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ABSTRACT

Data parallelism has become a dominant method to scale Deep Neural Network
(DNN) training across multiple nodes. Since the synchronization of the local
models or gradients can be a bottleneck for large-scale distributed training, com-
pressing communication traffic has gained widespread attention recently. Among
several recent proposed compression algorithms, Residual Gradient Compression
(RGC) is one of the most successful approaches—it can significantly compress
the transmitting message size (0.1% of the gradient size) of each node and still
preserve accuracy. However, the literature on compressing deep networks focuses
almost exclusively on achieving good compression rate, while the efficiency of
RGC in real implementation has been less investigated. In this paper, we develop
an RGC method that achieves significant training time improvement in real-world
multi-GPU systems. Our proposed RGC system design called RedSync, intro-
duces a set of optimizations to reduce communication bandwidth while introduc-
ing limited overhead. We examine the performance of RedSync on two different
multiple GPU platforms, including a supercomputer and a multi-card server. Our
test cases include image classification on Cifar10 and ImageNet, and language
modeling tasks on Penn Treebank and Wiki2 datasets. For DNNs featured with
high communication to computation ratio, which has long been considered with
poor scalability, RedSync shows significant performance improvement.

1 INTRODUCTION

For training large-scale deep neural networks (DNNs) on multiple computing nodes, data parallelism
has emerged as the most popular choice due to its simplicity and effectiveness (Dean et al. (2012);
Recht et al. (2011)). However, the communication bandwidth of network fabric has become the bot-
tleneck limiting data parallel performance. On one hand, models of DNNs, which already contain
tens to hundreds of layers and totaling 10-20 million parameters today, continue to grow bigger.
Therefore, the requirement of communicating model parameter updates among all computing nodes
poses a higher challenge to network bandwidth. On the other hand, the development of DNN train-
ing accelerators has shifted the bottleneck of training towards communication across models. As the
evolution of the inter-connected network bandwidth is not as fast as computing hardware, synchro-
nization overhead has become the bottleneck of data parallelism on distributed systems using new
computing hardware.

Many recent studies focused on reducing the communication cost between nodes by reducing the
size of the gradients to be transmitted. One line of work (Seide et al. (2014); Alistarh et al. (2017);
Wen et al. (2017)) propose to quantize the gradients to low-precision values. Considering com-
pression ratio (ratio of compressed gradients size to their original size) achieved by quantization is
limited, another line of research orthogonal to quantization is to sparsify communication gradients
and restrict weight-updates to a small subset of parameters. Residual Gradient Compression (RGC)
method (Strom (2015); Aji & Heafield (2017); Chen et al. (2017); Lin et al. (2017); Sattler et al.
(2018)) is currently the most promising pruning method to achieve good compression ratio while
ensuring no loss of training accuracy. It transmits only a small subset of gradients and maintains
the remaining gradients locally as residuals to be added to gradients of the next iteration. The first
RGC implementation is proposed by Strom (2015) and uses a threshold-based method to only send
gradients larger than a predefined constant threshold for fully-connected layers. Considering a pre-
defined threshold is hard to be chosen appropriately, Aji & Heafield (2017) improve the robustness
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of RGC by selecting top 1% gradients to communicate according to their magnitude. Because these
two implementations are tuned for some specific network structures, applying them to other DNNs
will lead to accuracy loss as indicated in Chen et al. (2017). Based on their work, the latest RGC
variants, such as (Sattler et al. (2018); Chen et al. (2017); Lin et al. (2017)), are able to achieve a
0.1% compression ratio on local gradients while ensuring almost no loss of model accuracy on a
variety of DNN structures after introducing some key modifications.

Despite of good model accuracy achieved with simulation experiments, no recent studies have dis-
cussed the potential performance gain after integrating the latest RCG methods to real distributed
training system, especially to the multi-GPU systems equipped with high-quality network infrastruc-
tures. The challenges of applying RGC to distributed GPU systems come from two aspects. First,
there is no efficient compression algorithm proposed for RGC method. According to our experimen-
tal results, selecting top-0.1% elements with the state-of-the-art GPU-based top-k algorithm are so
expensive that the overhead of compression is much higher than the benefits of network bandwidth
reduction. Second, synchronization of sparse data structures is nontrivial to be supported with exist-
ing efficient communication libraries, such as Message Passing Interface (MPI), which are designed
for dense data structures.

Targeting multi-GPU systems, a highly-efficient RGC implementation called RedSync is proposed.
Our contributions are listed as follows:

• We combined pruning and quantization techniques together to compress transmitting gradi-
ents. A set of parallel-friendly top-0.1% selection methods are designed to support pruning
operations inside GPU device memory, which are orders of magnitude faster than the state-
of-the-art GPU-based top-k selection method.

• Considering the distribution characteristics of communication data, we apply allgather op-
eration using MPI for a sparse synchronization scheme. A cost model is derived to analyze
both communication cost and calculation overhead. Based on it, we pointed out potential
performance gain and the bottleneck of our implementation.

• RedSync is able to ensure almost no accuracy loss to train a set of DNNs after integrating
with the latest algorithm improvements. This is the first work, as far as we known, to
evaluate the performance of RGC method on the scale of 128 GPUs. RedSync provides
significant performance improvements for communication-intensive networks, like VGG,
AlexNet and some LSTMs.

2 DESIGN AND IMPLEMENTATION OF REDSYNC

Algorithm 1 Residual Gradient Compression

Input: node id k, the number of node N
Input: dataset χ
Input: mini batch size b per node
Input: initial model w = w[0], ..., w[#layer]
Input: compression ratio D
V k ← 0
for t = 0, 1, ...max iter do

sample b elements as χt
k

Gk ← ∇ f (χt
k ; w) by forward and backward

propagation
for j = #layer,#layer − 1, ..., 0 do
V k
j + = Gk

j

Masks← select (V k
j , D)

Gk
j ← Allreduce(compress(V k

j ·Masks))
V k
j ← V k

j � (1 - Masks)
end for
w← SGD(w, decompress(Gk))

end for

We first give an overview of a simple RGC workflow
used in RedSync (see more details in Algorithm 1).
We denote a DNN model as f(w), where w is the
vector of parameters. We assume a system has N
workers. Each worker, say the k-th worker, holds
a local dataset χtk at iteration t with size b and a
local copy of the global weight w. Synchronous
SGD method is adopted in RedSync. At each iter-
ation, node k computes the gradient Gk using lo-
cal data, where Gkj indicates gradients of layer j.
Each node also maintains a residual V k, which is
initialized as 0 and used to accumulate untransmit-
ted gradient from previous iterations. After added
with latest gradient, a subset of residuals is selected
as the communication-set, and is compressed into
sparse data structures. The select operation in Al-
gorithm 1 chooses more important elements based
on magnitude. Those selected elements (denoted ask
Masks) are synchronized among all the nodes using
allreduce operations, which is able to take advantage
of the highly-optimized allreduce operation on HPC
systems (Thakur et al. (2005)). Synchronous SGD
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Figure 1: Performance of four
communication-set selection meth-
ods under message sizes. Elements in
the data list are generated randomly
from a standard uniform distribution.
Comm. illustrates the time taken to
synchronize the message through a
network with a peak bandwidth of
3.5GBps by allreduce operation. Per-
formance is measured as total time cost
for 100 times independent operations.

implemented with allreduce has been widely adopted in state-of-the-art large-scale CNN training
tasks (Goyal et al. (2017) and You et al. (2017)). Remaining elements outside the communication-
set are assigned as new residuals of the next iteration. The workflow of this algorithm is the same
as an RGC variant called Deep Gradient Compression Method mentioned Lin et al. (2017). In the
following, we details our contribution in implementations of select, Allreduce and decompress
to make this workflow efficient in practice.

2.1 PARALLEL-FRIENDLY COMPRESSION

The efficiency of communication-set selection method is critical for the RGC system’s overall per-
formance. Since a predefined threshold is difficult to determine, recent work (Lin et al. (2017);
Sattler et al. (2018)) suggest to select top 0.1% elements from residuals of each layer as the
communication-set. However, the top-0.1% selection is nontrivial to be implemented on GPU.
One of the most efficient top-k selection methods designed for GPU can be implemented based
on radixSelect algorithm (Alabi et al. (2012)), which determines each bit of the k-th largest element
by scan and scatter. Serial scan (Sengupta et al. (2007)) and scatter operations are extremely time-
consuming. As shown in Figure 1, the computation time for top-0.1% with radixSelect on a Titan X
GPU sometimes is even slightly higher than the time for synchronizing these parameters through a
3.5 GBps network. To avoid performing a top-0.1% operation on a large number of parameters, we
propose two communication-set selection algorithms called trimmed top-k selection and threshold
binary search selection, which are more efficient on GPUs.

Trimmed top-k selection. Observing that the distribution of residuals is usually similar to a normal
distribution, we can use statistical features to remove most of the smaller elements and limit radixS-
elect operation on a relatively small subset. As shown in Algorithm 2, we first calculate the mean
and maximum of residuals’ absolute values of this layer. A relative large threshold value is chosen
according to mean and maximum value, for example, 0.8 × (max − mean) + mean. Operation
count nonzero gets the number of elements whose absolute values are greater than the threshold.
If the number is smaller than k (the number of top-0.1% elements ), we dynamically decrease the
threshold until we find the number of parameters whose absolute value above the threshold is larger
than k. Then we trim all elements that are less than the threshold and perform a top-k selection
operation using radixSelect on the remaining elements. Operation mean, max and count nonzero
can all be efficiently implemented with a single reduction operation. nonzero indices is a typical
stream compaction problem, which uses just one scan operation as its backbone (Sengupta et al.
(2006)).

Threshold binary search selection. For some layers with very large numbers of parameter ele-
ments, even conducting radixSelect on a small subset of elements will still be a very time-consuming
operation. In order to completely avoid using radixSelect operation on GPU, we propose a method
to select approximate top-0.1% elements as communication-set. Instead of identifying the kth (top
0.1%th) largest element, we search for a threshold to make it between the kth to 2kth largest ele-
ment, and then select elements larger than the threshold as communication-set. In this case, at least
0.1% largest elements are included in the communication-set. As shown in Algorithm 3, we use a
binary search algorithm to find such a threshold. To avoid excessive searching, it will always be
terminated when the difference of left bound and right bound is less than a small value ε.
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Algorithm 2 trimmed top-k Selection
Input: tensor to be compressedX
Input: number of elements remained k
Output: < indice, values >
1: mean← mean(abs(X))
2: max← max(abs(X))
3: ε← 0.2
4: ratio← (1− ε)
5: nnz = count nonzero(abs(X)> threshold)
6: while nnz > k do
7: threshold← mean+ ratio× (max−mean)
8: nnz = count nonzero(abs(X)> threshold)
9: ratio = ratio− ε
10: end while
11: indice← nonzero indices(abs(X)> threshold))
12: values← X[indice]

Algorithm 3 Top-k selection with threshold bi-
nary search selection
Input: tensor to be compressedX
Input: number of elements remained k
Input: Termination condition parameter ε
Output: < indice, values >
1: mean← mean(abs(X));max← max(abs(X))
2: l← 0.0; r ← 1.0; threshold = 0.0
3: while r − l > ε do
4: ratio = l + (r − l)/2
5: threshold← mean+ ratio× (max−mean)
6: nnz = count nonzero(abs(X)> threshold)
7: if nnz > k and 2k > nnz then
8: break
9: else if nnz < k/2 then
10: r = threshold
11: else
12: l = threshold
13: end if
14: end while
15: indice← nonzero indices(abs(X)> threshold))
16: values← X[indice]

For layers with large sizes, such as the first fully-connected layer in VGG16 and softmax layer
in LSTM, the time for count nonzero operation is still not negligible. We further improve the
efficiency of the selection algorithm by reducing the number of count nonzero operations. We
recommend that, after a threshold binary search for this layer, the threshold element can be reused
in the next few iterations. The interval of search is empirically set to 5, and the selection algorithm
introduces only one nonzero count overhead on average.

In Figure 1, we compared the time cost of different selection approaches on parameter lists of dif-
ferent sizes. Compared with directly performing radixSelect, both proposed methods significantly
reduce the selection time for large sizes. For top-0.1% selection on 64MB elements, trimmed top-k
and sampled threshold binary search selection are 38.13 and 16.17 × faster than radixSelect. In
practice, we dynamically choose compression strategies: For smaller parameter sets such as biases
and batch norm layers, we do not compress residuals or directly use radixSelect to select top-0.1%
significant elements. Trimmed top-k selection is suitable for parameters of middle size layers, like
convolutional layers, because it can ensure the compression ratio to be exactly 0.1% and introduce no
extra communication bandwidth requirements. Threshold binary search based selection is suitable
for large size layers, like hidden layers and softmax layers in LSTMs, for which the compression
cost is more critical to be optimized than the communication cost.

2.1.1 QUANTIZATION OF COMPRESSED RESIDUALS

Compressed residuals should include k indices and k values. We further investigate the possibility of
quantizing these values. By setting the values of all elements of the same sign in the communication-
set to their mean, we can almost eliminate the communication bandwidth requirement of value
information transmitting by using only one floating-point number instead of k. In order to facilitate
quantization compression, we slightly modify our select method to ensure that elements in the
communication-set are all of the same sign. It can be achieved by choosing the largest k elements
and the smallest k elements as communication-set in turns. In other words, if we select the largest
k elements (all positive numbers) in this layer as the communication-set at current iteration, we will
choose smallest k elements (all negative numbers) as the communication-set for the next iteration.
It is worth noting that sampled threshold binary search selection cannot be used with quantization.
In addition, we do not quantify the output layer of the DNN, in order to distinguish the correct
classification information.

2.2 SPARSE SYNCHRONIZATION AND DECOMPRESSION

Synchronization of dense gradient structures in traditional distributed DNN systems can be simply
implemented with an allreduce operation, which has been well-studied on multiple-GPU systems
(Awan et al. (2017)). However, the design of a sparse allreduce in a distributed setting is not as
simple because each worker may contribute different non-zero indices in its compressed residuals.
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According to our observation, there are very few overlapping indices of the communication-set
distribution of different nodes. For example, training VGG16 on Cifar10 dataset using 16 GPUs
with a compression ratio as 0.1% for each node, the averaged compression ratio of synchronized
residuals of all nodes is 1.55%. We utilize the allgather operation, an operation in which the data
contributed by each node is gathered at all nodes, to implement sparse allreduce. The message
representing compressed residuals of each node should include the information of indices and values
of elements in communication-set. When using threshold binary search selection, the length of each
node’s message is different. As a result, the packaged message should also include an initial element,
which indicates the length of the compressed elements. Instead of using two allgather operations for
indices and values message separately, we package the indices and values into a single message to
reduce latency.

After finishing the allgather operation, each node collectsN compressed residuals of this layer from
all the other nodes. We add the compressed residuals to the corresponding weights in the local model
after scaling with the learning rate. It can be seen as an operation that adds a sparse array to a dense
array, which has been fully-optimized in Level 1 function axpyi() of cuSparse library on GPU.

2.3 OTHER TECHNIQUES

RedSync implements a set of algorithm improvement techniques proposed in Lin et al. (2017). We
details momentum correction, momentum factor masking and our modification to warmup training
in Appendix C, as well as local gradient clipping in Appendix B.

2.4 PERFORMANCE MODEL FOR RGC COMMUNICATION

To analyze the potential performance gain of sparse synchronization, we adopt a widely-used per-
formance model to estimate the communication cost in terms of latency and bandwidth used. We
assume that the time taken to send a message between any two nodes can be modeled as α + nβ,
where α is the latency (or startup time) per message, independent of message size, β is the transfer
time per byte, and n is the number of bytes transferred. The node’s network interface is assumed
to be single ported; i.e. at most one message can be sent and one message can be received simul-
taneously. M is the number of elements in residuals of current layer. D is the compression ratio.
In the case of reduction operations, we assume that γ2 is the computational cost for performing the
reduction operation for a message of size M , and γ1 is the cost to decompress the collected sparse
message of size M . For the case where the compression ratio of each node is different, which is
always true for the binary search method, D represents the average compression ratio of all nodes.

Suppose that we use recursive doubling for allgather and Rabenseifners algorithm mentioned in
Thakur et al. (2005) for allreduce communication. The cost of quantized sparse and dense synchro-
nization is illustrated Equation 1 and 2, respectively. The derivations are left in Appendix A.

Tsparse = Tselect + log(p)α+ (p− 1)(MD)β+ pγ1
(1)

Tdense = 2 log(p)α+ 2
p− 1

p
Mβ +

p− 1

p
γ2 (2)

As implicated by the performance model, the compression rate for the model is not equal to the
compression rate for communication bandwidth. The bandwidth term of sparse synchronization
is (p − 1)DMβ, which is proportional to the number of nodes p. Even if the sparseness D is 0.1%
for all p node, when p is 128, the communication bandwidth for sparse synchronization will be
12.8% of dense synchronization rather than 0.1% of dense synchronization. Second, the overhead
of reduction may be a new bottleneck when scaling RedSync to larger scale. The last term pγ1
in Eq. 1 indicates that the overhead to do reduction also increases linearly with the number of nodes
p. However, in Eq. 2, reduction overhead almost does not increase with number of nodes.

3 EXPERIMENTAL RESULTS

3.1 SETUPS

We tested the accuracy and performance of our proposed implementation on two different multi-
GPU systems, including a world’s top GPU supercomputer and a multi-GPU server. Muradin is a
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Figure 2: Left : top-1 val-
idation accuracy vs number of
epochs of training VGG16 on Ci-
far10 (4 GPUs, total batch size =
256). Center : top-1 validation
accuracy vs number of epochs of
training ResNet50 on ImageNet
(8 GPUs, total batch size = 256).
Right : Perplexity vs number of
epochs of training LSTM on PTB
(4 GPUs, total batch size = 20).

Size Gflop SGD RGC qRGC

Cifar10 ResNet44 2.65 0.20 7.48% 7.17% 7.87%
VGG16 59 0.31 8.31% 8.45% 8.13%

ImageNet AlexNet 233 0.72 44.73% 44.91% 44.80%
ResNet50 103 8.22 24.07% 23.98% 23.85%
VGG16 528 15.5 29.5% 29.1% 29.3%

PTB LSTM 204 2.52 75.86 75.14 74.69
Wiki2 LSTM 344 2.52 88.23 88.01 87.84

Batch Size 128 256 512 1024 2048
ResNet44

SGD 7.09 7.48 8.18 10.02 16.8
RGC 6.40 7.17 7.471 10.13 10.87

qRGC 7.06 7.87 7.62 11.86 10.83
VGG16

SGD 7.74 8.31 9.06 9.49 10.09
RGC 7.43 8.45 9.31 9.90 11.12

qRGC 8.17 8.13 9.09 9.97 9.81

Table 1: Results of RGC are achieved by non-quantized RGC method, and results of qRGC are
achieved from quantized RGC method using RedSync. The left table : Accuracy results for vari-
ous networks. Size indicates the model size in MB. GFlop shows Giga Floating-Point Operations
required for a forward pass using a single input sample. Accuracy of CNNs was measured as top-1
validation errors, and accuracy of LSTMs is measured as perplexity on validating dataset. Results
on Cifar10 were measured using 4 nodes with batch-size as 64 for each node. Results on ImageNet
were measured using 6 nodes with batch-size as 32 for each node. Results of LSTM were measured
using 4 nodes with batch-size as 5 for each node. The right table: Test errors of RCG and SGD
methods under different batch sizes on Cifar10.

server with eight GPUs in the same node. It is equipped with one Intel(R) Xeon(R) CPU E5-2640
v4 and 8 TITAN Vs, which is connected to the CPU through PCI-E 3.0. Piz Daint is a GPU super-
computer. Each node of it includes two Intel Xeon E5-2690v3 CPUs and one NVIDIA Tesla P100
GPUs. In total, there are 5320 nodes connected by Aries interconnect with Dragonfly topology. We
used pytorch v4.0 to conduct basic DNN training operations. For communication library, horovod
an MPI wrapper upon pytorch, is used to provide collective communication operations. Horovod
was compiled with OpenMPI v3.1 with cuda-aware supported on both systems.

We tested our performance on two major types of mainstream deep learning applications. For Image
Classification tasks, we studied ResNet-44 and VGG16 on Cifar10 (Krizhevsky & Hinton (2009)),
AlexNet, VGG16 and ResNet-50 on ImageNet (Deng et al. (2009)). For all CNNs, we used Nes-
terov’s momentum SGD as optimizer. We used the same learning rate strategies as the SGD for the
RGC methods. Warm-up technique was applied to the first 5 epochs of ResNet50 and VGG16 for
both SGD and RGC. For Language Modeling tasks, we picked two datasets for evaluation. The
Penn Treebank corpus (PTB) dataset consists of 923,000 training, 73,000 validation and 82,000 test
words (Marcus et al. (1993)). The WikiText language modeling dataset is a collection of over 100
million tokens extracted from the set of verified Good and Featured articles on Wikipedia (Merity
et al. (2016)). It consists 2,088,628 training, 217,646 and 245,569 test words. We adopted a 2-layer
LSTM language model architecture with 1500 hidden units per layer (Press & Wolf (2016)) to eval-
uate both datasets. We tied the weights of encoder and decoder and use vanilla SGD with gradient
clipping. Learning rate decays when no improvement has been made in validation loss.

3.2 EVALUATION OF ACCURACY

We examined the convergence of RedSycn on the datasets mentioned before. For the Cifar10 dataset,
we used two CNNs, i.e. ResNet44 and VGG16, as test cases. Both DNNs were tested on 4 GPUs,
and the total mini-batch size is 256. On the ImageNet dataset, we tested AlexNet, ResNet50, and
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VGG16. On the PTB and Wiki2 dataset, we examined the perplexity of the 2-layer LSTM mentioned
before.

Figure 2 shows the validation error of RGC and quantized RGC provided by RedSync on three test
cases compared with original SGD. More comprehensive results are shown in the left side of Table
1. We also tested the sensitivity of the RGC method to large training data batch size. As shown in
the right side of Table 1 when increasing the batch size to 2048, RedSync got no loss of accuracy
compared to the original SGD.

3.3 EVALUATION OF SCALABILITY AND SPEED

Next we tested the performance and scalability of RedSync as number of GPUs grow. Fig. 5 il-
lustrates scalability of RedSync on Piz Daint with four test cases. Fig. 3 and Fig. 4 show the
performance of RedSync on Muradin with six test cases. We compared RedSync and its quantiza-
tion version Quantized-RedSync with a baseline data parallel implementation provided by horovod.
Data was collected by averaging training time in 1000 training iterations. We used trimmed top-k al-
gorithm to compress layers in CNNs larger than 128KB and used threshold binary search algorithm
for hidden layers and the softmax layer for LSTM. Fig. 6 illustrates the cost of different parts using
RedSync when scaling it to 128 GPUs on Piz Daint. Our observations are summarized as follows.

1. Using our parallel-friendly selection methods for compression is critical for system overall per-
formance. In Fig. 3 and Fig. 4, we added an RGC implementation called pure RGC, which uses
radixSelect to select top 0.1% elements as communication-set rather than our proposed methods.
The performance of pure RGC is even slower than the baseline version, because compression time
is too long.

2. RedSync is suitable for accelerating data parallel training on DNNs with high communication to
computation ratio. For VGG16, AlexNet and LSTM, although performance of RedSync on a single
GPU is not as good as baseline version due to compression and decompression overhead, RedSync
can achieve significant speedup with more than 2 GPUs. However, we observed no performance gain
for ResNet50 both on Piz Daint and Muradin. As implicated in Table 1, the ratio of computation
to communication of ResNet50 is the highest in the DNNs we investigated. On large scale, most of
time during ResNet50 training with RedSync is wasted on decompression phase, as shown in Fig.
6, which overdrafts the benefit of communication bandwidth reduction.

3. The scalability curve of RedSync on Piz Daint shows a concave shape. For example, as shown in
Fig. 5, RedSync gets a better speedup to baseline version on 32 GPUs than 128 GPUs for AlexNet. It
is because that communication bandwidth requirement and decompression overhead both grow lin-
early with the number of GPU in use. Such phenomenon verifies our analysis using communication
performance model.

4. Quantized-RedSync always achieves better performance than RedSync for CNNs. However, for
LSTM training on small scale, Quantized-RedSync achieves worse performance than RedSync. This
is due to the balance of communication and computational overhead. CNN adopts trimmed top-k
as the communication-set selection method and its quantized version has similar computation cost.
As shown in Fig. 6, no significant difference of selection cost in CNN training. Therefore, the
reducing of communication cost by quantization improves the system’s overall performance. As
for LSTMs, they use sampled threshold binary search as selection for non-quantized RedSync, but
use threshold binary search for quantized RedSync. Sampled selection is much more faster. There-
fore, on small-scale, RedSync has better performance than Quantized-RedSync due to less selection
overhead. When scaling to more than 16 GPUs, benefit from the reduction of communication com-
pensates for the cost of the communication-set selection.

4 CONCLUSION

This paper proposes a distributed implementation called RedSync to accelerate data parallel DNN
training by utilizing a type of gradient sparsification method named as Residual Gradient Com-
pression (RGC). We solved two major obstacles to implement RGC on multi-GPU systems : high
overhead of compression using GPU and lack of support for collective communication implemen-
tation for sparse data structures. We tested the performance of RedSync on two GPU platforms,
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Figure 3: Scalability of RedSync for CNNs training on ImageNet using Muradin.
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Figure 4: Scalability of RedSync for LSTM on PTB and Wiki2 datasets. Scalability of RedSync for
LSTM VGG16 on Muradin.
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Figure 5: Scalability of RedSync for CNNs with ImageNet and LSTM with PTB on Piz Daint.
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Figure 6: The time cost of different parts in RedSync on Piz Daint. Time is the average 10 iterations
cost. For each two column group, the left column illustrates time decomposition for RedSync and
right column illustrates time decomposition for quantized RedSync.

including a supercomputer system and a multi-GPU server. For AlexNet, VGG16, and LSTM, we
observed significant speedup for large-scale DNN training.
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A COST MODEL FOR SPARSE AND DENSE SYNCHRONIZATIONS

The left part of Figure 7 illustrates how sparse allgather works by recursive doubling method. We
assume the compression rate on all of the node is the same as D. If we use threshold binary search
for communication-set selection, D here should be the average compression ratio of all nodes for a
good approximation. In the first step, nodes that are a distance 1 apart exchange their compressed
residuals, the size of which is M ×D. In the second step, nodes that are a distance 2 apart exchange
their own data as well as the data they received in the previous step, which is 2M×D in total. In the
third step, nodes that are a distance 4 apart exchange their own data as well the data they received
in the previous two steps. In this way, for a power-of-two number of processes, all processes get
all the data in lgp steps. The amount of data exchanged by each node is M × D in the first step,
2M × D in the second step, and so forth, up to 2lg(p)−1M × D in the last step. Therefore, The
time for message transfer taken by this algorithm is Ttransfer = lg(p)α + (p − 1)M ×Dβ. After
including decompressing overhead γ for collected p different compressed residuals and communi-
cation selection overhead Tselect, the time for all-gather based synchronization should be Ttransfer
= Tselect + lg(p)α+ (p− 1)M ×Dβ + pγ1

As shown in the right part of Figure 7, the Rabenseifners algorithm is adopted for allreduce opera-
tion on messages. It does a reduce-scatter followed by an allgather. Reduce-scatter is a variant of
reduce in which the result, instead of being stored at the root, is scattered among all p nodes. We
use a recursive halving algorithm, which is analogous to the recursive doubling algorithm used for
allgather but in reverse way. In the first step, each node exchanges data with a node that is a distance
p/2 away: Each process sends the data needed by all processes in the other half, which is of size
M/2. They also receives the data needed by all processes in its own half, and performs the reduction
operation on the received data. In the second step, each process exchanges data with a process that is
a distance p/4 away. This procedure continues recursively, halving the data communicated at each
step, for a total of lgp steps. After reduce-scatter, allgather phase will have the the same bandwidth
and latency requirements. The time taken by Rabenseifners algorithm is the sum of the times taken
by reduce-scatter (recursive halving), allgather and reduction operations. The total time should be
Ttransfer = 2lg(p)α+ 2p−1p Mβ + p−1

p Mγ2.

B OVERLAPPING COMMUNICATION AND COMPUTATION

It is necessary to improve data parallel efficiency by overlapping communication with computation
through pipelining communication and gradient calculation. Before updating aggregated gradients
after scaling with learning rate to weights, gradient clipping is usually adopted to avoid gradient
explosion. It rescales all of the gradients when the sum of their norms exceeds a threshold. For RGC
methods, the local clipping technique (Lin et al. (2017)) is adopted to perform gradient clipping by a
new threshold (N−1/2 of original) locally before adding the current gradients to previous residuals.
The difference is that traditional data parallel does clipping after communication of all layers are
completed, while the RGC algorithm needs to do clipping before communication. In this case,
we need to wait for the completion of the entire back-propagation to get gradients of all layers.
And then we do clipping on gradients and then perform compression for communication. Local
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Figure 7: Communication pattern of sparse synchronization with allgather and dense synchroniza-
tion with allreduce.

clipping is equivalent to introducing synchronization between computing and communication and
thus eliminating the possibility of Communication hiding.

As shown in Figure 8, We have abandoned gradient clipping for CNNs, which seldom have gra-
dient exploration problem for the deep networks in order to explore the potential overlapping. As
for RNNs, gradients are achieved after backpropagation of all time steps using Back Propagation
Through Time (BPTT). When backpropagation of the last layer is completed, we use the gradients
of all layers to conduct local gradient clipping. In this case, the communication time can only over-
lap with the compression calculation. Because even with the original data parallel approach, the
computation and communication overlap for each layer can only be made at the last time step, RGC
dose not introduce too much overhead.
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Figure 8: Two different schemes to overlap communication with computation for CNNs and RNNs.

C CORRECTNESS FOR MOMENTUM SGD AND WARM-UP TRAINING

We integrate the momentum masking and momentum correction schemes as proposed in Lin et al.
(2017) for momentum SGD and Nesterov momentum SGD optimizers in RedSync. The Momentum
SGD version of RGC method adopted by RedSync is illustrated in Algorithm 4. A warm-up training,
by exponentially decreasing the compression ratio of the residuals in communication-set in first few
epochs, is generally adopted to accelerate convergence in the first few iterations. For example, it
is recommended to decrease the compression ratio of residuals in the warm-up period as follows:
25%, 6.25%, 1.5625%, 0.4%, 0.1%. However, we find it could be inefficient for large-scale. As
analyzed in the previous section, even synchronization of compressed residual with a compression
ratio as 1.5625% requires 100% bandwidth of dense allreduce for quantized RedSync on 64 GPUs.
Instead of adopting high-compression-ratio RGC method of warm-up training, we use original SGD
optimizer synchronized by allreduce in first few epochs if necessary.
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Algorithm 4 Residual Gradient Compression using MSGE

Input: node id k, the number of node N
Input: dataset χ
Input: use momentum, momentum, use nesterov
Input: mini batch size b per node
Input: initial model w = w[0], ..., w[#layer]
Input: compression ratio D
V k ← 0
Uk ← 0
for t = 0, 1, ...max iter do

sample b elements as χt
k

Gk ← ∇ f (χt
k ; w) by forward and backward propagation

for j = #layer,#layer − 1, ..., 0 do
if use momentum then
Uk

j = momentum · Uk
j +Gk

j

V k
j = V k

j + Uk
j

if use nesterov then
V k
j = V k

j +Gk
j

end if
else
V k
j = V k

j +Gk
j

end if
Masks← selection (V k

j , D)

Gk
j ← Allreduce(compress(V k

j ·Masks))
V k
j ← V k

j � (1 - Masks)
if use momentum then
Uk

j ← Uk
j � (1 - Masks)

end if
end for
w← SGD(w, decompress(Gk))

end for
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