximation algorithm, where ε
is the minimal positive marginal increment of the function. [3] obtained an O(log 1

ε )-approximation
algorithm for the submodular ranking problem, that involves simultaneously covering multiple
submodular functions; [21] extended this result to also handle costs. [23] studied an adaptive version
of the submodular ranking problem. We utilize results/techniques from these papers.

Finally, we note that there is also work on minimizing the worst-case (instead of average case) cost
in ODT and active learning [26, 30, 16, 17]. These results are incomparable to ours because we are
interested in the average case, i.e. minimizing expected cost.

2 Problem Definition

We start with defining the optimal decision tree with noise (ODTN) formally. There is a set of m
possible hypotheses with a probability distribution {πx}mx=1, from which an unknown hypothesis
x̄ is drawn. There is also a set U = [n] of binary tests. Each test e ∈ U is associated with a 3-way
partition T+(e), T−(e), T ∗(e) of the hypotheses, where the test outcome is (a) positive if x̄ lies in
T+(e), (b) negative if x̄ ∈ T−(e), and (c) positive or negative with probability 1

2 each if x̄ ∈ T ∗(e)
(these are noisy outcomes). We assume that conditioned on x̄, each noisy outcome is independent.
We also use rx(e) to denote the part of test e that hypothesis x lies in, i.e.

rx(e) =

 −1 if x ∈ T−(e)
+1 if x ∈ T+(e)
∗ if x ∈ T ∗(e)

While we know the 3-way partition T+(e), T−(e), T ∗(e) for each test e ∈ U upfront, we are not
aware of the actual outcomes for the noisy hypothesis-test pairs. It is assumed that the realized
hypothesis x̄ can be uniquely identified by performing all tests, regardless of the outcomes of ∗-tests.
This means that for every pair x, y ∈ [m] of hypotheses, there is some test e ∈ U with x ∈ T+(e)
and y ∈ T−(e) or vice-versa. The goal is to perform an adaptive (or non-adaptive) sequence of tests
to identify hypothesis x̄ using the minimum expected number of tests. Note that expectation is taken
over both the prior distribution of x̄ and the random outcomes of noisy tests for x̄.

In our algorithms and analysis, it will be convenient to work with an expanded set of hypotheses M .
For a binary vector b ∈ {±1}U and hypothesis x ∈ [m], we say b is consistent with x and denote
b ∼ x, if be = rx(e) for each e ∈ U with rx(e) 6= ∗. Let M = {(b, x) ∈ {±1}U × [m] : b ∼ x},
and Mx ⊆M be all copies associated with a particular hypothesis x ∈ [m]; note that {Mx}mx=1 is
a partition of M . Each “expanded” hypothesis (b, x) ∈ M corresponds to the case where the true
hypothesis x̄ = x and the test-outcomes are given by b. We assign the probability qb,x = πx/2

hx

to each (b, x) ∈ M , where hx is the number of *-tests for x. Note that conditioned on x̄ = x, the
probability of observing outcomes b is exactly 2−hx ; so Pr[x̄ = x and test outcomes are b] = qb,x.
For any (b, x) ∈M and e ∈ U , define rb,x(e) = b(e) to be the observed outcome of test e if x̄ = x
and test-outcomes are b. For every expanded hypothesis (b, x) ∈M and test e ∈ U , define

Tb,x(e) =

{
T+(e) if rb,x(e) = −1
T−(e) if rb,x(e) = +1

, (1)

which is the subset of (original) hypotheses that can definitely be ruled-out based on test e if x̄ = x
and the test-outcomes are given by b. Note that hypotheses in T ∗(e) are never part of Tb,x(e) as
their outcome on test e can be positive/negative (so they cannot be ruled-out). For every hypothesis
(b, x) ∈M , define a monotone submodular function fb,x : 2U → [0, 1]:

fb,x(S) = |
⋃
e∈S

Tb,x(e)| · 1

m− 1
, ∀S ⊆ U, (2)
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which equals the fraction of the m− 1 hypotheses (excluding x) that have been ruled-out based on
the tests in S if x̄ = x and test-outcomes are given by b. Assuming x̄ = x and test-outcomes are
given by b, hypothesis x is uniquely identified after tests S if and only if fb,x(S) = 1.

A non-adaptive policy is specified by just a permutation of tests. The policy performs tests in this
sequence and eliminates incompatible hypotheses until there is a unique compatible hypothesis
(which is x̄). Note that the number of tests performed under such a policy is still random (depends
on x̄ and outcomes of noisy tests). An adaptive policy chooses tests incrementally, depending on
prior test outcomes. The state of a policy is a tuple (E, d) where E ⊆ U is a subset of tests and
d ∈ {±1}E denotes the observed outcomes on tests in E. An adaptive policy is specified by a
mapping Φ : 2U × {±1}U → U from states to tests, where Φ(E, d) is the next test to perform at
state (E, d). Equivalently, we can view a policy as decision tree with nodes corresponding to states,
labels at nodes representing the test performed at that state and branches corresponding to the ±1
outcome at the current test. As the number of states can be exponential, we cannot hope to specify
arbitrary adaptive policies. Instead, we want implicit policies Φ, where given any state (E, d), the test
Φ(E, d) can be computed efficiently. This would imply that the total time taken under any outcome is
polynomial. We note that an optimal policy Φ∗ can be very complex and the map Φ∗(E, d) may not
be efficiently computable. We will still compare the performance of our (efficient) policy to Φ∗.

In this paper, we consider the persistent noise model. That is, repeating a test e with x̄ ∈ T ∗(e)
always produces the same outcome. An alternative model is non-persistent noise, where each run of
test e with x̄ ∈ T ∗(e) produces an independent random outcome. The persistent noise model is more
appropriate to handle missing data. It also contains the non-persistent noise model as a special case
(by introducing multiple tests with identical partitions). One can easily obtain an adaptive O(log2m)-
approximation for the non-persistent model using existing algorithms for noiseless ODT [7] and
repeating each test O(logm) times. The persistent-noise model that we consider is much harder.

3 Non-Adaptive Algorithm

Our algorithm is based on a reduction to the submodular ranking problem [3], defined below.

Submodular Function Ranking (SFR) An instance of SFR consists of a ground set U of elements
and a collection of monotone submodular functions {f1, ..., fm}, fx : 2U → [0, 1], with fx(∅) = 0
and fx(U) = 1 for all x ∈ [m]. Additionally, there is a weight wx ≥ 0 for each x ∈ [m]. A solution
is a permutation of the elements U . Given any permutation σ of U , the cover time of function f is
C(f, σ) := min{t |f(∪i∈[t]σ(i)) = 1} where σ(i) is the ith element in σ. In words, it is the earliest
time when the value of f reaches the unit threshold. The goal is to find a permutation σ of [n] with
minimal total cover time

∑
x∈[m] w(x) · C(fx, σ). We will use the following result:

Theorem 3.1 ([3]). There is an O(log 1
ε )-approximation for SFR where ε is minimum marginal

increment of any function.

The non-adaptive ODTN problem can be expressed as an instance of SFR as follows. The elements
are the tests U . For each hypothesis-copy (b, x) ∈M there is a function fb,x (see (2)) with weight
qb,x. Based on the definition of these functions, the parameter ε = 1

m−1 . To see the equivalence, note
that a solution to non-adaptive ODTN is also a permutation σ of U and hypothesis x is uniquely
identified under outcome (b, x) exactly when function fb,x has value one. Moreover, the objective of
the ODTN problem is the expected number of tests in σ to identify the realized hypothesis x̄, which
equals

m∑
x=1

πx
∑
b∼x

2−hx · Cb,x(σ) =
∑

(b,x)∈M

qb,x · Cb,x(σ),

where Cb,x(σ) is the cover-time of function fb,x. It now follows that this SFR instance is equivalent
to the non-adaptive ODTN instance. However, we cannot apply Theorem 3.1 directly to obtain an
O(logm) approximation. This is because we have an exponential number of functions (note |M | can
be exponential in m), which means that a direct implementation of the algorithm from [3] requires
exponential time. Nevertheless, we show that a variant of the SFR algorithm can be used to obtain:

Theorem 3.2. There is an O(logm)-approximation for non-adaptive ODTN.
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The SFR algorithm [3] is a greedy-style algorithm that at any point, having already chosen tests E,
assigns a score to each test e ∈ U \ E of

GE(e) :=
∑

(b,x)∈M :fb,x(E)<1

qb,x
fb,x({e} ∪ E)− fb,x(E)

1− fb,x(E)
=

∑
(b,x)∈M

qb,x ·∆E(b, x, e), (3)

∆E(b, x, e) =

{
fb,x({e}∪E)−fb,x(E)

1−fb,x(E) , if fb,x(E) < 1;

0, otherwise.
(4)

where ∆E(b, x, e) is the “gain” of test e for the hypothesis-copy b, x. At each step, the algorithm
chooses the test of maximum score. However, we do not know how to compute the score (3) in
polynomial time. Instead, using the fact that GE(e) is the expectation of ∆E(b, x, e) over the
hypothesis-copies (b, x) ∈ M , we will show that we can obtain an approximate maximizer by
sampling. Moreover, Theorem 3.1 also holds when we choose a test with approximately maximum
score: this follows directly from the analysis in [21]. This sampling approach is still not sufficient
because it can fail when the valueGE(e) is very small. A key observation is, when the scoreGE(e) is
small for all tests e then it must be that, with high probability the already-performed tests E uniquely
identify hypothesis x̄. Hence the future tests won’t affect the expected cover time by much.

As the realized hypothesis x̄ can always be identified uniquely, for any pair x, y ∈ [m] of hypotheses,
there is a test where x and y have opposite outcomes (i.e. one is + and the other −). So there is a set
L of at most

(
m
2

)
tests where hypothesis x̄ will be uniquely identified by performing all the tests in L.

The non-adaptive ODTN algorithm (Non-Adap) involves two phases. In the first phase, we run
the SFR algorithm using sampling to get estimates ḠE(e) of the scores GE(e) at each step; let
e∗ = arg maxe∈U ḠE(e) denote the chosen test. If at some step, the maximum sampled score is less
than m−5 then we go to the second phase where we perform all the tests in L and stop. The number
of samples used to obtain each estimate is polynomial in m; so the overall runtime is polynomial.
The complete proof can be found in the full version of this paper.

4 Adaptive Algorithms

Our adaptive algorithm chooses between two algorithms (ODTNr and ODTNh) based on the
noise sparsity parameters h (maximum number of noisy outcome per hypothesis), and r (maximum
number of noisy outcome per test). These two algorithms maintain the posterior probability of each
hypothesis based on the previous test outcomes, and use these probabilities to calculate a “score” for
each test. The score of a test has two components (i) a term that prioritizes splitting the candidate
hypotheses in a balanced way and (ii) terms that correspond to the expected number of hypotheses
eliminated. We maintain the following information at each point in the algorithm: already performed
tests E ⊆ U , compatible hypotheses H ⊆ [m] and (posterior) probability px for each x ∈ H . Given
values {px : x ∈ [m]}, to reduce notation we use the shorthand p(S) =

∑
x∈S px for any subset

S ⊆ [m]. The main difference between the two algorithms we have, is in the defining the metric for
component (i). First we discuss ODTNr:

Algorithm 1 ODTNr
initially E ← ∅, H ← [m] and px ← πx for all x ∈ [m].
while |H| > 1 do

for any test e ∈ U , let Le(H) be the smaller cardinality set among T+(e)∩H and T−(e)∩H
select test e ∈ U \ E that maximizes:

p (Le(H)) +
|T−(e) ∩H|
|H| − 1

·p
(
T+(e) ∩H

)
+
|T+(e) ∩H|
|H| − 1

·p
(
T−(e) ∩H

)
+
|H \ T ∗(e)|
2(|H| − 1)

·p (T ∗(e) ∩H) .

(5)
if outcome of test e is + then H ← H \ T−(e); else H ← H \ T+(e).
E ← E ∪ {e} and update px ← px/2 for all x ∈ T ∗(e).

end while

Theorem 4.1. Algorithm 1 is an O(r + logm)-approximation algorithm for adaptive ODTN, where
r is the maximum number of noisy outcomes per test.
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The high-level idea is to view any ODT instance I as a suitable instance J of adaptive submodular
ranking (ASR). Then we will use and modify an existing framework of analysis of ASR from [23].

An equivalent ASR instance J . This involves the expanded hypothesis set M where each hypoth-
esis (b, x) ∈ M occurs with probability qb,x = πx/2

hx . Each hypothesis (b, x) is also associated
with: (i) submodular function fb,x : 2U → [0, 1] and (ii) feedback function rb,x : U → {+,−}
where rb,x(e) is the outcome of test e under hypothesis (b, x). The goal in the ASR instance is to
adaptively select a subset S ⊆ U such that the value fb,x(S) = 1 for the realized hypothesis (b, x).
The objective is to minimize the expected cost E[|S|].
Lemma 4.2. The ASR instance J is equivalent to ODT instance I.

Now, we present an algorithm for the ASR instance J that we will show is equivalent to running
Algorithm 1 on instance I. Crucially, the ASR algorithm is almost identical to that studied in prior
work [23] and therefore we can essentially re-use the analysis from that paper to prove our bound.
Recall that the expanded hypotheses M = ∪mx=1Mx where Mx are all copies of hypothesis x ∈ [m].
To reduce notation, we use q(S) =

∑
(b,x)∈S qb,x for any subset S ⊆M . Also note that hypothesis

(b, x) is covered when fb,x(E) = 1 which implies identifying hypothesis x ∈ [m].

Algorithm 2 Algorithm for ASR instance J .
initially E ← ∅, H ′ ←M .
while H ′ 6= ∅ do

H ← {x ∈ [m] : Mx ∩H ′ 6= ∅}.
for any test e ∈ U , let L′e(H ′) = {(b, x) ∈ H ′ : x ∈ Le(H)} = H ′ ∩

(
∪x∈Le(H)Mx

)
select test e ∈ U \ E that maximizes:

q (L′e(H
′)) +

∑
(b,x)∈Mx∩H′

qb,x ·
fb,x(e ∪ E)− fb,x(E)

1− fb,x(E)
. (6)

remove incompatible and covered hypotheses from H ′ based on the feedback from e.
E ← E ∪ {e}

end while

We now prove the equivalence between Algorithms 1 and 2. The state of either algorithm is
represented by the set E of tests performed along with their outcomes.
Lemma 4.3. The decision tree produced by Algorithm 1 on I is the same as that produced by
Algorithm 2 on J .

Based on Lemmas 4.2 and 4.3, in order to prove Theorem 4.1 it suffices to show that Algorithm 2
is an O(r + logm)-approximation algorithm for ASR instance J . The proof is very similar to the
analysis in [23]. So we only provide an outline of the overall proof, while emphasizing the differences.
For k = 0, 1, · · · , define the following quantities:

• Ak ⊆M is the set of uncovered hypotheses in ALG at time L · 2k, and ak = q(Ak).

• Yk is the set of uncovered hypotheses in OPT at time 2k−1, and yk = q(Yk).

Here L = O(r + logm). The key step is to show:

ak ≤ 0.2ak−1 + 3yk, for all k ≥ 1. (7)

As shown in [23], this implies an O(L) approximation ratio. In order to prove (7) we use the quantity:

Z :=

L2k∑
t>L2k−1

∑
(E,H′)∈R(t)

max
e∈U\E

 ∑
(b,x)∈L′e(H′)

qb,x +
∑

(b,x)∈H′
qb,x ·

fb,x(e ∪ E)− fb,x(E)

1− fb,x(E)

 (8)

Above, R(t) denotes the set of states (E,H ′) that occur at time t in ALG. (7) will be proved by
separately lower and upper bounding Z.
Lemma 4.4 ([23]). We have Z ≥ L · (ak − 3yk)/3.
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Lemma 4.5. We have Z ≤ ak−1 · (1 + lnm+ r + logm).

Proof. For any hypothesis (b, x) ∈ Ak−1 (i.e. uncovered in ALG by time L2k−1) let σb,x be the
path traced by (b, x) in ALG’s decision tree, starting from time 2k−1L and ending at 2kL or when
(b, x) gets covered. Recall that for any L2k−1 < t ≤ L2k, any hypothesis in H ′ for any state in R(t)
appears in Ak−1. So only hypotheses in Ak−1 can contribute to Z and we rewrite (8) as:

Z =
∑

(b,x)∈Ak−1

qb,x ·
∑
e∈σb,x

(
fb,x(e ∪ E)− fb,x(E)

1− fb,x(E)
+ 1[(b, x) ∈ L′e(H

′)]

)

≤
∑

(b,x)∈Ak−1

qb,x ·

 ∑
e∈σb,x

fb,x(e ∪ E)− fb,x(E)

1− fb,x(E)
+

∑
e∈σb,x

1[(b, x) ∈ L′e(H
′)]

 (9)

Above, for any e ∈ σb,x we use (E,H ′) to denote the state at which e is selected.

Fix any hypothesis (b, x) ∈ Ak−1. For the first term, we use Lemma 4.6 below and the definition of
ε. This implies

∑
e∈σb,x

fb,x(e∪E)−fb,x(E)
1−fb,x(E) ≤ 1 + ln 1

ε ≤ 1 + lnm as parameter ε ≥ 1/m for fb,x.

Now, we bound the second term by proving the inequality below:∑
e∈σb,x

1[(b, x) ∈ L′e(H ′)] ≤ r + logm (10)

To prove this inequality, consider hypotheses in H ′. Now, if hypothesis (b, x) ∈ L′e(H ′) when ALG
selects test e, then x would be in Le(H). Suppose Le(H) = T+(e) ∩H; the other case is identical.
Let De(H) = T−(e) ∩ H and Se(H) = T ∗(e) ∩ H . As x ∈ Le(H), it must be that path σb,x
follows the + branch out of e. Also, the number of candidate hypotheses on this path after test e is

|Le(H)|+ |Se(H)| ≤ |Le(H)|
2

+
|De(H)|

2
+ |Se(H)| = |H|

2
+
|Se(H)|

2
≤ |H|

2
+
r

2
.

The first inequality uses the definition of Le(H) and the last inequality uses the bound of r on the
number of hypotheses with ∗ outcomes. Hence, each time that (b, x) ∈ L′e(H ′) along path σb,x, the
number of candidate hypotheses changes as |Hnew| ≤ 1

2 |Hold|+ r
2 . This implies that after log2m

such events, |H| ≤ r. Let σ′b,x denote the portion of path σb,x after |H| drops below r. Note that
each time (b, x) ∈ L′e(H ′) we have Le(H) 6= ∅: so |H| reduces by at least one after each such test
e. Hence

∑
e∈σ′b,x

1[(b, x) ∈ L′e(H ′)] ≤ r. As the portion of path σb,x until |H| ≤ r contributes at
most log2m to the left-hand-side in (10), the total is at most r + log2m as needed.

Lemma 4.6 ([3]). Let f : 2U → [0, 1] be any monotone function with f(∅) = 0 and ε = min{f(S ∪
{e}) − f(S) : e ∈ U, S ⊆ U, f(S ∪ {e}) − f(S) > 0}. Then, for any sequence ∅ = S0 ⊆ S1 ⊆
· · ·Sk ⊆ U of subsets, we have

∑k
t=1

f(St)−f(St−1)
1−f(St−1)

≤ 1 + ln 1
ε .

Setting L = 15(1 + lnm+ r + log2m) and applying Lemmas 4.4 and 4.5 completes the proof of
(7) and hence Theorem 4.1.

We now discuss algorithm ODTNh. This is based on directly applying the ASR algorithm from [23]
to J . The resulting algorithm is very similar to Algorithm 2 and involves a change in the definition
of L′e(H

′) in score (6) to be the smaller of the following sets:

{(b, x) ∈ H ′ : rb,x(e) = +} and {(b, x) ∈ H ′ : rb,x(e) = −}.

The main difference in the analysis is in proving the following inequality instead of inequality (10) in
the proof of Lemma 4.5: ∑

e∈σb,x

1[(b, x) ∈ L′e(H ′)] ≤ h+ logm (11)

This follows from the observation that each time that (b, x) ∈ L′e(H ′) along path σb,x, the size |H ′|
reduces by at least a factor 1

2 (note that initially |H ′| = |M | ≤ 2h ·m). Finally by choosing the best
between ODTNr and ODTNh, we obtain:
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Theorem 4.7. There is an O(min(h, r) + logm)-approximation algorithm for adaptive ODTN,
where h (resp. r) is the maximum number of noisy outcomes per hypothesis (resp. test).

We note that our analysis is tight (up to constant factors).

In order to understand the dependence of the approximation ratio on the noise sparsity min(h, r), we
study instances that have a very large number of noisy outcomes. Formally, we define an α-sparse
(α ≤ 1/2) instance as follows. There is a constant C such that max{|T+(e)|, |T−(e)|} ≤ C ·mα

for all tests e ∈ U . Somewhat surprisingly, there is a very different algorithm (see the full version)
that can actually take advantage of the large noise:

Theorem 4.8. There is an adaptive O(logm)-approximation for ODTN on α ≤ 1
2 sparse instances.

5 Non-identifiable Instances

We have assumed that for every pair x, y of hypotheses, there is some test that distinguishes them
deterministically. Without this assumption, we can still obtain similar results by slightly changing the
stopping criterion. Define a similarity graph G on m nodes (corresponding to hypotheses) with an
edge (x, y) if there is no test separating x and y deterministically. Let Dx denote the set containing x
and all its neighbors in G, for each x ∈ [m]. The neighborhood stopping criterion involves stopping
when the set H of compatible hypotheses is contained in some Dx, where x might or might not
be x̄. The clique stopping criterion involves stopping when H is contained in some clique of G.
Note that clique stopping is a stronger notion of identification than neighborhood stopping. Our
algorithms’ performance guarantees will now also depend on the maximum degree d of G; note that
d = 0 in the perfectly identifiable case. We obtain a non-adaptive algorithm with approximation ratio
O((d + 1) logm) and an adaptive algorithm with approximation ratio O(d + min(h, r) + logm).
Below we outline our approach for the adaptive algorithm; the details can be found in the full version.

For the adaptive version, we run a two-phase algorithm. In the first phase, we identify some subset
N ⊆ [m] containing x̄ with |N | ≤ d. This can be done using the algorithm in §4 with the following
submodular function for each (b, x) ∈M .

fb,x(S) = |
⋃
e∈S

Tb,x(e)| · 1

m− d
, ∀S ⊆ U.

The expected cost of this phase is O(min(r, h)+logm) ·OPT using an analysis identical to §4; here
OPT denotes the optimal value. Then, in the second phase, we run a simple splitting algorithm that
iteratively selects any test that splits the current set H of candidate scenarios, until the neighborhood
or clique stopping criterion is satisfied. The expected cost of this phase is at most d·OPT . Combining
both phases, we obtain an O(d+ min(h, r) + logm)-approximation algorithm.

6 Extensions

Non-binary outcomes. We can also handle tests with an arbitrary set Σ of outcomes (instead of
±1). This requires extending the outcomes b to be in ΣU and applying this change to the definitions
of sets Tb,x (1) and submodular function fb,x (2).

Non-uniform noise distribution. Our results extend directly to the case where each noisy outcome
has a different probability of being±1. Suppose that the probability of every noisy outcome is between
δ and 1− δ. Then Theorems 3.2 and 4.7 continue to hold (irrespective of δ), and Theorem 4.8 holds
with a slightly worse O( 1

δ logm) approximation ratio.

7 Experiments

We implemented our algorithms, and performed experiments on real-world and synthetic data sets.
We compared our algorithms’ cost (expected number of tests) with an information theoretic lower
bound on the optimal cost and show that the difference is negligible. Thus, despite our logarithmic
approximation ratios, the practical performance can be much better.
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Chemicals with Unknown Test Outcomes One natural application of ODT is identifying chemical
or biological materials. We considered a data set called WISER6, which includes 400+ chemicals
(hypothesis) and 78 binary tests. Every chemical has either positive, negative or unknown result on
each test. We have performed our algorithms on both the original instance, in which some chemicals
are not perfectly identifiable, and a modified version. In the modified version, to ensure every pair of
chemicals can be distinguished, we removed the chemicals that are not identifiable from each other to
be left with 255 chemicals (to do this, we used a greedy rule that iteratively drops the highest-degree
hypothesis in the similarity graph).

Random Binary Classifiers with Margin Error We construct a dataset containing 100 two-
dimensional points, by picking each of their attributes uniformly in [−1000, 1000]. We also choose
2000 random triples (a, b, c) to form linear classifiers ax+by√

a2+b2
+ c ≤ 0, where a, b← N(0, 1) and

c ← U(−1000, 1000). The point labels are binary and we introduce noisy outcomes based on the
distance of each point to a classifier. Specifically, for each threshold d ∈ {0, 5, 10, 20, 30} we define
dataset CL-d that has a noisy outcome for any classifier-point pair where the distance of the point
to the boundary of the classifier is smaller than d. In order to ensure that the instances are perfectly
identifiable, we remove “equivalent” classifiers and we are left with 234 classifiers.

Algorithms We implement the following algorithms: the adaptive O(r + logm)-approximation
(ODTNr), the adaptive O(h + logm)-approximation (ODTNh), the non-adaptive O(logm)-
approximation (Non-Adap) and a slightly adaptive version of Non-Adap (Low-Adap). Algorithm
Low-Adap considers the same sequence of tests as Non-Adap while (adaptively) skipping non-
informative tests based on observed outcomes. The implementations of the adaptive and non-adaptive
algorithms are available online.7 We also consider three different stopping criteria: unique stopping
for perfectly identifiable instances, neighborhood and clique stopping (defined in Section 5) for
original WISER dataset.

Results Table 1 shows the results of different algorithms with unique stopping on all identifiable
datasets when the distribution over hypothesis is uniform, and Table 2 summarizes the results on
original WISER with other stopping criteria. Experiments with some non-uniform distributions are
presented in the supplementary material. Table 1 also reports values of an information theoretic lower
bound (the entropy log2m) on the optimal cost (Low-BND). We can see that ODTNr consistently
outperforms the other algorithms and is very close to the lower bound. Note that original WISER
dataset that is used to produce results in Table 2 has m = 414 hypotheses and d = 54 in its similarity
graph, while the processed WISER in Table 1 is perfectly identifiable with m = 255 hypotheses.

Algorithm
Data(r,h) WISER CL-0 CL-5 CL-10 CL-20 CL-30

(245,45) (0,0) (5,3) (7,6) (12,8) (13,8)
Low-BND 7.994 7.870 7.870 7.870 7.870 7.870

ODTNr 8.357 7.910 7.927 7.915 7.962 8.000
ODTNh 9.707 7.910 7.979 8.211 8.671 8.729

Non-Adap 11.568 9.731 9.831 9.941 9.996 10.204
Low-Adap 9.152 8.619 8.517 8.777 8.692 8.803

Table 1: Cost of Algorithms with Unique Stopping for Uniform Distribution. For each dataset we
also indicate the noise parameters h and r (max number of noisy outcomes per hypothesis/test).

Algorithm Neighborhood Stopping Clique Stopping
ODTNr 11.163 11.817
ODTNh 11.908 12.506

Non-Adap 16.995 21.281
Low-Adap 16.983 20.559

Table 2: Cost of Algorithms on original WISER dataset with Neighborhood and Clique Stopping for
Uniform Distribution.

6https://wiser.nlm.nih.gov
7https://github.com/FatemehNavidi/ODTN ; https://github.com/sjia1/ODT-with-noisy-outcomes
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