
Learning to learn to communicate

Ryan Lowe * 1 2 Abhinav Gupta * 2 Jakob Foerster 1 Douwe Kiela 1 Joelle Pineau 1 2

Abstract

How can we teach artificial agents to use human
language flexibly to solve problems in real-world
environments? We have an example of this in na-
ture: human babies eventually learn to use human
language to solve problems, and they are taught
with an adult human-in-the-loop. Unfortunately,
current machine learning methods (e.g. from deep
reinforcement learning) are too data inefficient
to learn language in this way (3). An outstand-
ing goal is finding an algorithm with a suitable
‘language learning prior’ that allows it to learn
human language, while minimizing the number
of on-policy human interactions.

In this paper, we propose to learn such a prior
in simulation, leveraging the increasing amount
of available compute for machine learning ex-
periments (1). We call our approach Learning
to Learn to Communicate (L2C). Specifically, in
L2C we train a meta-learning agent in simula-
tion to interact with populations of pre-trained
agents, each with their own distinct communica-
tion protocol. Once the meta-learning agent is
able to quickly adapt to each population of agents,
it can be deployed in new populations, including
populations speaking human language. Our key
insight is that such populations can be obtained
via self-play, after pre-training agents with imi-
tation learning on a small amount of off-policy
human language data. We call this latter tech-
nique Seeded Self-Play (S2P). Our preliminary
experiments show that agents trained with L2C
and S2P need fewer on-policy samples to learn
a compositional language in a Lewis signaling
game (4).

*Equal contribution 1Facebook AI Research 2MILA. Corre-
spondence to: Ryan Lowe <ryan.lowe@mail.mcgill.ca>, Abhinav
Gupta <abhinav.gupta@umontreal.ca>.

Proceedings of the 1 st Adaptive & Multitask Learning Workshop,
Long Beach, California, 2019. Copyright 2019 by the author(s).

1. Introduction
Language is one of the most important aspects of human
intelligence; it allows humans to coordinate and share knowl-
edge with each other. We will want artificial agents to un-
derstand language as it is a natural means for us to specify
their goals.

So how can we train agents to understand language? We
adopt the functional view of language (17) that has recently
gained popularity (8; 14): agents understand language when
they can use language to carry out tasks in the real world.
One approach to training agents that can use language in
their environment is via emergent communication, where
researchers train randomly initialized agents to solve tasks
requiring communication (7; 16). An open question in emer-
gent communication is how the resulting communication
protocols can be transferred to learning human language.
Existing approaches attempt to do this using auxiliary tasks,
for example having agents predict the label of an image
in English while simultaneously playing an image-based
referential game (12). While this works for learning the
names of objects, it’s unclear if simply using an auxiliary
loss will scale to learning the English names of complex con-
cepts, or learning to use English to interact in an grounded
environment.

One approach that we know will work (eventually) for train-
ing language learning agents is using a human-in-the-loop,
as this is how human babies acquire language. In other
words, if we had a good enough model architecture and
learning algorithm, the human-in-the-loop approach should
work. However, recent work in this direction has concluded
that current algorithms are too sample inefficient to effec-
tively learn a language with compositional properties from
humans (3). Human guidance is expensive, and thus we
would want such an algorithm to be as sample efficient
as possible. An open problem is thus to create an algo-
rithm or training procedure that results in increased sample-
efficiency for language learning with a human-in-the-loop.

In this paper, we present the Learning to Learn to Commu-
nicate (L2C) framework, with the goal of training agents to
quickly learn new (human) languages. The core idea behind
L2C is to leverage the increasing amount of available com-
pute for machine learning experiments (1) to learn a ‘lan-
guage learning prior’ by training agents via meta-learning in

Learning to learn to communicate

Figure 1. Diagram of the L2C framework. An advantage of L2C
is that agents can be trained in an external environment (which
grounds the language), where agents interact with the environment
via actions and language. Thus, (in theory) L2C could be scaled to
learn complicated grounded tasks involving language.

simulation. Specifically, we train a meta-learning agent in
simulation to interact with populations of pre-trained agents,
each with their own distinct communication protocol. Once
the meta-learning agent is able to quickly adapt to each
population of agents, it can be deployed in new populations
unseen during training, including populations of humans.
The L2C framework has two main advantages: (1) permits
for agents to learn language that is grounded in an environ-
ment with which the agents can interact (i.e. it is not limited
to referential games); and (2) in contrast with work from
the instruction following literature (2), agents can be trained
via L2C to both speak (output language to help accomplish
their goal) and listen (map from the language to a goal or
sequence of actions).

To show the promise of the L2C framework, we provide
some preliminary experiments in a Lewis signaling game
(4). Specifically, we show that agents trained with L2C
are able to learn a simple form of human language (repre-
sented by a hand-coded compositional language) in fewer
iterations than randomly initialized agents. These prelimi-
nary results suggest that L2C is a promising framework for
training agents to learn human language from few human
interactions.

2. Learning to learn to communicate
L2C is a training procedure that is composed of three main
phases: (1) Training agent populations: Training popu-
lations of agents to solve some task (or set of tasks) in
an environment. (2) Train meta-learner on agent popu-
lations: We train a meta-learning agent to ‘perform well’
(i.e. achieve a high reward) on tasks in each of the training
populations, after a small number of updates. (3) Testing
the meta-learner: testing the meta-learning agent’s abil-

ity to learn new languages, which could be both artificial
(emerged languages unseen during training) or human.

A diagram giving an overview of the L2C framework is
shown in Figure 1. Phase 1 can be achieved in any number
of ways, either through supervised learning (using approxi-
mate backpropogation) or via reinforcement learning (RL).
Phases 2 and 3 follow the typical meta-learning set-up: to
conserve space, we do not replicate a formal description
of the meta-learning framework, but we direct interested
readers to Section 2.1 of (6). In our case, each ‘task’ in-
volves a separate population of agents with its own emergent
language. While meta-training can also be performed via
supervised learning or RL, Phase 3 must be done using RL,
as it involves interacting with humans which cannot be dif-
ferentiated through. See Section 6 for a discussion of each
of these phases in more detail.

3. Seeded self-play
Seeded self-play (S2P) is a straightforward technique for
training agents in simulation to develop complex behaviours.
The idea is to ‘seed’ a population of agents with complex

We collect some data which is sampled from a fixed seed
population. This corresponds to the actual number of sam-
ples that we care about i.e. which is basically the number
of human demonstrations. We first train each agent (a lis-
tener and a speaker) that performs well on these human
samples. We call this step as the imitation-learning step.
Then we take each of these trained agents (a pair of speaker
and a listener) and deploy them against each other to solve
the task via emergent communication. We call this step
as the fine-tuning step. While these agents are exchanging
messages in their emergent language, we make sure that
the language does not diverge too much form the original
language (i.e. the language of the fixed seed population).
We enforce this by having a schedule over the fine-tuning
and the imitation-learning steps such that both the agents
are able to solve the task while also keeping a perfect accu-
racy over the seed data. We call this process of generating
populations as seeded self-play (S2P).

4. Problem set-up
A speaker-listener game We construct a referential game
similar to the Task & Talk game from (11), except with a sin-
gle turn. The game is cooperative and consists of 2 agents, a
speaker and a listener. The speaker agent observes an object
with a certain set of properties, and must describe the object
to the listener using a sequence of words (represented by
one-hot vectors). The listener then attempts to reconstruct
the object. More specifically, the input space consists of p
properties (e.g. shape, color) and t types per property (e.g.
triangle, square). The speaker observes a symbolic repre-

Learning to learn to communicate

sentation of the input x, consisting of the concatenation of
p one-hot vectors, each of length t. The number of possible
inputs scales as tp. We define the vocabulary size (length of
each one-hot vector sent from the speaker) as |V |, and fix
the number of words sent to be w.

Developing a compositional language To simulate a
simplified form of human language on this task, we pro-
gramatically generate a perfectly compositional language,
by assigning each ‘concept’ (each type of each property) a
unique symbol. In other words, to describe a blue shaded
triangle, we create a language where the output description
would be “blue, triangle, shaded”, in some arbitrary order
and without prepositions. By ‘unique symbol’, we mean
that no two concepts are assigned the same word. By gen-
erating this language programmatically, we avoid the need
to have humans in the loop for testing, which allows us
to iterate much more quickly. This is feasible because of
the simplicity of our speaker-listener environment; we do
not expect that generating these programmatic languages is
practical when scaling to more complex environments. We
call these agents compositional bots (CBs).

Implementation details The message produced by the
speaker is a sequence of p categorical random variables
which are discretized using Gumbel-Softmax with an initial
temperature τ = 1. We set the vocabulary size to be equal to
the total number of concepts p · t. In our initial experiments,
we train our agents using Cross Entropy which is summed
over each property p. We use the Adam optimizer (10) with
a learning rate of 0.001. We first demonstrate the results
with a meta-learning listener (a meta-listener), that learns
from the different speakers of each training population.

In Section 5 below, we perform L2C experiments vary-
ing the type and number of training populations, speaker
and listener parameterizations, and listener meta-learning
algorithms. Unless otherwise specified, we use an over-
parameterized linear policy (i.e. an MLP with linear acti-
vations and 500 ‘hidden units’) for the speaker and listener,
and the meta-listener is trained with a first-order version of
MAML (6) on 50 purely compositional training populations
(CBs).

5. Experiments
5.1. Meta-learning improves sample efficiency

Here, we describe our initial results into the factors affect-
ing the performance of L2C. Since our ultimate goal is to
transfer to learning a human language in as few human in-
teractions as possible, we measure success based on the
number of samples required for the meta-learner to reach a
certain performance level (95%) on a held-out test popula-
tion, and we permit ourselves as much computation during

pre-training as necessary.

Varying meta-learning algorithms We experimented
with several algorithms to train our meta-listener: a ran-
domly initialized agent, an agent pre-trained on all pop-
ulations that performs n = 1 update per population, the
Reptile algorithm (15) that performs n > 1 updates per
population, and a first-order variant of MAML (FOMAML)
(6). In our initial experiments, we found that the Reptile
and the pre-training agent didn’t improve significantly over
the random initialization baseline. However, when we have
enough training populations, the FOMAML algorithm im-
proved significantly over the randomly initialized baseline,
and even approaches the minimum number of examples a
human would need to solve the task (60, one for each word
in the vocabulary) — see Figure 2.

Varying listener parameterizations We tried various
models for the meta-listener, including an LSTM, an MLP,
and a linear model. While L2C with FOMAML worked
in all of these cases, we found the best results with an
over-parameterized linear model (a 1-layer MLP with linear
activations). Strangely, the performance improved even fur-
ther when adding a We suspect the over-parameterization
helped (over a regular linear model) due to improved gradi-
ent descent dynamics.

Varying the number of training populations As can be
inferred from Figure 2, having more training populations
improves performance. Having too few training populations
(eg: 5 train encoders) results in overfitting to the set of
training populations and as the meta-learning progresses,
the model performs worse on the test populations. For more
than 10 training encoders, models trained with L2C require
fewer samples to generalize to a held-out test population
than a model not trained with L2C.

5.2. Self-play improves sample efficiency

We wanted to see if we can further reduce the number of
samples required after L2C. So instead of doing L2C on a
population of compositional bots, we train the population
of agents using Seeded self-play (S2P). We collect some
seed data from a single compositional bot which we call
as seed dataset. Now we partition this data into train and
test sets where the train set is used to train the agents via
S2P. This set of trained populations is now used as the set
of populations for meta-training (L2C).

We were able to get the number of samples from 60 in the
best performing vanilla L2C case to 20 in the L2C with
S2P case showing that the seeded self-play indeed helps in
improving sample efficiency.

Learning to learn to communicate

Figure 2. Performance of the meta-learner (in terms of number
of training samples required to achieve >95% test accuracy on a
test population) over the course of meta-training (horizontal axis),
while varying the number of training encoders. Results averaged
over 5 seeds, with standard error shown.

6. Outstanding challenges
There are several immediate directions for future work:
training the meta-agent via RL rather than supervised learn-
ing, and training the meta-agent as a joint speaker-listener
(i.e. taking turns speaking and listening), as opposed to only
listening. We also want to scale L2C training to more com-
plicated tasks involving grounded language learning, such
as the Talk the Walk dataset (5), which involves two agents
learning to navigate New York using language.

More broadly, there are still many challenges that remain
for the L2C framework. In fact, there are unique prob-
lems that face each of the phases described in Section 2.
In Phase 1, how do we know we can train agents to solve
the tasks we want? Recent work has shown that learning
emergent communication protocols is very difficult, even
for simple tasks (13). This is particularly true in the multi-
agent reinforcement learning (RL) setting, where deciding
on a communication protocol is difficult due to the non-
stationary and high variance of the gradients (13). This
could be addressed in at least two ways: (1) by assuming
the environment is differentiable, and backpropagating gra-
dients using a stochastic differentiation procedure (9; 14),
or (2) by ‘seeding’ each population with a small number
of human demonstrations. Point (1) is feasible because we
are training in simulation, and we have control over how
we build that simulation — in short, it doesn’t really matter
how we get our trained agent populations, so long as they
are useful for the meta-learner in Phase 2.

In Phase 2, the most pertinent question is: how can we
be sure that a small number of updates is sufficient for a
meta-agent to learn a language it has never seen before?

The short answer is that it doesn’t need to completely learn
the language in only a few updates; rather it just needs to
perform better on the language-task in the host population
after a few updates, in order to provide a useful training
signal to the meta-learner. For instance, it has been shown
that the model agnostic meta-learning (MAML) algorithm
can perform well when multiple gradient steps are taken
at test time, even if it is only trained with a single inner
gradient step. Another way to improve the meta-learner
performance is to provide a dataset of agent interactions for
each population. In other words, rather than needing to meta-
learner perform well after interacting with a population a
few times, we’d like it to perform well after doing some
supervised learning on this dataset of language, and after
a few interactions. After all, we do have lots of available
datasets of human language, and not using this seems like a
waste.

Finally, in Phase 3, how do we know that the meta-learner
will be able to generalize to learn a human language? This
comes down to the similarity between the training popula-
tions and human language, and the diversity of the training
populations. For instance, we expect certain properties like
compositionality to be important in the training populations
for transferring to human languages, which are inherently
compositional. But the training languages may not need to
be very close to human language; as a comparison, signif-
icant progress has been made in transferring robots from
simulation the real world using domain randomization, i.e.
by adding random image textures during training. Even
though these image textures look nothing like the real world,
it helps improve robustness of the learner, which allows it to
generalize. Providing a detailed examination of the required
properties of the trained population languages, such that a
meta-learner is able to generalize to human language, is an
important direction for future work.

Acknowledgements We’d like to thank Jean Harb, Liam
Fedus, Angeliki Lazaridou, Amy Zhang, Igor Mordatch, and
others at MILA and Facebook AI Research for discussions
related to the ideas in this paper. RL is funded in part by a
Vanier Scholarship.

References
[1] D. Amodei and D. Hernandez. Ai and compute.

https://blog. openai. com/aiand-compute, 2018.

[2] D. Bahdanau, F. Hill, J. Leike, E. Hughes, P. Kohli,
and E. Grefenstette. Learning to follow language in-
structions with adversarial reward induction. arXiv
preprint arXiv:1806.01946, 2018.

[3] M. Chevalier-Boisvert, D. Bahdanau, S. Lahlou,
L. Willems, C. Saharia, T. H. Nguyen, and Y. Ben-

Learning to learn to communicate

gio. Babyai: First steps towards grounded language
learning with a human in the loop. arXiv preprint
arXiv:1810.08272, 2018.

[4] L. David. Convention: a philosophical study, 1969.

[5] H. de Vries, K. Shuster, D. Batra, D. Parikh, J. We-
ston, and D. Kiela. Talk the walk: Navigating new
york city through grounded dialogue. arXiv preprint
arXiv:1807.03367, 2018.

[6] C. Finn, P. Abbeel, and S. Levine. Model-agnostic
meta-learning for fast adaptation of deep networks.
arXiv preprint arXiv:1703.03400, 2017.

[7] J. N. Foerster, Y. M. Assael, N. de Freitas, and
S. Whiteson. Learning to communicate with
deep multi-agent reinforcement learning. CoRR,
abs/1605.06676, 2016.

[8] J. Gauthier and I. Mordatch. A paradigm for situated
and goal-driven language learning. arXiv preprint
arXiv:1610.03585, 2016.

[9] E. Jang, S. Gu, and B. Poole. Categorical repa-
rameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

[10] D. P. Kingma and J. Ba. Adam: A method for stochas-
tic optimization. CoRR, abs/1412.6980, 2015.

[11] S. Kottur, J. M. Moura, S. Lee, and D. Batra. Natu-
ral language does not emerge’naturally’in multi-agent
dialog. arXiv preprint arXiv:1706.08502, 2017.

[12] A. Lazaridou, A. Peysakhovich, and M. Baroni. Multi-
agent cooperation and the emergence of (natural) lan-
guage. arXiv preprint arXiv:1612.07182, 2016.

[13] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel,
and I. Mordatch. Multi-agent actor-critic for mixed
cooperative-competitive environments. In Advances in
Neural Information Processing Systems, pages 6379–
6390, 2017.

[14] I. Mordatch and P. Abbeel. Emergence of grounded
compositional language in multi-agent populations.
arXiv preprint arXiv:1703.04908, 2017.

[15] A. Nichol, J. Achiam, and J. Schulman. On first-order
meta-learning algorithms. CoRR, abs/1803.02999,
2018.

[16] O. Tieleman, A. Lazaridou, S. Mourad, C. Blundell,
and D. Precup. Shaping representations through com-
munication. OpenReview, 2018.

[17] L. Wittgenstein. Philosophical investigations. 1953.

