
Under review as a conference paper at ICLR 2020

TOWARDS EFFECTIVE AND EFFICIENT
ZERO-SHOT LEARNING BY FINE-TUNING WITH
TASK DESCRIPTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

While current machine learning models have achieved great success with labeled
data, we have to deal with classes that have little or no training data in many
real-world applications. This leads to the study of zero-shot learning. The typical
approach in zero-shot learning is to embed seen and unseen classes into a shared
space using class meta-data, and construct classifiers on top of that. Yet previ-
ous methods either still require significant manual labor in obtaining useful meta-
data, or utilize automatically collected meta-data while trading in performance. To
achieve satisfactory performance under practical meta-data efficiency constraint,
we propose N3 (Neural Networks from Natural Language), a meta-model that
maps natural language class descriptions to corresponding neural network classi-
fiers. N3 leverages readily available online documents combined with pretrained
language representations such as BERT to obtain expressive class embeddings.
In addition, N3 generates parameter adaptations for pretrained neural networks
using these class embeddings, effectively “finetuneing” the network to classify
unseen classes. Our experiments show that N3 is able to outperform previous
methods across 8 different benchmark evaluations and we show through ablation
studies the contribution of each model component. To offer insight into how N3

“finetunes” the pretrained network, we also performed a range of qualitative and
quantitative analysis. Our code will be released after the review period.

1 INTRODUCTION

Current deep learning models achieved great success with supervision. However, labeled data can be
a luxury in many scenarios; take classification problem as an example: large number of classes, rare
classes with too few samples, emerging new classes during online learning, or simply prohibitive
costs of labeling can all lead to data sparsity. Hence, it is crucial to build models that can perform
well even when applied to data from label categories unseen during training. This give rise to the
field of zero-shot learning (Lampert et al., 2009; Larochelle et al., 2008; Palatucci et al., 2009).

Intuitively, to build models that can make predictions for classes with no training data (i.e., “unseen
classes”), we still need to have some information about them. The information we are seeking
usually comes from some metadata about the unseen classes and is used to embed both seen and
unseen classes into a shared semantic space. An early and successful example of this approach is
the use of manually engineered semantic spaces such as class attribute space (e.g color, shape, size
of object) (Lampert et al., 2009) for image classification. While the engineered spaces are very
effective in modelling relationships between seen and unseen classes, the metadata here, i.e. class
attributes, require expert annotation. In seeking to automate the process, other works have proposed
to construct semantic spaces from relevant linguistic resources. Early work in this regard constructed
lexical relationship space (e.g relationship of classes as appeared in WordNet) (Akata et al., 2016)
as well as text key-word space (e.g TF-IDF vectors of descriptive documents) (Lei Ba et al., 2015).
More recent work explored learned representations as well. Some directly employ word embeddings
of class names (Xian et al., 2016; Akata et al., 2015) while others train embeddings using descriptive
documents (Reed et al., 2016; Elhoseiny et al., 2017; Zhu et al., 2017). After the embeddings in the
semantic space are obtained, they are typically used to generate the last linear classifier layer on top
of a pretrained feature extraction network (e.g ImageNet-pretrained ResNet for image classification).

1

Under review as a conference paper at ICLR 2020

Figure 1: Overview of N3: class descriptions for a new classification task are fed to the N3 meta-
model and it generates parameters for task-specific model that classifies the designated objects.
Dashed lines indicates the correspondence between dimension in the output logits and the input
class descriptions.

This would allow the pretrained model to make predictions for unseen classes.

However, for previous models there seems to be an inevitable trade-off between good performance
and metadata efficiency. Some models achieve satisfying metadata efficiency by only utilizing read-
ily available online documents to construct semantic spaces (Lei Ba et al., 2015; Xian et al., 2016;
Akata et al., 2015), yet when compared with concurrent state-of-the-art models (Reed et al., 2016)
they fall short in performance. On the other hand, the recent models that achieve superior perfor-
mance either require collecting additional corpora with hundreds of sentences per class (Reed et al.,
2016) or extra fine-grained annotation for all training samples (Elhoseiny et al., 2017; Zhu et al.,
2017), leading to arguably impractical metadata efficiency.

In order to achieve both superior performance and metadata efficiency, we propose a meta-model,
N3 - Neural Networks from Natural Language, mapping a set of class object descriptions to neural
network parameters to create zero-shot classifiers. N3 has two modules. The first module is a BERT-
based (Devlin et al., 2018) Semantic Encoding Module (SEM). With the help of such large-scale
pretrained representations, SEM can leverage class object descriptions that are readily available on-
line to bridge the gap between seen and unseen classes. Compared to previous approaches that train
their own embeddings with metadata, the pretrained language representations transfer knowledge
learned from the large-scale pretraining corpora to our application domain. This allows us to exploit
the nuances in class descriptions. Secondly, we push beyond generating only the final classifiers
and propose a novel Parameter Adaptation Module (PAM), generating parameter adaptations to
“fine-tune” all layers in the pretrained network based on the class embeddings given by SEM. In
short, N3 converts natural language descriptions into readily functioning neural network classifiers.

We experimented with 4 popular zero-shot learning benchmark datasets, each in 2 different settings.
These datasets are Caltech-UCSD Birds (CUB), Animal with Attributes (AWA), North American
Birds (NAB) and a filtered version of Oxford Flowers we refer to as Flowers-Species (FS) and
we evaluated our models using settings adopted from a widely-acknowledged guideline (Xian et al.,
2017). N3 outperforms previous methods significantly across all evaluations while maintaining prac-
tical metadata requirements. We also perform a series of ablation studies to disentangle the gains
from different modules, and demonstrated that each one of them offer solid contributions toward
the final performance. Eventually, to gain additional insight as to how parameter adaptations affect

2

Under review as a conference paper at ICLR 2020

the pretrained model, we visualized activations, model parameters and model predictions. These
analysis quantitatively and qualitatively demonstrates that the parameter adaptations indeed change
the behavior of pretrained models significantly.

2 RELATED WORK

Our work can be placed in the context of zero-shot learning and dynamic parameter generation for
neural networks. We will discuss our work in both contexts.

2.1 ZERO-SHOT LEARNING

Zero-shot learning studies how we can generalize our models to perform well for tasks without
any labeled training data at all. Achieving performance above chance-level for classification in
such scenarios requires modelling the relationships between the classes seen during training and the
unseen classes during testing. A typical and effective method is to manually engineer class attribute
vectors to obtain representations of seen and unseen classes in a shared attribute space Duan et al.
(2012); Kankuekul et al. (2012); Parikh & Grauman (2011); Zhang & Saligrama (2016); Akata
et al. (2016). Yet this requires laborious engineering of class attributes, which is not feasible for
large-scale and/or fine-grained classification tasks Russakovsky et al. (2015); Khosla et al. (2011);
Welinder et al. (2010). Hence, there is also work in zero-shot learning that attempts to leverage
text data for class object representations (Lei Ba et al., 2015; Elhoseiny et al., 2013). The majority
of these models are committed to embedding-based retrieval approaches, where classification is re-
formulated as retrieving the class embedding with maximal similarity (Akata et al., 2015; Kodirov
et al., 2017). While they can handle well the case where there is an indefinite number of classes
during test time, such approaches suffer from extra computation cost at inference time since they
need to traverse all the seen data points. Moreover, these models often rely on a pre-trained feature
extractor for input, which is usually fixed and cannot be further adapted for the unseen classes (Akata
et al., 2015; Kodirov et al., 2017; Elhoseiny et al., 2013). While there are a handful of work that tries
to modify the parameters in-place during test time, they either rely on very simple representations
of text (Lei Ba et al., 2015) or require significant amount of text descriptions per class to train their
model (Reed et al., 2016), both of which are not ideal. In our work, we aim to learn a model that can
generate parameters for entire neural networks to adapt to the new tasks using short descriptions of
the class objects. This leads to better metadata efficiency as well as higher flexibility in the generated
task model.

2.2 DYNAMIC PARAMETER GENERATION

As mentioned before, N3 dynamically generates classification models for designated classes. Dy-
namic parameter generation has been explored in context of generating recurrent cells at different
time-steps of RNNs Ha et al. (2016), constructing intermediate linear models for interpretability
inside neural networks Al-Shedivat et al. (2017), and contextual parameter generation for different
language pairs in multilingual machine translation Platanios et al. (2018). As mentioned in Section
2.1, some zero-shot learning methods can also be viewed as generating classifier parameters Lei Ba
et al. (2015); Elhoseiny et al. (2013). However, many of the previous work directly or indirectly
mentions the challenge of memory and computation complexity - after all, in parameter generation,
the output of the parameter generation model are large matrices that are excessively high dimen-
sional. To deal with this, previous work either only generate very simple linear layers Lei Ba et al.
(2015); Elhoseiny et al. (2013); Al-Shedivat et al. (2017), or impose low-rank constraints on the
weights to mitigate the memory issues Ha et al. (2016). In our work, we utilize the architecture of
sequence-to-sequence models and treat the generation of weight matrices as sequence of vectors.
This allows parameter generation for entire neural networks with little memory bottleneck.

3 NATURAL LANGUAGE GUIDED PARAMETER ADAPTATION

Our proposed N3 architecture consists of two main modules: a Semantic Encoding Module (SEM)
followed by a Parameter Adaptation Module (PAM). As is illustrated in Figure 2, the SEM first
encodes class descriptions into description embeddings, then the PAM utilizes these encoded em-

3

Under review as a conference paper at ICLR 2020

beddings to generate parameter adaptations for a pre-trained base network. Each module applies
self-attention over its input, thus leading to a two-level hierarchical attention structure. On descrip-
tion level, the SEM applies self-attention over tokens in each description, which allows the model
to attend to key words that are crucial to the task. On class level, the PAM applies attention on all
class description embeddings when generating parameter adaptations for each layer. This allows the
model to have both the capability of attending to particular words in descriptions that are crucial
to the task and the capability to compare and contrast different class embeddings during parameter
generation. We will discuss both modules in the upcoming subsections.

Groove billed Ani, An odd-looking black bird with a long tail and a large …

Rhinoceros Auklet, Medium-sized, stocky waterbird. All dark gray, except…

Brewer Blackbird, Adult males have black plumage with an iridescent…

…

Semantic Encoding Module

BERT

Parameter
Adaptation

Module
Class 0

Class 1

Class 2

… …

 Δ 1

 Δ 2

 Δ 3

FC

Pre-trained Model

 Conv1

Conv2

Conv3

Param
Adaptation

 Δ 1

 Δ 2

 Δ 3

FC

 Conv1

Conv2

Conv3

Fine-Tuned Model

Pointwise
Addition

Figure 2: N3 Model Architecture. N3 utilizes a two-level attention mechanism to map task meta-
data to adapted neural network parameters: the Semantic Encoding Module applies a first level
of attention mechanism over contextualized word embeddings of class description to produce de-
scription embeddings for each class; the Parameter Adaptation Module applies a second level of
attention mechanism over all of the encoded class description embeddings to generate a parameter
delta, which is then combined with the corresponding pre-trained model parameters to produce a
task-specific neural network with its parameters adapted toward the new task.

3.1 SEMANTIC ENCODING MODULE

The Semantic Encoding Module is responsible for encoding class descriptions into corresponding
embeddings, resulting in a set of class embeddings {ci}ki=1 for all k classes. This is achieved by first
applying pre-trained BERT model (Devlin et al., 2018) to class descriptions to obtain contextualized
word embeddings, and then transforming each sequence of embedded descriptions into a class em-
bedding using a Transformer (Vaswani et al., 2017). The SEM is the first hierarchy of attention in
N3: it attends to words within each description with its Transformer architecture, thus allowing the
meta-model to attend to key words in the description that are more important for the new task.

3.2 PARAMETER ADAPTATION MODULE

The Parameter Adaptation Module use two steps to generate a task-specific neural network from
class embeddings and pretrained neural network (i.e. the base model). For each layer in the pre-
trained network with parameter Wpre, PAM generates a parameter delta ∆W with the same shape
as Wpre that gets added to Wpre. To transform the set of class embeddings {ci}ki=1 into a parameter
delta matrix ∆W , PAM takes an encoder-decoder approach 1, viewing {ci}ki=1 as a sequence and the
generation of ∆W as a sequence of m columns of the matrix {∆wd}md=1. Similar to SEM, we also

1We used a non-conventional decoder setup to suit our need, see detail in supplement ”Decoder Setup”.

4

Under review as a conference paper at ICLR 2020

use Transformer models as our encoder-decoder architecture. Concretely, PAM can be expressed as:

h1:k = Encoder(c1:k) (1)
∆wd = Decoder(∆w<d,h1:k), d = 1, ...,m (2)
∆W = Concatenate([∆w1; ∆w2; ...; ∆wm]) (3)
W = Wpre + µ ·∆W (4)

where µ is a trainable scaling factor used to control the scale of parameter delta applied to the
pre-trained parameters. Through the use of Transformers models, PAM forms the second level of
attention in N3, namely the attention over classes. When generating parameter deltas, PAM al-
ways examines all classes concurrently, allowing the model to consider the interactions between
them, whereas previous work almost always encode and make use of class representations indepen-
dentlyLei Ba et al. (2015); Akata et al. (2015). Intuitively, the class-level attention allows N3 to
encode distinct features of the classes that help set them apart, instead of simply encoding each class
without seeing others.

3.3 TRAINING METHODOLOGY

In this section, we provide details about the procedures used for training N3. Recall that, training N3

requires a base model F and a set of pre-trained parameters of F , denoted as Wpre. N3 generates a
set of parameter deltas ∆W to be combined with pre-trained parameters using Equation 4, such that
for input images X , F(X;Wpre,∆W) predicts the correct labels of X.

We formulate the training of N3 as an optimization problem. Optimal parameters θ for N3

meta-learning model Φ(·; θ) should map a collection of natural language class descriptions D =
{D1, · · · ,Dk} to a set of parameter deltas ∆W = Φ(D; θ), such that the cross entropy loss between
ground truth label Y and model prediction F(X;Wpre,Φ(D; θ)) is minimized for all image-label
pairs (X,Y) in the training set.

Therefore, to train N3 on a image dataset I with labels L, label descriptions D and a base model
F to produce a k-class classification model, we first draw meta-batches of k class labels Lk ∈ L.
Then, a subset of the image dataset ILk

and description dataset DLk
corresponding to the drawn

labels Lk are constructed. We then draw mini-batches of images B and ground-truth labels Y from
ILk

. For each mini-batch B, an independent set of parameter deltas ∆W is generated by evaluating
Φ(·; θ) at DLk

. Batch loss is then calculated as 1
|B|

∑
i `(Yi,F(Xi,Wpre,∆W)) where `(·, ·) refers

to cross-entropy loss. Since the meta-model Φ(·; θ) and the base model F are fully differentiable,
gradients can be propagated back to meta-models to optimize meta model parameter θ.

4 EXPERIMENTAL EVALUATION AND DISCUSSION

In this section, we will introduce our experimental evaluation setup: the datasets we experimented
with, the prior arts we compared with, and the evaluation protocol we developed. We will then move
on to provide qualitative and quantitative analysis into N3’s working mechanism. Finally, several
ablation studies will be provided to further characterize the impacts of several of our design choices
on the model performance.

4.1 DATASETS

In this section, we will introduce two types of datasets: the first type is regular datasets used to train
the task model that makes the predictions; the second type is meta-datasets, consisting of natural
language descriptions for classes in their corresponding regular datasets. The meta-datasets are used
as meta-data to train the N3 meta model.

• Caltech-UCSD-Birds 200-2011 (CUB) (Wah et al., 2011) contains images of 200 species
of birds. Each species of bird forms its own class label. In total, 11,788 images are present
in this dataset.
• Animal with Attributes (AWA) (Lampert et al., 2014; Xian et al., 2017) is another popular

dataset to evaluate zero-shot classification methods. It consists of 50 classes of animals with
a total of 37322 images.

5

Under review as a conference paper at ICLR 2020

• North America’s Birds (NAB) is a dataset used by prior state-of-the-art methods related to
our task. Following the established practices (Zhu et al., 2017; Elhoseiny et al., 2017), we
consolidated the class labels into 404 distinct bird species. The consolidation process com-
bines closely related labels (e.g., ‘American Kestrel (Female, immature)’ and ‘American
Kestrel (Adult male)’) into a single label (e.g., ‘American Kestrel’).
• Flowers-Species (FS) is a dataset we built based on Oxford Flowers (Nilsback & Zisser-

man, 2006). The original contains label categories that are a mixture of species and genera.
Some genus includes thousands of species, yet the dataset examples only cover a fraction
of them. Such mismatch creates biases in the dataset that fundamentally cannot be ad-
dressed through learning from external descriptions. This hence undermines its utility as
a test of our proposed method: for instance, when N3 is asked to generate classifier to de-
cide whether an object is of label “anthurium”, which is a genus of around 1000 species of
varying visual appearance, the efficacy of our generated model can only be evaluated based
on a representative samples that cover most of the species within the genus “anthurium”.
However, the dataset only contains a tiny number of (i.e., 105) correlated (species-wise)
samples, making such evaluation neither comprehensive nor conclusive in the context of
our task objective and may introduce unexpected noise in evaluation results. Therefore, we
decided to filter out the genera from the original Oxford Flowers dataset, leaving only the
species as class labels, as an effort towards homogenizing the sample spaces implied by the
class labels and the image dataset. This leaves us with 55 classes and 3545 images.

For every regular dataset, we build a meta-dataset by mapping each class label to a short excerpt of
visual description of objects in this class. We manually find these visual descriptions from websites
like Wikipedia. When such meta-dataset is fed into our BERT-based word embedding modules, we
truncate these text excerpts to be within 512 tokens each; such length constraint is imposed by BERT
embedding module due to its high GPU memory requirements.

4.2 EVALUATION PROTOCOL

Recent study(Xian et al., 2017) showed that previous zero-shot learning evaluation protocols are
inadequate and proposed a set of rigorous evaluation protocols for attribute-based zero-shot learning
methods. Although both our tasks and datasets differ, we nevertheless developed our own set of
evaluation protocols following the guiding principles of the Rigorous Protocol (Xian et al., 2017).
Below our evaluation protocol is introduced with reference to Rigorous Protocol: (a) unlike Rigorous
Protocol which uses ResNet-101 model, we use ResNet-18 as our base model; such choice helps
reduce the output dimensionality of N3 by reducing the number of parameters N3 fine-tunes; (b)
similar to Rigorous Protocol, we used two meta-splits Standard Splits and Proposed Splits to
evaluate all methods in our experiments; while the Standard Splits are established meta-splits and
Proposed Splits are meta-splits that guarantees the exclusion of ImageNet-1K classes from the test
set; (c) due to the class imbalance of several datasets, Rigorous Protocol proposes to use per-class
averaged accuracy for more meaningful evaluation. Specifically, to evaluate meta-model on a meta-
split containing the set of classes C, we calculate the per-class averaged accuracy as illustrated in
Equation 5; (d) our method is unique in that permutations of the classes belonging to the same
meta-split are treated as distinct tasks and therefore, to account for potential variations of the models
being generated, we test our models on 10 different permutations of test set classes and report the
medium of the aforementioned evaluation metrics. To summarize, we have tabulated the number of
class labels used for training, validation and testing in Table. 1.

AccC =
1

|C|
∑
c∈C

number of correctly predicted samples in c
number of samples in c

(5)

4.3 COMPARISON WITH PRIOR WORK

Our work is most closely associated with prior method (Lei Ba et al., 2015) which also uses only nat-
ural language descriptions of class labels to generate deep neural networks capable of distinguishing
between objects described. We will refer to it as PDCNN (Predicting Deep Convolutional Neural
Networks). PDCNN (Lei Ba et al., 2015) is distinct from our work in that it dynamically gener-
ates fully connected layers and/or additional convolutional layers to be appended to a pretrained

6

Under review as a conference paper at ICLR 2020

Dataset Total Standard Split/Proposed Split

Training Validation Testing

CUB(Wahet al., 2011) 200 100 50 50
AWA2(Zhuet al., 2017; Elhoseinyet al., 2017) 50 30 10 10
NAB(Zhuet al., 2017) 404 324 40 40
FS(Nilsback&Zisserman, 2006) 55 35 10 10

Table 1: Number of Class Labels in Our Meta-Split (both Standard Split and Proposed Split). Within
each meta-split, training, validation and testing class labels are disjoint.

deep neural network (VGG-19) whilst ours generates a set of parameter adaptations to be combined
directly with all existing layers within deep neural network models that effectively fine-tunes the
base model. To make our works comparable, we replaced the TF-IDF feature extractor in PDCNN
with a BERT-based document embedding (specifically, a BERT word embedding followed by max-
pooling) and changed the base model from VGG-19 to ResNet-18. Two best performing variants of
PDCNN (Lei Ba et al., 2015) are reproduced.

Due to the sparsity of prior work that leverages natural language descriptions for zero-shot classifi-
cations in a metadata-efficient way, we also tried to adapt less metadata-efficient methods to func-
tion with stricter metadata-efficiency requirements. Specifically, ZSLPP (Elhoseiny et al., 2017),
GAZSL (Zhu et al., 2017) and CorrectionNetwork (Hu et al., 2019) all utilizes natural language
class descriptions to produce classifiers capable of distinguishing between images belonging to un-
seen categories during training. However, all of them require significantly more metadata: specifi-
cally, parts annotations of each sample image are used to provide extra supervision of the training
procedure. Among these prior methods, GAZSL (Zhu et al., 2017) stands out as the most cited work;
therefore we adapted the code released by its authors to learn from only natural language metadata,
without the help of parts annotations; to distinguish our modified version from the original, we
will refer to our modified version as MEGAZSL (Metadata-Efficient GAZSL). To make our works
comparable, we also updated its natural language processing module from TF-IDF to BERT-based
document embedding and used ResNet-18 as the image feature embedding module. It is worth not-
ing the CorrectionNet(Hu et al., 2019) is orthogonal to our work as it is designed to improve any
existing zero-shot classification task modules, and in its original setup, GAZSL (Zhu et al., 2017)
was used as the main task module, which we do include in our experimental comparison. For all
experiments, hyper-parameters are tuned with the same exact algorithms (random search) and for
the same number of runs (10).

Method CUB-50 AWA2-10 NAB-40 FS-10

SS PS SS PS SS PS SS PS

PDCNNFC 6.1 6.1 12.8 18.4 6.7 7.4 13.1 11.9
PDCNNFC+CONV 7.5 6.5 22.6 17.2 8.9 5.6 7.7 13.6
MEGAZSL 2.9 1.8 14.0 10.4 2.8 3.7 10.3 12.3
N 3(Ours) 17.6 9.5 34.0 37.5 14.1 20.7 16.4 17.6

Table 2: Zero-Shot Classification Accuracy On Various Datasets/Meta-Splits Combinations; our
method is compared with 2 versions of PDCNN (Lei Ba et al., 2015) and MEGAZSL (Zhu et al.,
2017); number of unseen class labels in the test set are recorded next to the name of each dataset.

All experimental results characterized by per-class averaged accuracy are tabulated in Table 2. For
readers wondering how we compare with these methods in their original set up, we have attached
additional comparisons in Appendix. A.2 with prior methods in their original setup; although such
evaluation may inevitably be less rigorous. From Table 2, we can clearly observe that N3 out-
performs all competing methods by a significant margin on all 8 dataset/meta-split combinations.
Noticing the large performance gap between MEGAZSL and the original GAZSL, we performed
additional investigations to pinpoint the cause: we reproduced one of their experiments (on CUB
dataset with SCE meta-split), and replaced their TF-IDF module with BERT document embedding
module. The modified module performed noticeably better (from 10.3% to 11.3%); however, when

7

Under review as a conference paper at ICLR 2020

L2
-n

or
m

0.
0

12
.5

25
.0

37
.5

50
.0

co
nv

1.
w

ei
gh

t
bn

1.
w

ei
gh

t
bn

1.
bi

as
la

ye
r1

.0
.c

on
v1

.w
ei

gh
t

la
ye

r1
.0

.b
n1

.w
ei

gh
t

la
ye

r1
.0

.b
n1

.b
ia

s
la

ye
r1

.0
.c

on
v2

.w
ei

gh
t

la
ye

r1
.0

.b
n2

.w
ei

gh
t

la
ye

r1
.0

.b
n2

.b
ia

s
la

ye
r1

.1
.c

on
v1

.w
ei

gh
t

la
ye

r1
.1

.b
n1

.w
ei

gh
t

la
ye

r1
.1

.b
n1

.b
ia

s
la

ye
r1

.1
.c

on
v2

.w
ei

gh
t

la
ye

r1
.1

.b
n2

.w
ei

gh
t

la
ye

r1
.1

.b
n2

.b
ia

s
la

ye
r2

.0
.c

on
v1

.w
ei

gh
t

la
ye

r2
.0

.b
n1

.w
ei

gh
t

la
ye

r2
.0

.b
n1

.b
ia

s
la

ye
r2

.0
.c

on
v2

.w
ei

gh
t

la
ye

r2
.0

.b
n2

.w
ei

gh
t

la
ye

r2
.0

.b
n2

.b
ia

s
la

ye
r2

.0
.d

ow
ns

am
pl

e.
0.

w
ei

gh
t

la
ye

r2
.0

.d
ow

ns
am

pl
e.

1.
w

ei
gh

t
la

ye
r2

.0
.d

ow
ns

am
pl

e.
1.

bi
as

la
ye

r2
.1

.c
on

v1
.w

ei
gh

t
la

ye
r2

.1
.b

n1
.w

ei
gh

t
la

ye
r2

.1
.b

n1
.b

ia
s

la
ye

r2
.1

.c
on

v2
.w

ei
gh

t
la

ye
r2

.1
.b

n2
.w

ei
gh

t
la

ye
r2

.1
.b

n2
.b

ia
s

la
ye

r3
.0

.c
on

v1
.w

ei
gh

t
la

ye
r3

.0
.b

n1
.w

ei
gh

t
la

ye
r3

.0
.b

n1
.b

ia
s

la
ye

r3
.0

.c
on

v2
.w

ei
gh

t
la

ye
r3

.0
.b

n2
.w

ei
gh

t
la

ye
r3

.0
.b

n2
.b

ia
s

la
ye

r3
.0

.d
ow

ns
am

pl
e.

0.
w

ei
gh

t
la

ye
r3

.0
.d

ow
ns

am
pl

e.
1.

w
ei

gh
t

la
ye

r3
.0

.d
ow

ns
am

pl
e.

1.
bi

as
la

ye
r3

.1
.c

on
v1

.w
ei

gh
t

la
ye

r3
.1

.b
n1

.w
ei

gh
t

la
ye

r3
.1

.b
n1

.b
ia

s
la

ye
r3

.1
.c

on
v2

.w
ei

gh
t

la
ye

r3
.1

.b
n2

.w
ei

gh
t

la
ye

r3
.1

.b
n2

.b
ia

s
la

ye
r4

.0
.c

on
v1

.w
ei

gh
t

la
ye

r4
.0

.b
n1

.w
ei

gh
t

la
ye

r4
.0

.b
n1

.b
ia

s
la

ye
r4

.0
.c

on
v2

.w
ei

gh
t

la
ye

r4
.0

.b
n2

.w
ei

gh
t

la
ye

r4
.0

.b
n2

.b
ia

s
la

ye
r4

.0
.d

ow
ns

am
pl

e.
0.

w
ei

gh
t

la
ye

r4
.0

.d
ow

ns
am

pl
e.

1.
w

ei
gh

t
la

ye
r4

.0
.d

ow
ns

am
pl

e.
1.

bi
as

la
ye

r4
.1

.c
on

v1
.w

ei
gh

t
la

ye
r4

.1
.b

n1
.w

ei
gh

t
la

ye
r4

.1
.b

n1
.b

ia
s

la
ye

r4
.1

.c
on

v2
.w

ei
gh

t
la

ye
r4

.1
.b

n2
.w

ei
gh

t
la

ye
r4

.1
.b

n2
.b

ia
s

fc
.w

ei
gh

t
fc

.b
ia

s

L2-norm of Param Adaptations L2-norm of Pre-trained Params

Figure 3: Composition of Fine-Tuned ResNet18 Parameters Produced by N3, Measured by L2 Norm
(the image enters through the leftmost layer and the prediction exits from the rightmost layer)

we replaced its image feature embedding module, which is trained with the help of per-sample parts
annotations, the performance dropped significantly (from 11.3% to 3.3%), confirming our conjecture
that such methods cannot be easily adapted to work under strict metadata-efficiency constraint.

4.4 QUANTITATIVE AND QUALITATIVE ANALYSIS

We will provide detailed analysis into the inner workings of N3. To begin with, it is instrumental
to understand the extent of parameter adaptations N3 has applied to the base model to quantify
the role of N3 in the fine-tuning process. To this end, we visualized the composition of parameters
of each layer of the fine-tuned model trained on CUB Standard Split. Recall from Equation 4 that
each layer’s parameter tensor is the sum of two tensors: the pre-trained base model parameters and
the parameter adaptations generated by N3 meta-model; we quantified the magnitude contributed
by each tensor by calculating their respective L2-norm. Such quantification is performed on every
layer of the fine-tuned model and the result is visualized in Figure. 3. It demonstrates that the extent
of parameter adaptations is significant in many layers and increases towards the later layers of the
model; such phenomenon is likely due to the fact that deep CNNs capture generic features in earlier
layers and task-specific ones in later layers. Therefore, fine-tuning base models to tackle new tasks
naturally demands higher magnitude of parameter adaptations for deeper layers.

Seeking to understand how parameters from different types of layers are adapted differently,
we also plotted the per-layer average magnitude (measured in L2 norm) of parameter adaptations
grouped by layer types in Figure. 5(a). It can be observed that parameter adaptations are pre-
dominantly applied to convolutional and fully-connected layers, while batch normalization layer
parameters remain largely unchanged; this is likely due to the fact that former types of layers are
more likely to be correlated with the semantics of task descriptions whilst batch normalization layer
parameters are unlikely to be induced by task semantics.

To understand how parameter adaptations affect task-specific feature extraction process of base
models, we visualized the distribution of L2-norms of penultimate layer activation vectors obtained
on the test split of CUB dataset, before and after parameter adaptation is applied in Figure. 5(b).
It can be observed that the magnitude of base model’s penultimate layer activation vector tends to
either become more prominent or pushed further towards zero. It is likely that parameter adaptations
have made feature extraction process more task-specific, so that task-related features are extracted
with higher magnitude while less pertinent features are more actively discarded.

8

Under review as a conference paper at ICLR 2020

Windflowers grow underground
from tubers or rhizomes to form
small colonies. Depending on
the variety, the flower stalks
grow from six inches tall to
nearly six feet. Flower color
varies widely, but the blossoms
are generally two to three
inches in diameter with thin,
delicate petals. The deeply
divided foliage is dark green
and clustered near the base of
the plants.

Figure 4: Textual Descriptions for ”Wind-
flowers”

Furthermore, even though N3 outperformed prior
methods with significant margin; we are neverthe-
less interested in understanding why N3 performs
less desirably on specific dataset (e.g., Flowers-
Species); to this end, we plotted the normalized con-
fusion matrix computed on the test set in Figure. 5
(c). Interestingly there appear to be vertical clus-
ters of points of confusion, which implies that many
samples are falsely classified to be a a select few cat-
egories. We therefore examined the textual descrip-
tions of such labels, and that of the worst offender
(windflower) is shown below in Figure 4. The tex-
tual descriptions indeed does not capture the distin-
guishing features of windflowers and therefore con-
fused N3 to fine-tune base models such that many
samples are mis-classified as windflowers. This also
lead us to conclude that the quality of metadata plays a critical role dictating the performance of the
fine-tuned model; and a single poorly constructed metadata entry can have disproportionate effect
on fine-tuned model accuracy; nonetheless, such problem is not unique to our approach but rather
a consequence of an efficiency-robustness trade-off inherent in our problem setup. Moreover, our
natural language based metadata makes such problem exceedingly easy to diagnose. On the other
hand, we also found that the metadata procured from online sources vary in quality and tend to fo-
cus on facets that are most appealing to human readers; such aspects of visual descriptions tend to
constitute only necessary, but not sufficient conditions for classification decisions. To conclude, we
believe that N3’s performance can be increased further with higher quality task descriptions.

2

3

conv.weight

fc.weight

fc.bias
bn.weight

bn.bias

0.0

0.2

0.4

0.6

L2

 N
or

m

0 20 40 60
L2-norm of Penultimate
Layer Activation Vector

0.00

0.05

0.10

0.15

0.20

De
ns

ity

Penultimate Activation
Distribution Before
Parameter Adaptations
Penultimate Activation
Distribution After
Parameter Adaptations

Figure 5: Upper Left: (a) Per-Layer Average L2 Norm of Parameter Adaptations Grouped By Layer
Types. Lower Left: (b) Penultimate Layer Activation Vector Magnitude Distribution Before and
After N3 Fine-Tuning. Right: (c) Normalized Confusion Matrix for Flowers-Species.

4.5 IMPORTANCE OF PRETRAINED MODEL

We can interpret the parameter adaptation process of N3 as a process of mixing the pre-trained base
model parameters with a set of generated model parameter deltas, using a trainable mixing ratio.

9

Under review as a conference paper at ICLR 2020

For the purpose of studying the importance of pre-trained model parameters, we experiment with a
slightly modified version of Equation 4:

W = γ ·Wpre + µ ·∆W

Where γ is a fixed scalar weight given to the pre-trained model, µ is still the trainable scaling
factor for the Parameter Adaptation Module. The choice of γ and the initial value of µ affects how
much influence the pre-trained model have. In our main experiments, we have fixed γ to be 1 and

γ initial µ Acc@1

0.999 0.001 16.2 %
0.99 0.01 18.5 %
0.9 0.1 16.2 %
0.5 0.5 6.2 %
0.1 0.9 2.1 %
0.01 0.99 2.3 %

Table 3: Comparison of different γ and initial
µ values. The pre-trained model is completely
ignored in the case where γ = 0.

Embedding Method Acc @ 1

ELMo (paragraph) 4.1 %
ELMo (sentence) 5.0 %
GloVe 8.9 %
BERT 17.6 %

Table 4: Comparison of different embedding
methods for N3 in zero-shot classification task.

initialized µ to be 1−3, such choice of value initialization proves to work well, yet it remains unclear
to what extent the superior performance of N3 depends these two hyperparameters. To answer this
question, we decide to vary γ and µ; In order to keep the magnitude of parameters relatively stable,
we always set the initial value of µ to be 1 − γ across different settings here. We trained N3 to
produce a 50-class classification model with varying γ and the resultant zero-shot classification
performance are shown in Table 3. Such ablation experiment demonstrates that setting a small
initial µ is crucial for performance, yet it is not the smaller the better, re-affirming the crucial role of
parameter adaptation in helping the base model achieve better performance.

4.6 IMPACT OF DIFFERENT WORD EMBEDDINGS

To understand how much of N3’s efficacy can be attributed to the pre-trained BERT module, and
whether N3 can be generalized to be used with pre-trained word embedding modules other than
BERT, we compared the performances using different word embeddings. Concretely, we experi-
mented with BERT (Devlin et al., 2018), ELMo (Peters et al., 2018) and GloVe (Pennington et al.,
2014) embeddings. Results are shown in Table 4. While BERT prevails as expected, ELMo seems
to under-perform below GloVe. We hypothesize that ELMo might have been impacted by unexpect-
edly long sequences (here each description is a short paragraph that can contain up to 512 tokens),
especially that LSTM-based models like ELMo are known to be worse at capturing long-range
dependencies than self-attention based models such as BERT. To further investigate, we trained a
variant with ELMo to perform only sentence level embedding and aggregate these sentence embed-
dings together to form the paragraph-level embeddings. As expected, the performance increases
noticeably, but the resulting performance is still not on par with other methods. As for GloVe, since
it is used together with Semantic Encoding Module inside N3, they act together like a shallower
version of BERT, and is also capable of achieving decent performance.

5 CONCLUSION

In this paper, we have demonstrated that small amount of unstructured natural language descriptions
for class objects can provide enough information to fine-tune an entire pretrained neural network to
perform classification task on class labels unseen during training. We have achieved state-of-the-art
performance for natural language guided zero-shot image classification tasks on 4 public datasets
with practical metadata requirements. In addition, we presented in-depth analysis and extensive
ablation studies on various aspects of the model functioning mechanism and architecture design,
showing the necessity of our design contribution in achieving good results.

10

Under review as a conference paper at ICLR 2020

REFERENCES

albanie/convnet-burden :memory consumption and flop count estimates for convnets. https:
//github.com/albanie/convnet-burden, 2019. URL https://github.com/
albanie/convnet-burden.

torchvision.models. https://pytorch.org/docs/stable/torchvision/models.
html, 2019. URL https://pytorch.org/docs/stable/torchvision/models.
html.

Zeynep Akata, Scott Reed, Daniel Walter, Honglak Lee, and Bernt Schiele. Evaluation of output
embeddings for fine-grained image classification. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2927–2936, 2015.

Zeynep Akata, Florent Perronnin, Zaid Harchaoui, and Cordelia Schmid. Label-embedding for
image classification. IEEE transactions on pattern analysis and machine intelligence, 38(7):
1425–1438, 2016.

Maruan Al-Shedivat, Avinava Dubey, and Eric P. Xing. Contextual explanation networks. CoRR,
abs/1705.10301, 2017.

Soravit Changpinyo, Wei-Lun Chao, Boqing Gong, and Fei Sha. Synthesized classifiers for
zero-shot learning. CoRR, abs/1603.00550, 2016. URL http://arxiv.org/abs/1603.
00550.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Kun Duan, Devi Parikh, David Crandall, and Kristen Grauman. Discovering localized attributes for
fine-grained recognition. In 2012 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3474–3481. IEEE, 2012.

Mohamed Elhoseiny, Babak Saleh, and Ahmed Elgammal. Write a classifier: Zero-shot learning
using purely textual descriptions. In Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 2584–2591, 2013.

Mohamed Elhoseiny, Ahmed M. Elgammal, and Babak Saleh. Write a classifier: Predicting visual
classifiers from unstructured text descriptions. CoRR, abs/1601.00025, 2016. URL http://
arxiv.org/abs/1601.00025.

Mohamed Elhoseiny, Yizhe Zhu, Han Zhang, and Ahmed M. Elgammal. Link the head to the
”beak”: Zero shot learning from noisy text description at part precision. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,
pp. 6288–6297, 2017. doi: 10.1109/CVPR.2017.666. URL https://doi.org/10.1109/
CVPR.2017.666.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. CoRR, abs/1609.09106, 2016.

R. Lily Hu, Caiming Xiong, and Richard Socher. Correction networks: Meta-learning for zero-shot
learning, 2019. URL https://openreview.net/forum?id=r1xurn0cKQ.

P. Kankuekul, A. Kawewong, S. Tangruamsub, and O. Hasegawa. Online incremental attribute-
based zero-shot learning. In 2012 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3657–3664, June 2012. doi: 10.1109/CVPR.2012.6248112.

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-Fei. Novel dataset for fine-
grained image categorization. In First Workshop on Fine-Grained Visual Categorization, IEEE
Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, June 2011.

Elyor Kodirov, Tao Xiang, and Shaogang Gong. Semantic autoencoder for zero-shot learning. In
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

11

https://github.com/albanie/convnet-burden
https://github.com/albanie/convnet-burden
https://github.com/albanie/convnet-burden
https://github.com/albanie/convnet-burden
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
http://arxiv.org/abs/1603.00550
http://arxiv.org/abs/1603.00550
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1601.00025
http://arxiv.org/abs/1601.00025
https://doi.org/10.1109/CVPR.2017.666
https://doi.org/10.1109/CVPR.2017.666
https://openreview.net/forum?id=r1xurn0cKQ

Under review as a conference paper at ICLR 2020

B. Kulis, K. Saenko, and T. Darrell. What you saw is not what you get: Domain adaptation using
asymmetric kernel transforms. In CVPR 2011, pp. 1785–1792, June 2011. doi: 10.1109/CVPR.
2011.5995702.

C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-based classification for zero-shot visual
object categorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(3):
453–465, March 2014. doi: 10.1109/TPAMI.2013.140.

Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. Learning to detect unseen object
classes by between-class attribute transfer. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 951–958. IEEE, 2009.

Hugo Larochelle, Dumitru Erhan, and Yoshua Bengio. Zero-data learning of new tasks. In AAAI,
volume 1, pp. 3, 2008.

Jimmy Lei Ba, Kevin Swersky, Sanja Fidler, et al. Predicting deep zero-shot convolutional neural
networks using textual descriptions. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 4247–4255, 2015.

M-E. Nilsback and A. Zisserman. A visual vocabulary for flower classification. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, volume 2, pp. 1447–1454,
2006.

Mark Palatucci, Dean Pomerleau, Geoffrey E Hinton, and Tom M Mitchell. Zero-shot learning with
semantic output codes. In Advances in neural information processing systems, pp. 1410–1418,
2009.

Devi Parikh and Kristen Grauman. Relative attributes. In Proceedings of the 2011 International
Conference on Computer Vision, ICCV ’11, pp. 503–510, Washington, DC, USA, 2011. IEEE
Computer Society. ISBN 978-1-4577-1101-5. doi: 10.1109/ICCV.2011.6126281. URL http:
//dx.doi.org/10.1109/ICCV.2011.6126281.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543,
2014. URL http://www.aclweb.org/anthology/D14-1162.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. Deep contextualized word representations. CoRR, abs/1802.05365, 2018.
URL http://arxiv.org/abs/1802.05365.

Emmanouil Antonios Platanios, Mrinmaya Sachan, Graham Neubig, and Tom Mitchell. Contex-
tual parameter generation for universal neural machine translation. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pp. 425–435. Association for
Computational Linguistics, 2018. URL http://aclweb.org/anthology/D18-1039.

Ruizhi Qiao, Lingqiao Liu, Chunhua Shen, and Anton van den Hengel. Less is more: zero-shot
learning from online textual documents with noise suppression. CoRR, abs/1604.01146, 2016.
URL http://arxiv.org/abs/1604.01146.

Scott Reed, Zeynep Akata, Honglak Lee, and Bernt Schiele. Learning deep representations of fine-
grained visual descriptions. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

Bernardino Romera-Paredes and Philip H. S. Torr. An embarrassingly simple approach to zero-
shot learning. In Proceedings of the 32Nd International Conference on International Conference
on Machine Learning - Volume 37, ICML’15, pp. 2152–2161. JMLR.org, 2015. URL http:
//dl.acm.org/citation.cfm?id=3045118.3045347.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

12

http://dx.doi.org/10.1109/ICCV.2011.6126281
http://dx.doi.org/10.1109/ICCV.2011.6126281
http://www.aclweb.org/anthology/D14-1162
http://arxiv.org/abs/1802.05365
http://aclweb.org/anthology/D18-1039
http://arxiv.org/abs/1604.01146
http://dl.acm.org/citation.cfm?id=3045118.3045347
http://dl.acm.org/citation.cfm?id=3045118.3045347

Under review as a conference paper at ICLR 2020

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pp. 6000–6010, 2017.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011
Dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-UCSD
Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010.

Yongqin Xian, Zeynep Akata, Gaurav Sharma, Quynh Nguyen, Matthias Hein, and Bernt Schiele.
Latent embeddings for zero-shot classification. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 69–77, 2016.

Yongqin Xian, Bernt Schiele, and Zeynep Akata. Zero-shot learning - the good, the bad and the
ugly. CoRR, abs/1703.04394, 2017. URL http://arxiv.org/abs/1703.04394.

Z. Zhang and V. Saligrama. Zero-shot learning via joint latent similarity embedding. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6034–6042, June 2016.
doi: 10.1109/CVPR.2016.649.

Yizhe Zhu, Mohamed Elhoseiny, Bingchen Liu, and Ahmed M. Elgammal. Imagine it for me:
Generative adversarial approach for zero-shot learning from noisy texts. CoRR, abs/1712.01381,
2017. URL http://arxiv.org/abs/1712.01381.

A APPENDIX

A.1 IMPACT OF DIFFERENT BASE MODEL ARCHITECTURES

In this section, we provide an additional ablation experiment, we will be using the Standard Split
on CUB dataset. With the superior results of N3 obtained on the above datasets using ResNet-18 as
the base architecture, it is reasonable to wonder whether the power of N3 can extend to other base
architectures and whether N3 can work effectively on other base model architectures. To answer this
question, we trained N3 with 2 additional base model architecture: GoogleNet and SqueezeNet. We
compared them in terms of zero-shot classification accuracy. Results are tabulated in Table 5.

Model Arch Acc @ 1 ImageNet Test Acc. (tor, 2019) Param Size (MB) (con, 2019)

GoogleNet 21.3 % 69.78 % 51
ResNet18 17.6 % 69.76 % 45
SqueezeNetV1.1 17.7 % 58.19 % 5

Table 5: N3 Zero-Shot Classification Accuracy on CUB2011 with Different Base Model Architec-
tures

Based on the results shown in Table. 5, we were surprised to find out that SqueezeNet performs
as well as ResNet as N3’s base model and GoogleNet can even out-perform ResNet-18 as a better
base model. One explaination for the superior performance of GoogleNet is that we have noted in
Section. 4.4, parameters or batch normalizations are hardly fine-tuned and GoogleNet in fact does
not make use of Batch Normalization, thus avoiding the potential performance degradations caused
by lack of fine-tuning on Batch Normalization layers.

A.2 COMPARISON WITH PRIOR WORK IN THEIR OWN SETUP

In our main experimental evaluation section, we performed extensive experiments comparing our
methods with prior arts using newly established rigorous zero-shot learning evaluation guide-
lines (Xian et al., 2017). But to adhere to the stricter guidelines, and to compare fairly with prior arts,
we have to reproduce the results of prior methods ourselves; one may wonder how do we compared
with each of these prior methods in their own experimental setup, and more importantly, how do
we compare with their originally published performance numbers? In this section we seek to assure

13

http://arxiv.org/abs/1703.04394
http://arxiv.org/abs/1712.01381

Under review as a conference paper at ICLR 2020

readers that our method continues to perform noticeably better than prior methods in their original
experimental setup. To begin with, we compare the zero-shot classification performance of N3 with
prior work which also generates neural network parameters directly (Lei Ba et al., 2015).

To make our results comparable, we adopted the meta-training/testing splits from (Lei Ba et al.,
2015), where in CUB-2010/CUB-2011, the 200 classes are randomly split into 160 ”seen” classes
for training and validation (within which 120 classes are randomly selected for training, and 40 for
validation) and 40 ”unseen” classes for testing, and a 40-class classification model is generated by
N3. Within the seen classes, 20% of the dataset is are excluded since (Lei Ba et al., 2015) used them
for testing to report classification results on seen classes, which is irrelevant to our comparisons.
Meta models are trained using the 160 seen classes only. Similarly, in Oxford Flowers, the 102
classes of flowers are split into 82 ”seen” classes and 20 ”unseen” classes randomly. We used a
ResNet-18 pre-trained on ImageNet as our base model. Note that while we didn’t adopt the larger
VGG-19 base model as previous work, later we will show that we are still able to outperform them
significantly with the lesser ResNet-18 architecture. During test time, N3 generates neural networks
based on test set class descriptions and these generated networks are used for zero-shot evaluation.

Dataset Method A.P. Acc.@1 Acc.@5 Base Model

CUB-2010 DA (VGG) (Kulis et al., 2011) 0.037 - - VGG-19
PDCNN(fc) (Lei Ba et al., 2015) 0.1 12.0% 42.8% VGG-19
PDCNN(conv) (Lei Ba et al., 2015) 0.043 - - VGG-19
PDCNN(fc+conv) (Lei Ba et al., 2015) 0.08 - - VGG-19
Ours(ResNet18) 0.31 33.9% 77.0% ResNet-18

CUB-2011 PDCNN(fc) (Lei Ba et al., 2015) 0.11 - - VGG-19
PDCNN(conv) (Lei Ba et al., 2015) 0.085 - - VGG-19
PDCNN(fc+conv) (Lei Ba et al., 2015) 0.13 - - VGG-19
Ours(ResNet18) 0.27 32.6% 68.6% ResNet-18

Flowers PDCNN(fc) (Lei Ba et al., 2015) 0.07 - - VGG-19
PDCNN(conv) (Lei Ba et al., 2015) 0.054 - - VGG-19
PDCNN(fc+conv) (Lei Ba et al., 2015) 0.067 - - VGG-19
Ours(ResNet18) 0.16 10.4% 39.7% ResNet-18

Table 6: N3 Zero-Shot Classification Performance on CUB-2010, CUB-2011, Oxford Flower

As shown in Table 6, N3 generated ResNet18 out-performs prior arts by a significant margin both in
terms of average precision and classification accuracy on both CUB and Oxford Flower dataset.

Method CUB Acc.@1 NAB Acc.@1

WAC-Linear (Elhoseiny et al., 2016) 5 % -
WAC-Kernel (Elhoseiny et al., 2016) 7.7 % 6.0 %
ESZSL (Romera-Paredes & Torr, 2015) 7.4 % 6.3 %
ZSLNS (Qiao et al., 2016) 7.3 % 6.8 %
SynCfast (Changpinyo et al., 2016) 8.6 % 3.8
SynCOVO (Changpinyo et al., 2016) 5.9 % -
ZSLPP (Elhoseiny et al., 2017) 9.7 % 8.1 %
GAZSL (Zhu et al., 2017) 10.3 % 8.6 %
CorrectionNetwork (Hu et al., 2019) 10.0 % 9.5 %
Ours(ResNet18) 11.9 % 11.1 %

Figure 6: Zero-Shot Classification Performance on CUB-2011/NAB with SCE-split.

We then move on to evaluate the performance of N3 on more rigorous and difficult zero-shot meta-
splits on the CUB-2011 and NAB dataset. This split is called SCE (super category exclusive) split,
which ensures that the parent categories of unseen classes are exclusive to those of the seen classes.
Such split is used in many prior works (Zhu et al., 2017; Elhoseiny et al., 2017; Changpinyo et al.,
2016) to evaluate their proposed method. We evaluated N3 using such meta-split and results are
shown in Table 6. As explained in the experimental evaluation section of our paper, later prior

14

Under review as a conference paper at ICLR 2020

works (Zhu et al., 2017; Elhoseiny et al., 2017) uses significantly more metadata (e.g., per sample
parts annotation) than N3 and yet N3 is able to exceed their classification accuracy by using a
generic ResNet-18 base model.

A.3 DECODER SETUP

In N3, we used a slightly different decoder setup and in this supplemental material, we will explain
in detail how we deviate from the standard decoder setup and provide motivations for such design
choice.

Concretely, the N3’s decoder is not auto-regressive. Usually, transformer encodes a sequence of
inputs X = (x1, · · · , xn) to a latent representation of the input sequence Z = (z1, · · · , zn), where
n is the input sequence length. The latent representation is then decoded to Y = (y1, · · · , ym) one
symbol at a time, where m is the output sequence length. This is because usually, when transformer
decoder generates yk, attention mechanism is applied to y1, · · · , yk−1 as well. Since in tasks like
language translation, output symbols correlate closely with one another to form a coherent sentence,
this auto-regressive feature of transformer decoder is very natural to be employed.

In the context of N3, however, we believe simultaneous decoding without auto-regressive correlation
to be more suitable. Consider an example for N3 to generate a convolutional layer parameter of shape
K×C×kH×kW , whereK is the output channel size, C is the input channel size and kH , kW are
filter height and width, respectively. We generate such parameter as a sequence of flattened filters,
with sequence length being K and hidden dimension size (which is, in this case, also the flattened
filter size) being C × kH × kW ; we do not expect the k-th filter to correlate too much with the
filters generated before it, since it is fine for them to be extracting unrelated semantic features from
input images. Therefore we do not believe the decoder needs to be auto-regressive when generating
parameters in N3; we thus generate all K filters at once. Moreover, generating K filters at once,
instead of one at a time can result in some training and inference speedup. Therefore in N3, we do
not use decoder in an auto-regressive way.

15

	Introduction
	Related work
	Zero-shot Learning
	Dynamic Parameter Generation

	Natural Language Guided Parameter Adaptation
	Semantic Encoding Module
	Parameter Adaptation Module
	Training Methodology

	Experimental Evaluation and Discussion
	Datasets
	Evaluation Protocol
	Comparison with Prior work
	Quantitative and Qualitative Analysis
	Importance of pretrained Model
	Impact of Different Word Embeddings

	Conclusion
	Appendix
	Impact of Different Base Model Architectures
	Comparison with Prior Work in Their Own Setup
	Decoder Setup

