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Abstract

Due to physical phenomenon like refraction, absorption,
and scattering of light by suspended particles in water, raw
underwater images have low contrast, blurred details, and
color distortion. Such degradation of images interferes with
computer vision tasks like segmentation, object detection
and classification. Thus, underwater image enhancement
is carried out for tackling such phenomenons. In the realm
of deep learning models majorly GANs and CNNs are used
for the task. Through our study we work on drastically im-
proving a residual network (UResnet) [12l] which works at
power with state-of-art GANSs for image enhancement. Our
proposed architecture works towards improving the quanti-
tative image enhancement metric while reducing the model
complexity and computation requirements. The same is car-
ried out by experimenting with loss functions generally uti-
lized for image enhancement tasks like super-resolution re-
construction and improving the residual network architec-
ture using novel skip connections.

1. Introduction

Underwater images hold great importance for oceano-
graphic tasks, ocean research and remotely operated
underwater vehicles. Such analysis and exploration of the
marine environments requires clear underwater images.
Naturally obtained underwater images are degraded due
to light absorption and scattering due to particles in the
water. Light travelling in underwater scenario is composed
of direct light, forward scattering light and backscattering
light. Varying degrees of capture of these lights results
in a dominating bluish or greenish tone to the underwater
images.

These unclear images hinders the performance of un-
derwater scene understanding and computer vision
applications such as aquatic robot inspection and marine
environmental surveillance. Thus, it is necessary to develop
effective solutions to improve visibility, contrast, and color
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properties of underwater images for superior visual quality
and appeal. This task of improving the underwater image
encompasses tasks of image enhancement, image restora-
tion and supplementary information specific methods. In
our study we are focusing on the image enhancement task.

Underwater image enhancement task can promote re-
liability of vision tasks by improving the image contrast
and reducing the degradation caused by scattering. Thus, to
address these challenges we began by reproducing results
from other deep learning tasks fro image enhancement
based on GANSs [8]], CNNs [1]] and Residual Networks [12].
Our study involved improving a base residual network
UResNet [12]] by improving its model architecture and the
loss function utilized for training.

2. Literature Survey
2.1. Underwater Image Enhancement Method

A variety of methods have been proposed for image
enhancement task. These can be broadly classified into
three groups : Non-physical model, physical model-based
method and deep learning methods.

Non-physical Model : Non-physical models deal with the
improvement of visual effects by adjusting image pixel
values rather than establishing a mathematical equation
or physical model to simulate the image optical imaging
characteristics. The literature has widely explained models
such as Histogram equalization used for contrast enhance-
ment, white balance used for color correction and classical
Retinex image enhancement methods based on human
vision brightness. The non-physical models are sufficient
for in-air image processing but end up ignoring properties
specific to underwater images. Thus, these methods can
easily lead to color deviation wherein the ehanced images
looks over or under saturated in disparate regions. They are
also difficult to generalize for different scenarios and their



robustness is poor.

Physical Model Physical models on other hand
models the degradation process of the image by estimating
the parameters of the model. Because particle scattering in
water is similar to scattering due to aerosols in atmosphere
image dehazing algorithms majorly form this group. These
models include multiple dehazing algorithms like dark
channel algorithm [6l], the non-local algorithm [3], the
Fattal image dehazing algorithm [4] and other image
enhancement algorithms based on atmosphere scattering
model.  Usually underwater images have more color
deviation and are more blurred than in-air images. Thus,
these dehazing algorithms many a times fall insufficient for
image enhancement tasks.

Deep Learning Methods : Most deep learning meth-
ods for underwater image enhancement are weakly
supervised learning methods solely focusing on color
correction.  These majorly revolve around generative
adversarial networks, convolutional neural networks or
residual networks. We have majorly reviewed two of the
GANSs and residual networks in detail whose components
helped us improve our model.

1. FUnIE-GAN : FUnlE-GAN [8]] is used to deblur the
images which formulates the problem as an image-
to-image translation problem by assuming that there
exists a non-linear mapping between the distorted
(input) and enhanced (output) images. Further, a
conditional GAN-based model learns this mapping by
adversarial training on a large-scale dataset.
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Figure 1. (a) Generator: five encoder-decoder pairs with mirrored
skip-connections.[8]
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Figure 2. (b) Discriminator: a Markovian PatchGAN with four
layers and a patch-size of 16 x 16.
Figure 3. Network architecture of FUnIE-GAN

Model Architecture [8]

(a) The generator network in Fig[l] is an encoder-
decoder network (el-e5,d1-d5) with connections
between the mirrored layers, i.e., between (el,
ds), (e2, d4), (e3, d2), and (e4, d4). The outputs
of each encoders are concatenated to the respec-
tive mirrored decoders.

(b) The input to the network is set to 256 X 256 X 3
and the encoder (el-e5) learns 256 feature-maps
of size 8 X 8. The decoder (d1-d5) utilizes these
feature-maps and inputs from the skip connec-
tions to learn and generate a 256 X 256 X 3 en-
hanced image as output. Additionally, 2D con-
volutions with 4 X 4 filters are applied at each
layer, which is then followed by a Leaky-ReLLU
non-linearity and Batch Normalization (BN).

(c) For the discriminator in Fig[2] a Markovian
Patch-GAN architecture with a patch size of 16 X
16 is employed that only discriminates based on
the patch-level information. This assumption is
important to effectively capture high-frequency
features such as local texture and style. Four con-
volutional layers are used to transform a 256 X
256 X 6 input (real and generated image) to a
16 X 16 X 1 output that represents the averaged
validity responses of the discriminator. At each
layer, 5 X 5 convolutional filters are used with a
stride size of 2 followed by the nonlinearity and
BN.

The major challenges of this network are that it incor-
rectly models sunlight and many a times amplifies the
noise in the background. It also leads to either over-
saturated or under-saturated images thus severely de-
grading the images. We have tried tackling this short-
coming of this network using a modified loss function
and model improving the model architecture which
would be explained further.

2. UResnet [12]: As majority of the methods based on
GANSs solely focus on color correction we studied a
non-GAN based residual network UResnet which is a
more comprehensive supervised learning method for
underwater image enhancement.
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Figure 4. Network Architecture of UResnet with Edge Loss

Model Architecture [12]

(a) UResnet is a residual model [7] composed of



ResBlocks. It is composed of three sections : a
head, body and tail.

(b) A long distance skip connection is included from
head section outputs to the body section outputs.
This connection adds feature information of in-
put layer to output thus constraining the Res-
Block modules to learn the difference between
label images and input images.

(c) Each ResBlock is made of a sequence of Conv
- Batch Norm - ReLLU - Convolutional - Batch
Norm layer.

(d) These blocks add the input of a particular layer
to the output of the next layer. Thus establishing
the skip connections helping the network to fully
transfer information from the previous layer to
the next layer.

(e) 16 such blocks are stacked together to ensure a
deep network. As per the paper the network is
majorly motivated from super-resolution recon-
struction models EDSR [[11]] and SRResnet [10].

(f) The network uses a 3 x 3 convolution with stride
of 1 pixel and zero - padding of 1 pixel to main-
tain shape of feature maps. This makes it eas-
ier for the network to obtain inputs with arbitary
shapes.

(g) The paper also introduces a multi-term loss func-
tion called the Edge difference loss above the
standard MSE loss. The EDL loss also forms the
bases of one of the experiments in our proposed
network.

Though very powerful the UResnet required a large
amount of compute time and resources. In our study
we have tried simplifying the same using a smaller net-
work to reduce computation efforts while maintaining
the performance. Also, due to the depth the network
faced overfitting and saturation towards the later layer.
Though relatively reduced due to the presence of resid-
ual blocks we tried further improving this network us-
ing a different multi-term loss function and a raw im-
age based residual connection.

2.2. Underwater Image Quality Evaluation

We have briefly summarized the evaluation metric
present in literature for evaluating image enhancement
techniques. A more mathematical and detailed explanation
of Full- reference Metric used for our study is provided in
the approach section.

Full-reference Metric
For experiments with having ground truth image along with
the unclear image mathematical metric like Means squared

error (MSE), PSNR and SSIM [13]] are used. These metrics
work well for images which have been transformed using
models to obtain the unclear images or wherein simulated
images are used as unclear images.

Non-reference Metric Majority of the underwater
images do not always have a clear or unclear image for
calculation of the full-reference metric as it is challenging
to obtain large amount of paired data. Thus, non-reference
metric like image entropy, visible edges [5] and dynamic
range independent image quality assessment [2]] could be
utilized.

3. Approach

Based on the literature survey we aimed at tackling the
computational efficiency of the UResnet architecture along
with trying to improve the vanishing gradient problem us-
ing an improved loss function and network architecture. A
more detailed reasoning of the architecture used and the
modifications carried out to the previous UResnet model are
presented in this section.
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Figure 5. Modified UResnet Architecture with modifiec ResBlock
and VGG Loss

3.1. Model Architecture

Following is a more granular explanation of our model
demonstrated in Fig. 5]

1. The architecture is a residual model composed of Res-
Blocks. It is composed of three sections : a head, body
and tail.

2. ResBlock : Each ResBlock is made of a sequence of
Conv - Batch Norm - Drop out - ReLU - Conv - Batch
Norm - Drop Out - ReLU - Conv layer. The network
uses a 3 x 3 convolution with stride of 1 pixel and zero
- padding of 1 pixel to maintain shape of feature maps.
This makes it easier for the network to obtain inputs
with arbitary shapes. Unlike the other conv layers the



last conv layer in the ResBlock shrinks the number of
channels from 64 to 61 to ease the concatenation of
input image at the end of the ResBlock.

3. Skip Connection : Further, skip connections concate-
nating the input image at the end of each ResBlock is
setup. These connections add feature information of
input layer to the output and each residual block thus
constraining the ResBlock modules to learn the differ-
ence between label images and input images.

4. Only 5 such modified ResBlocks are stacked together
to ensure a deep enough network as well as ensuring
requirement of lower compute for our model.

5. The multi-term loss function used in UResnet is re-
placed by a combination of standard MSE loss and
perceptual loss. A more detailed account of perceptual
loss has been covered in

3.1.1 Model Improvement

Post multiple experiments with the base architecture of
UResnet following are the novel improvements incorpo-
rated into the model:

1. Modified ResBlock and skip connection : Instead
of adding the first convoluted layer to the output and
just setting up connections to let information flow from
previous ResBlock to the next, we have setup skip
connections to utilize the Raw input image. Also, in-
stead of adding the Raw image at the end of each Res-
Block layer it was concatenated to the input layer of
each ResBlock. i.e. a 61 channel output from Res-
Block was concatenated with the 3 channel Raw im-
age to form the 64 channel output being added to the
next ResBlock. In scenario of encountering vanishing
gradient issue such a skip connection would impose
larger weight on the channels associated with raw in-
put image inplace of the channels outputed from the
ResBlock. Thus, ensuring a learning from each block
along with fully transfering information from the base
image as well.

2. Reduced layers : We reduced the number of Res-
Blocks used by UResnet from 16 to 5. The proposed
stacking of convolutional layers with the input data re-
duces the need for a very deep network and this prop-
erty of stacking layers can be attributed to the superior
performance of our proposed system even with a larg-
erly smaller network.

3. Dropout : Although not intentionally very deep the
network could still encounter overfitting due to the
large number of parameters trained thus Drop out lay-
ers were introduced in the ResBlocks post the Batch
Normalization layers.

3.1.2 Loss Metric Improvement

MSE and L1-loss function used by genreal image transla-
tional models provide per pixel difference loss functions.
Thus, even though using these may improve the PSNR or
SSMI values (i.e. quantitative evaluation metric) the gener-
ated images do not provide good visual effects. The MSE
loss just averages differences at pixel level and fails to incor-
porate higher-level differences such as overall structure. To
tackle this problem we experimented with two loss metric
Edge difference loss proposed in the base paper of UResnet
[12] and perceptual loss which is a loss metric very com-
monly used for style transfer or super-resolution tasks.

1. Edge Difference Loss : EDL loss was introduced to
account for the information loss with regard to image
edge information. The paper [12] introduced the same
to penalize the models with EDL, so that the details of
generated images are promoted to a higher level.

To calculate the edge loss, a laplacian operator is used
as an edge detector operator

1 1 1
lap= 1|1 -8 1
1 1 1

EDL = (I ® lap — Ien, ® lap)

where,
I is the reference image
I.,, is the model enhanced image

Total loss = MSE loss + K1 SSIM loss + Ko« EDL

2. Perpetual Loss : Taking inspiration from perceptual
loss mentioned in [9]], perceptual loss was added to the
MSE loss. The perpetual loss was defined based on
activation layer from VGG19 network trained on Im-
agenet dataset. This loss captures the difference be-
tween the feature representations of the enhanced im-
age I.,, and the reference image I,

Perceptual loss, L? = Zf:]:l ||¢(I},n) — ¢(I;t)|’
Total loss = MSE loss + k* perpetual loss

where,

N = Number of each batch in the training procedure
®; = Jun activation layer within the VGG19 network
k = parameter obtained via hyperparameter tunning

Even though mentioned by the UResnet paper [12] uti-
lization of EDL loss on our dataset didnot produce good
results whereas utilization of perpetual loss improved the
quantitative metric substantially.



3.2. Evaluation Metric
3.2.1 Quantitative Evaluation Metric

1. Mean Squared Error (MSE) : Mean square error is
used for pixel to pixel comparison of the obtained clear
image and the ground truth image. But the same may
not be the right way to compare for an image enhance-
ment task. The issue faced in this metric is tackled us-
ing multiple different loss metric mentioned in[3.1.2]

=|

1 N
MSE == (i — i)
=1

2. Peak Signal to Noise ratio (PSNR) : It is the peak
signal-to-noise ratio, in decibels, between two images.
It is used as a quality measurement between the origi-
nal and the reconstructed image. The higher the PSNR,
the better the quality of the reconstruction

L2
MSE
L = Dynamic range of image pixel intensities

PSNR = 10log1g X

3. Structural Similarity Index (SSIM) : It is a method
for measuring the similarity between the original and
the reconstructed image. It compares the image
patches based on three properties: luminance, contrast
and structure

SSIM = l(z,y) % c(z,y) x s(z,y)
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3.2.2 Qualitative Evaluation Metric

Post completing the decided experiments human analysis of
images of the two base architectures was compared with the
best performing architecture as a qualitative understanding
of our process.

4. Experiment

4.1. Dataset - Enhancement of Underwater Visual
Perception Dataset (EUVP)[8]

The dataset is a large collection of paired and unpaired
images which contains poor and good quality images. This
data was obtained during oceanic exploration and human-
robot collaborative experiments in different locations under

various visibility conditions. Additionally, some images are
also obtained from Y ouT'ube”™ videos. The paired dataset
(i.e. with good and poor quality images) has been prepared
using CycleGAN. Subset of images from Imagenet was
used to train the CycleGAN based distortion model. Sub-
sequently, a collection of good quality images are distorted
using this model in order to generate the paired dataset.

4.1.1 Training Dataset

We have used 6128 EUVP Imagenet 6128 paired images for
model training. Only a part of the whole 10K images were
used to reduce the compute time required by model. The
images are of various resolutions e.g. 800 x 600, 640 x 480,
256 x 256, and 224 x 224. The same are treated as per the
procedure discussed [d.2]later for our network.

4.1.2 Testing Dataset

We used EUVP dark [8] which has 1000 paired images ran-
domly selected from the EUVP dark dataset as our testing
set as neither GANs or UResnet has been trained on this
model whereas FUnIE-GAN has been trained on imagenet
data.

4.2. Training

We performed multiple experiments with model archi-
tectures and loss functions. For each of the experiment, we
resized the images to 256 X 256 and implemented models
using Pytorch. CNN Models were trained with batch size =
1, learning rate = 2e-4, decay rate = 7e-1, step size = 400.
Epochs and loss type varies with experiment.

1. FUnIE-GAN
Pre trained FUnle-GAN model by [8] is used to en-
hance test images and calculate the performance met-
rics and used as one of the benchmark

2. Vanilla UResnet
UResnet model as mentioned in [[7] is implemented to
get benchmark scores for all metrics on the test set im-
ages

3. Modified UResnet
Improved the architecture as mentioned in section [3.1]
with reduced number of stacked ResBlocks = 10

4. Modified UResnet with perpetual loss
Inspired by the perceptual loss mentioned in [?], we
added perceptual loss to the improved UResnet model
loss to capture the difference between the feature rep-
resentations of the enhanced image I. and the refer-
ence image I,



5. Modified UResnet with EDL loss
Inspired by the EDL loss mentioned in the base paper,
we added the loss to the improved UResnet model loss.

6. Modified UResnet perpetual loss and reduced layer
To improve further computationally, we further tried to
reduce the number of stacked Res blocks to 5 along the
addition of perpetual loss mentioned above. Reducing
number of Res blocks still gave us similar lift to the
image enhancement.

4.3. Results
4.4. Quantitative Results

As can be seen in table[T] the improved version of URe-
snet with the improvements suggested in section [3.1] the
quantitative performance better than GANs as well as the
vanilla UResnet being utilized as benchmark.

Figure 6. From left to right: Blurred image, Enhanced using
FUnIE-GAN, Enhanced using Vanilla UResnet, Enhanced using
Modified Uresnet with perpetual loss

Model MSE PSNR SSIM
FUnlE-GAN 205.80 26.18 0.91
Vanilla UResnet 283.03 24.69 0.88
Modified UResnet 226.55 25.56 0.89
Modified UResnet - EDL 11585  7.59 0.01
Modified UResnet - perpetual 195.72 25.95 0.90
loss

Modified UResnet - perpetual 193.93 25.98 0.90

loss & reduced layer
Table 1. Quantitative Evaluation Metric

4.5. Qualitative Results

As observed in figures, GAN performs a better color
correction on blurred images than vanilla UResnet model
(image 2 and image 3) but under saturates the image. While
our modified UResnet with perpetual loss outperforms in
both color correction and improving sharpness of the image
as compared to GAN. (image 2 and image 4).

As we see in figure [6] image, GAN is not able to re-
move the sea hue completely and the object edges are
not well defined (image 1). But vanilla UResnet helps to
improve the color correction of the Res blocks but still
have scope of improvement. Using perpetual loss using
pretrained VGG19 model for object detection and clas-
sification helped to sharpen the image after color correction.

But as seen in figure [7] sharpness of image can still be
improved using better pre trained object detection model.
When the object is camouflaged with the background, we
are not able to fully enhance the image.

Figure 7. From left to right: Blurred image, Enhanced using
FUnIE-GAN, Enhanced using Vanilla UResnet, Enhanced using
Modified Uresnet with perpetual loss

5. Conclusion
5.1. Learnings

Experimenting with already available networks intro-
duced us to the importance of task specific loss function.
Loss being a crucial component of a network architecture



did rightly play a significant role in our current performance
improvement. We also learned the importance of improving
the network without just increasing its length. Specifically,
the saturation of results when the model was increased from
5 to 10 to 14 ResBlocks taught the importance of stronger
component blocks than just stacking of layers.

5.2

Future Work

Following are a few idea which could be explored in the
future :

1.

2.

3.

We briefly dewelled on utilization of physical models
like Histogram equalization and white balance during
literature review. Such task specific transformations
could be implemented in the network to help the net-
work learner the precise shortcomings with an even
smaller architecture.

We currently used VGG19 as one of the models for
calculating our transformation loss. A more advanced
network trained on larger and task specific datasets e.g.
networks trained on only underwater images from Im-
agenet could be used as a better loss function.

We have not explored the possibility of utilizing trans-
fer learning in a more concrete way. This could act as
a much wider net of methods to explore.
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