
Introducing Dynamic Object Creation to PDDL Planning

Stefan Edelkamp
King’s College London, UK

edelkamp@kcl.ac.uk

Alberto Lluch-Lafuente
DTU, Copenhagen, Denmark

albl@dtu.dk

Ionut Moraru
King’s College London, UK

ionut.moraru@kcl.ac.uk

Abstract

For automated planning robot behaviour in a rather unex-
plored world, often there are exogenous events introducing
new objects triggered by the actions that were unforeseen in
the initial state of the planning domain model. This suggests
extending PDDL, on every of its language levels, by a feature
for dynamic object creation. Syntactically, this is dealt with
by adding a keyword new to PDDL. Semantically, the core
challenge in dealing with dynamically created objects is that
they lead to a growing state representation during the plan
space exploration. As almost all existing automated planners
are not designed to deal with varying state vectors —mainly
due to relying on grounding of the lifted PDDL input in their
static analysis stage— in this short paper we present a first
solution to solve the dynamic object creation problem via a
translation of PDDL model into a term rewriting tool, where
plans can be found.

Introduction
Unforeseen things happen to all of us every day. It is widely
seen as a matter of intelligence for any agent and especially
us humans to be able to adapt to situations that are new.

In machine learning this requirement of intelligent behav-
ior is referred to as a problem of generalization and has let
to distinguish between training and test sets (Flach 2012).

In exploratory robotics, however, like a rover operating
on mars, often we have unexpected exogenous events trig-
gered by controlled or uncontrolled actions (Fox, Howey,
and Long 2005). In terms of action planning, new objects
may pop up (and disappear) during executing a plan.

By introducing the keyword new to the planning domain
definition language PDDL (Fox and Long 2003), domain
objects might be created and all according predicates and
functions initialized. One apparent option is to use the new
operator as an action effect. Quantification can then be used
to initialize the predicates and functions for coping with the
new object. Together with this initialization of variables, the
requested PDDL language extension for dynamic object cre-
ation are considerably small.

While in software model checking and graph trans-
formation newly created objects like processes or graph
nodes/edges are common (Artho and Visser 2019; Holz-
mann 2004), current planning technology is limited in the
ability to deal with dynamic objects. While syntactically

rather easy, introducing them to PDDL domains will lead
to varying state vectors and substantial internal changes
of planners and static analyzers (Helmert 2006). At least
conceptually, for explicit-state forward-chaining planning, a
varying state representations can be made available.

There are other extensions to PDDL that are more of
syntactical nature, and lead to compilation schemes (Nebel
1999). For example object arrays and records could be com-
piled away much in the spirit to what can be done with ADL
types and negated preconditions. Compiling conditional ef-
fects may lead to an exponential blow-up in the planner input
size (Pednault 1989).

In computational complexity terms, the main problem of
dynamic objects, besides proper duplicate detection, is a po-
tential infinite state space.

This position paper is a feasibility study suggesting that
PDDL should allow actions that create new objects. It pro-
vides in a small case study to illustrate that via a compilation
to a term rewriting input and by calling a rewriting tool like
Maude (Clavel et al. 2007), planning with dynamically cre-
ated objects is indeed possible. Possible alternative encoding
of domains for software model checkers or graph transfor-
mation systems are briefly discussed.

Problem Statement
For the dynamic creation of domain objects the syntactical
modifications to PDDL (Fox and Long 2003) are small and
rather straight-forward. Beside ordinary action effects, we
additionally allow object creation with another effect of the
following syntax:
(new (a - <type>) (:init (<formula>*)),

where a is the new object and namewould be the new object
type. As with the initial state, the closed world assumption
in PDDL suggests that all predicates involving a, not explic-
itly mentioned in the formula for :init are false. A simple
example would be a new block appearing on the table in the
Blocksworld domain (Slaney and Thiébaux 2001).

Similarly, we can define a delete operator for PDDL plan-
ning, which is aimed deleting an object from the planning
problem, such as the top block of a Blocksworld tower.
(delete (a - <type>))

For this case, all predicates and functions concerning a,
would be removed from the current state description. We
briefly look at if this PDDL language extensions is essential.

Proposition 1 (Complexity of Dynamic Object Creation)
STRIPS planning with dynamic object creation is undecid-
able.

The rough argument is as follows. Based on the known
STRIPS encoding of Bylander (1994) of a Turing ma-
chine for proving the PSPACE-completeness of STRIPS,
it is easy to deduce that with newly created objects, even
STRIPS planning, becomes undecidable, as we may encode
the working of a Turing machine with an infinite tape and
cells being created on the fly. Undecidability then directly
follows from the Halting problem.

As with the undecidability result on planning with num-
bers this does not say anything about the fragment of bench-
mark planning problems looked at. Moreover, as in every
semi-decidable setting, one can always be lucky in finding a
plan, in case exists.

Dynamic Blocksworld
We next consider dynamic object creation in Blocksworld,
where new blocks can be added to the domain description
using additional actions containing the new operator. The
following example of a dynamic Blocksworld domain al-
lows new blocks to be introduced to the planning state in
two different ways.

As there are books on the topic (PDD), we skip a in-
troduction to PDDL. We also avoid a formal treatment of a
planning task. For the interested reader not from the plan-
ning community it is sufficent to know that we mainly as-
sume operators that consist of a precondition and add and
delete lists,

Figure 1 provides a possible PDDL description with two
actions containing the new operator.

Most recent planners ground the PDDL inputs, instanti-
ating the proposition, function, and action parameters to the
objects. While there are different planners that do not nec-
essarily ground the lifted input domain, like TLPLAN (Bac-
chus and Kabanza) or version of POPF (Benton, Coles, and
Coles 2012), at least in competitive planning, the problem of
dynamic objects has neglected for a long time. There were
simply no benchmarks available.

Settlers
The problem of dynamic object goes back to the introduc-
tion of PDDL2.1 (Fox and Long 2003), and before. In these
planning benchmarks workarounds have been found for the
apparent need to create new objects. One example is the
Settlers Domain as proposed for the International Planning
Competition 20021. One critical action for constructing a car
is shown in Fig. 2. There are similar ones for constructing
trains and ships. The critical aspect for these domain is that
the number of potential vehicles is fixed in the problem de-
scription and only the type of the object as well as its initial
load is fixed in the action effect.

The Settlers domain was designed for the numeric track,
and proved to be a very tough resource management do-
main. Several interesting issues in encoding arise as well

1https://github.com/potassco/pddl-instances/blob/master/ipc-
2002/domains/settlers-numeric-automatic/domain.pddl

(define (domain blocksworld)
(:requirements :strips :typing)
(:predicates (clear ?x - block)

(on-table ?x - block)
(arm-empty)
(holding ?x - block)
(on ?x - block ?y - block))

(:action pickup
:parameters (?x - block)
:precondition
(and (clear ?x) (on-table ?x) (arm-empty))
:effect (and (holding ?x) (not (clear ?x))
(not (on-table ?x)) (not (arm-empty))))

(:action putdown
:parameters (?x - block)
:precondition (and (holding ?x))
:effect (and (clear ?x) (arm-empty)
(on-table ?x) (not (holding ?x))))

(:action stack
:parameters (?x ?y - block)
:precondition (and (clear ?y) (holding ?x))
:effect (and (arm-empty) (clear ?x) (on ?x ?y)
(not (clear ?y)) (not (holding ?x))))

(:action pop-up
:parameters
:precondition ()
:effect
(new (?x - block)

(:init (on-table ?x) (clear ?x))))
(:action pick-new

:parameters
:precondition (and (arm-empty))
:effect
(new (?x - block)

(:init (holding ?x))))
(:action unstack

:parameters (?x - block ?y - block)
:precondition
(and (on ?x ?y) (clear ?x) (arm-empty))
:effect (and (holding ?ob) (clear ?y)
(not (on ?x ?y)) (not (clear ?x))
(not (arm-empty)))))

Figure 1: Blocksworld domain with create-block action.

as the subsequent problem of planning with the domain. In
particular, resources can be combined to construct vehicles
of various kinds. Since these vehicles are not available ini-
tially, this is an example of a problem in which new objects
are created. PDDL does not conveniently support this con-
cept at present, so it is necessary to name potential vehicles
at the outset, which can be realized through construction.
A very high degree of redundant symmetry exists between
these potential vehicles, since it does not matter which vehi-
cle names are actually used for the vehicles that are realized
in a plan. Planners that begin by grounding all actions can be
swamped by the large numbers of potential actions involv-
ing these potential vehicles, which could be realized as one
of several different types of actual vehicles.

(:action build-cart
:parameters (?p - place ?v - vehicle)
:precondition

(and (>= (available timber ?p) 1)
(potential ?v))

:effect
(and

(decrease (available timber ?p) 1)
(is-at ?v ?p)
(is-cart ?v)
(not (potential ?v))
(assign (space-in ?v) 1)
(forall (?r - resource)

(and (assign (available ?r ?v) 0)))
(increase (labour) 1)

)
)

Figure 2: Action in settlers domain with create-block action.

Limits and Possibilities of Compilation
Schemes

As it is certainly desirable to have planners that can deal with
the new language feature, one would like existing planners
to solve transformed benchmark domains without it.

Such a transformation to ordinary PDDL is possible, if
objects are not deleted (as it is in the two examples above),
and if one has an upper bound on all possible objects to be
generated available. In general, however, as shown in the
theorem, finding such a super set is as difficult as the plan ex-
istence problem, so that we cannot expect a fully automated
compiling scheme without the problem designer’s help.

We briefly sketch some transformation details to clarify
the semantics of the language extension. Through this will
not be formal construction, it indicates necessary changes.

The transformation uses some special predicates as flags
to govern the appropriate object handling. Most importantly
we include a predicate (is-created ?a - <name>)
in the domain description, and precondition every parameter
object in every action, if it is already created.

An action with the effect (new (a - <name>)
(:init (<formula>*)) is transformed introducing an
ordinary add-effect (is-created ?a). Since ?a is not
yet a parameter of the action the compilation will include an
extra parameter into the transformed action.

For example, consider action create-block that
has no parameter and the only effect is (new (a -
block) (:init (holding ?a))). It will be trans-
ferred to an action create-block (?a - block)
having (holding ?a) in the effect list. Certainly, the
translated action should require (not (is-created
?a)) included in the precondition list. (Actually it would
only be necessary to include the additional predicate
not-is-created into the precondition list and to guar-
antee that in each action the predicates not-is-created
and is-created are complement to each other.)

Term Rewriting for Planning with Dynamic
Object Creation

A term rewriting rule is a pair of terms to indicate that the
left-hand side can be replaced by the right-hand side. A term
rewriting system is a set of such rules.

Roughly speaking, term rewriting for STRIPS problems
with operators o = (P,A,D) is as follows. We have rules of
the form

LHS => RHS

with

RHS = A ∪ (P \D), and (1)
LHS = P ∪D (2)

As often made assumption is D ⊆ P we have LHS = P .
Formally, it is not correct that PDDL itself assumes D ⊆ P ”,
and also not if PDDL is replaced with STRIPS. However,
one might assume this setting in a compilation to transition
normal form (Pommerening and Helmert 2015).

As we have preconditions in action planning, instead of
going for only ordinary rewriting, we actually require con-
ditional rewriting.

Deletion in such conditional rewriting systems is realized
by some facts on the rule’s LHS not to be present in the rules
RHS. To do deletion in the semantically correct way, how-
ever, one has to be careful. In graph rewriting there are var-
ious semantics: one allows to remove any object (and then
any reference to that object must be garbage collected), an-
other one forces you capture all existing references to the
object to be deleted in the rule’s LHS. In both cases the idea
is to avoid dangling edges (edges pointing to a node/object
that does not exist anymore).

The fortunate thing about term rewriting is that one can
deal with lifted problem representations, so that there is
an easy translation of PDDL models that contain object
creations and deletions. One example is the Blocksworld
Maude model in Figure 3. Maude (Clavel et al. 2007) is
essentially term rewriting and therefore objects, their cre-
ation and deletions are not first class features. Fortunately, it
is very easy to encode them (as done in many applications
of Maude) for instance mimicking graph rewriting theories
(which do have creation and deletion as first class features).

The term rewrite is started with the initial and goal state
specification
Maude> search empty & clear(c) & clear(b)

& table(a) & table(b) & on(c,a)
=>* empty & clear(a) & table(c) &
on(a,b) & on(b,c)

finds the correct plan without object creation. For the call
Maude> search [1] empty & clear(’c) & clear(’b)
& table(’a) & table(’b) & on(’c,’a) & next(0)

=>*
empty & clear(0) & table(’c) & on(’a,’b) &
on(’b,’c) & on(0,’a) & next(x:Nat)

finds the correct plan with objects being created:
unstack putdown pickup stack
pickup stack create pickup stack

mod BLOCKS-WORLD is
protecting QID .
sorts BlockId Prop State .
subsort Qid < BlockId .
subsort Prop < State .

op on-table : BlockId -> Prop .
op on : BlockId BlockId -> Prop .
op clear : BlockId -> Prop .
op holding : BlockId -> Prop .
op empty : -> Prop .
op 1 : -> State .
op _&_ : State State -> State [assoc comm id: 1] .
vars X Y : BlockId .

rl [pickup] : empty & clear(X) & on-table(X)
=> holding(X) .

rl [putdown] : hold(X)
=> empty & clear(X) & on-table(X) .

rl [unstack] : empty & clear(X) & on(X,Y)
=> holding(X) & clear(Y) .

rl [stack] : holding(X) & clear(Y)
=> empty & clear(X) & on(X,Y) .

--- Natural numbers as id’s as well
pr NAT .
subsort Nat < BlockId .
--- New operator for the next free id
op next : Nat -> Prop .
--- Variable for states and naturals
vars S : State .
vars n : Nat .
--- Rule for creating blocks
rl [create] : next(n)
=> table(n) & clear(n) & next(s(n)).

--- Rules for deletion of anonymous roofs
rl [delete1] : table(n) & clear(n) => 1 .
rl [delete2] : on(n,X) & clear(n) => clear(X) .

endm

Figure 3: Dynamic Blocksworld in Maude.

The solver does not do any optimization nor heuristic
search and simply reports the first solution obtained.

The drawbacks of creation/deletion not being first class
features means that the tool will not take care of name
reuse which is essential to manage such infinite state spaces
(which can be reduced to finite ones if the number of objects
per state is bounded).

While it is true that the main engine performs breadth-
first search, there has been some efforts to develop a strategy
language to build smart search strategies on top of Maude.

The main idea is that Maude treats specifications (mod-
ules) as ordinary data. There is a module in Maude called
META-LEVEL that contains sorts (i.e. types) for modules,
equations, rules and all that. In addition it contains functions
to simulate rule application at the meta-level or to perform a
search (at the meta-level). Moreover, since META-LEVEL
is a module, we can also have meta-meta-representation, and
meta-meta-meta-representation and so on. In practice with
this reflection mechanism we can do meta-programming.
For instance we can define some re-factoring (like optimiz-

ing Maude modules), translations (e.g. from signature to an-
other), or analysis tools (e.g. the original LTL model checker
was implemented in Maude itself), etc. This has the advan-
tage that one uses the same language (Maude) both for the
tools and for the specifications and that, since everything de-
veloped is a couple of Maude modules one can apply new
tools both for your specifications and to the tools.

Note that the naive model can be improved by applying
some tricks for name re-use (for instance once we delete
an object n we could decrease the counter and the id of all
objects with id greater than n). In that case if one allows
creation up to a certain bound (e.g. the maximal number of
blocks allowed in the game) then we are finite state.

Maude rules can have conditions, but if one want negative
application conditions like there is no other block on the ta-
ble which are essentially global we have to change the rules
of the example a bit since they are essentially local. One
would need something like an operator for enclosing states
[_] and rules in the following style where a variable S is
used to capture the rest of the propositions forming the state.

crl [S & my-preconditions]
=> [S & my-effects]

Recall that in Maude we can also have rewrite steps in the
conditions (and even use their result), which turns out to be
a very expressive mechanism.

Discussion on Semantic Canveats
The example where a single object appears without any de-
pendence on existing or simultaneously created other ob-
jects.

Think about a Mars rover, where objects of interest (of
type object-of-interest) can be detected whenever a traverse
action was executed. Each object of interest has an as-
signed location (of type location), which is modeled with
the predicate object-at(object-of-interest,
location). A traverse action between 2 locations to an
action where both an object-of-interest and a location are
created such that the created object of interest is at a newly
created location could look as follows.
(:action traverse

:parameters (?l1 ?l2 - location)
:precondition (rover-at ?l1)
: effect (and

(not (rover-at ?l1))
(rover-at ?l2)

(new (?o - object-of-interest
?l - location)

(:init (object-at ?o ?l))))
)

If objects are added, there must be some clever mecha-
nism to set them into relation with other objects that have
already existed. One possibility could be conditional initial-
izations. Take, for instance a planning task with a predicate
(pred ?o1 ?o2 - obj) that should hold for a newly
created object ?a of type obj and all existing objects ?b
of type obj if and only if another predicate (cond ?o -
obj) holds for ?b. One could use the same syntax that is
used for conditional effects, i.e.,

(new (?a - object)
(:init (forall (?b - object)
(when (cond ?b) (pred ?a ?b)))))

The introduction of new and delete will lead to states of
variable size, but also to variable size of ground actions. This
is a challenge on the implementation side as concepts like
invariant synthesis or reachability analysis are significantly
harder if the number and form of actions is unclear.

Of course there is an immediate influence of added and
deleted objects on the goal (and other conditions that want
to refer to the objects). A question that immediately comes
to mind is what happens in an instance with:

(:objects o1 o2 o3 - my-object-type)
(:goal (and

achieved(o1)
achieved(o2)
achieved(o3)))

where the predicate ”achieved” must be true for all (ini-
tially existing) objects o1, o2 and o3. What happens now
if o1 is deleted? The intuitive answer would be that it is no
longer possible possible to reach a goal state, because the
object is explicitly mentioned in the goal and it’s impossi-
ble to achieve that goal once o1 has disappeared. However,
what happens if achieved(o1) was true in the moment
that o1 disappeared? Furthermore, what happens if the goal
is given via a quantifier as

(:objects o1 o2 o3 - my-object-type)
(:goal (forall (?o - my-object-type)

(achieved(?o))))

which is equivalent under the current PDDL semantics.
Intuitively, we would assume now that removing o1 is not
a dead end as it is still possible to achieve the goal for
all existing objects since o1 is not mentioned explicitly,
but then the two goals are no longer equivalent. Similarly,
what happens in the second case if another object of type
my-object-type is created.

The mapping of PDDL to Maude is not perfect. There
are hacks needed to make conditional rewriting work like
next(x:Nat) in the example, which certainly is far be-
yond the LHS => RHS rules.

Of course breadth-first search should also be able to pro-
vide a solution to this kind of planning tasks and is a concept
that is universally understood. The need of using a rewriting
tool like Maude is needed as most planners suppose ground-
ing prior to the search and am not capable to deal with ob-
jects that dynamically created.

Further Opportunities for Planning with
Dynamic Objects

Our interest is in extending the planning language to include
the concept of object creation. We are presenting Maude as
one example to show that such extended problems can be
solves, but we are not arguing that is the only way to solve
these problems.

In fact, there is much related work in different research
areas, of which we only provide the tip of the iceberg. We
found one pioneering research in the area action planning.

Besides conditional term rewriting there is a larger body of
research areas which could also be consulted as a basis for
PDDL planning with dynamic object creation. We briefly
will look into model checking and graph transformation.

Action Planning

There is one related publication in the area of planning that
compiles irrelevant objects to counters with special case of
creation planning (Fuentetaja and de la Rosa 2016). The
authors discuss how to deal with cases where objects are
created in PDDL. They do not use a new operator, but
specialized predicates. Later on, they discussed adding a
keyword to the action description :newobjects in be-
tween :precondition and :effect. They used a in-
tuitive motivating example called the pizza domain, where
one piece is cut into two.

(:action cut
:parameters (?slice ?s1 ?s2 - slice

?t - tray ?z ?zhalf - size)
:precondition (and (not (= ?s1 ?s2))

(holding ?slice ?t)
(pizzasize ?slice ?z)
(nextsize ?z ?zhalf)
(notexist ?s1) (notexist ?s2))

:effect (and (freearms)
(not (holding ?slice ?t))
(not (notexist ?s1)) (not (notexist ?s2))
(ontray ?s1 ?t) (pizzasize ?s1 ?zhalf)
(ontray ?s2 ?t) (pizzasize ?s2 ?zhalf)))

Given a slice, the action cuts it into two new slices of half
size. Each new slice is represented as a domain object and
identified by a constant. The special predicate notexist rep-
resents that the corresponding slice identifier has not been
used before the application of the action.

Their compilation to counters is insightful and involved
using rewriting of the domain (including involved actions,
initial and goal state) via a translation of the (lifted) PDDL
input into one with numbers, eventually serving a compiled
planning problem numeric planner to solve. For the action
above this looked as follows.

(:action cut1
:parameters

(?zhalf - size ?z1 - size ?t - tray)
:precondition (and

(>=(Nslice-pizzasize_holding ?z1 ?t) 1)
(>=(Nslice-notexist) 2))

:effect (and (freearms)
(decrease (Nslice-notexist) 2)
(decrease
(Nslice-pizzasize_holding ?z1 ?t) 1)

(increase
(Nslice-pizzasize_ontray ?zhalf ?t) 2)))

The authors also used some modification to recent IPC
benchmarks like Gripper, or Childsnack, and introduced
some new ones likeSpanner, and Carpenter. The work re-
lates to known compilations of functional STRIPS (Geffner
2000).

Model Checking
Model checking was introduced as an automatic verification
technique for finite state concurrent systems (Clarke, Grum-
berg, and Peled 1999). Specifications are written in propo-
sitional temporal logic. The verification procedure is an ex-
haustive search of the state space of the design. There is a
tight connection and exchange of techniques from and to the
area of action planning.

Software model checkers of formal software models like
SPIN (Holzmann 2004) with its input language Promela go
one step further and allow concurrently running processes to
be created using the run operator. This way the state vector is
actually dynamic, which poses some advanced hashing and
storing strategies. An example is leader election. It is not
difficult to alter it to (Dynamic) Blocksworld.

byte leader = 0;
proctype N(chan chin, chout) {
byte tok; chout ! _pid;
do
:: chin ? tok ->
if
:: tok < _pid -> skip
:: tok > _pid -> chout ! tok
:: tok == _pid -> leader = leader+1; break
fi

od
}
init {
bool f[5] = true;
chan ab = [1] of {byte}, bc = [1] of {byte};
chan cd = [1] of {byte}, de = [1] of {byte};
chan ea = [1] of {byte};
do
:: f[0]-> atomic { run N(ea,ab); f[0]=false }
:: f[1]-> atomic { run N(ab,bc); f[1]=false }
:: f[2]-> atomic { run N(bc,cd); f[2]=false }
:: f[3]-> atomic { run N(cd,de); f[3]=false }
:: f[4]-> atomic { run N(de,ea); f[4]=false }
:: else-> break
od

}

While general functionality is granted, many benchmarks
can be re-coded as active processes. When checking real
software tools like the Java Path Finder (Artho and Visser
2019) and Steam (Leven, Mehler, and Edelkamp 2004) rep-
resent the changes to the memory pool for each system state.

Automated Theorem Proving
Automated Theorem Proving is an area of study to get com-
puters to prove logical and mathematical statements not just
enumerating instances of a theorem exhaustively, but apply-
ing logical deduction, induction, inference and search strate-
gies (depth first, breadth first, best first, iterative deepening)
to arrive at a solution.

The main application is the formalization of mathematical
proofs and in particular formal verification, which includes
proving the correctness of computer hardware or software
and proving properties of computer languages and proto-
cols. The most widespread instance of Isabelle nowadays is
Isabelle/HOL (Nipkow, Paulson, and Wenzel 2002), which

Figure 4: Graph transformation rule for object creation

provides a higher-order logic theorem proving environment
with general proving mechanism called auto tactics, which
should be tried before running external provers using the
sledgehammer.

Isabelle/HOL includes powerful specification tools, e.g.
for data types, inductive definitions and recursive functions
with complex pattern matching. A for natural numbers, there
is a proof principle of induction for infinite lists of yet un-
kown object. Induction over a list is essentially induction
over the length of the list, although the length remains im-
plicit. It might be possible to convert a PDDL model with
object creation to an input of Isabelle.

Graph Transformation
Software engineers are used to deal with annotated graphs.
These models can be described by means of suitable graph
transformation systems (Heckel 2006). In many cases, mod-
eling must be complemented with analysis capabilities
to understand how designed transformations behave and
whether requested requirements are fulfilled. Powerful so-
lutions bypass this limitation and allow the user to reason on
how the different rules impact the behavior of the graph as a
whole.

In graph transformation with tools like Groove (Zambon
and Rensink 2018), there are rules that add and delete nodes
and edges to the existing graph, through a process that is
called pushout, which leads to the creation and deletion of
objects. A simple example is shown in Fig. 4. There is in-
terconnection with planning. Planning for graph transfor-
mation is discussed by (Edelkamp and Rensink 2007) and
heuristic search planning for graph transformation systems
by (Edelkamp, Jabbar, and Lluch-Lafuente 2006).

Conclusion and Discussion
This paper proposes an extension of PDDL that allows to
dynamically create and destroy objects and proposes this as
a basis for running a planner competition in the future. The
IPC has traditionally been closely related to extensions of
PDDL. Perhaps, future editions of the IPC could consider a
special track with this extensions even. As it seems hard to
get current planners to support such an extension of PDDL,
in the paper we also discussed different avenues and tech-
nologies to actually solve such extended planning tasks.

AI and action planning are both concerned about master-
ing the unknown. Therefore, object creation is both an im-
portant extension to PDDL modeling, as well as fascinat-

ing topic for research and planner development. With this
position paper, we propose the keywords new and delete to
PDDL.

We showed that conditional term rewriting is one ade-
quate solution to the problem. Mapping PDDL to Maude
input and extending it for creating new objects by means of
rewriting PDDL directly in Maude is feasible, as it has been
already done for many languages (including Java, C, pro-
cess algebras, etc.). We have seen a first proof-of-concept,
in which we played with simple, though interesting exam-
ples, to see what is gained from using Maude. New insights
for PDDL or planners, and yet another planner are possible.
Term rewriting can also be tool for solving additional (not
only plan scheduling) problems of planning specifications
like confluence checks to see which actions can be safely
executed concurrently and which not. Planning with uncer-
tainty may be available via logic programming and narrow-
ing in Maude.

One of Maude’s advantages is the fact that the language
is reflective, which enables powerful meta-programming ap-
plications and the re-use of techniques. Investigating the is-
sue of strategies/heuristics for Maude could, on the other
hand, be the contribution of the planning community to
Maude. There have been some efforts towards the efficiency
of rewriting in the form of competitions, but we not aware
on solving reachability problems with heuristics.

Acknowledgement We are indebted to the brilliant re-
views on this paper, highlighting that while the syntactic
features for introducing the concept of object creation are
rather simple, before running a track in the IPC the semantic
consequences of such PDDL language extension has to be
thought of in some larger panel.

References
Artho, C., and Visser, W. 2019. Java pathfinder at SV-COMP
2019 (competition contribution). In Tools and Algorithms
for the Construction and Analysis of Systems - 25 Years of
TACAS: TOOLympics, Held as Part of ETAPS, 224–228.
Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal
planning with preferences and time-dependent continuous
costs. In Proceedings of the Twenty-Second International
Conference on Automated Planning and Scheduling, ICAPS
2012, Atibaia, São Paulo, Brazil, June 25-19, 2012.
Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. Artif. Intell. 69(1-2):165–204.
Clarke, Jr., E. M.; Grumberg, O.; and Peled, D. A. 1999.
Model Checking. Cambridge, MA, USA: MIT Press.
Clavel, M.; Durán, F.; Eker, S.; Lincoln, P.; Martı́-Oliet, N.;
Meseguer, J.; and Talcott, C. L., eds. 2007. All About Maude
- A High-Performance Logical Framework, How to Spec-
ify, Program and Verify Systems in Rewriting Logic, volume
4350 of Lecture Notes in Computer Science. Springer.
Edelkamp, S., and Rensink, A. 2007. Graph transforma-
tion and ai planning. In Edelkamp, S., and Frank, J., eds.,
Knowledge Engineering Competition (ICKEPS), number 7,
–. Australia: Australian National University.

Edelkamp, S.; Jabbar, S.; and Lluch-Lafuente, A. 2006.
Heuristic search for the analysis of graph transition systems.
In Graph Transformations, Third International Conference,
ICGT 2006, Natal, Rio Grande do Norte, Brazil, September
17-23, 2006, Proceedings, 414–429.
Flach, P. 2012. Machine Learning: The Art and Science of
Algorithms That Make Sense of Data. New York, NY, USA:
Cambridge University Press.
Fox, M., and Long, D. 2003. PDDL2.1: an extension to
PDDL for expressing temporal planning domains. J. Artif.
Intell. Res. 20:61–124.
Fox, M.; Howey, R.; and Long, D. 2005. Validating plans in
the context of processes and exogenous events. In Proceed-
ings, The Twentieth National Conference on Artificial Intel-
ligence and the Seventeenth Innovative Applications of Ar-
tificial Intelligence Conference, July 9-13, 2005, Pittsburgh,
Pennsylvania, USA, 1151–1156.
Fuentetaja, R., and de la Rosa, T. 2016. Compiling irrelevant
objects to counters. special case of creation planning. AI
Commun. 29(3):435–467.
Geffner, H. 2000. Functional Strips: A More Flexible Lan-
guage for Planning and Problem Solving. Boston, MA:
Springer US. 187–209.
Heckel, R. 2006. Introductory tutorial on foundations and
applications of graph transformation. In Graph Transforma-
tions, Third International Conference, (ICGT), 461–462.
Helmert, M. 2006. The fast downward planning system. J.
Artif. Intell. Res. 26:191–246.
Holzmann, G. J. 2004. The SPIN Model Checker - primer
and reference manual. Addison-Wesley.
Leven, P.; Mehler, T.; and Edelkamp, S. 2004. Directed er-
ror detection in C++ with the assembly-level model checker
steam. In Model Checking Software, 11th International
SPIN Workshop, Barcelona, Spain, April 1-3, 2004, Pro-
ceedings, 39–56.
Nebel, B. 1999. Compilation schemes: A theoretical tool
for assessing the expressive power of planning formalisms.
In Advances in Artificial Intelligence, Annual German Con-
ference (KI), 183–194.
Nipkow, T.; Paulson, L. C.; and Wenzel, M. 2002. Is-
abelle/HOL – A Proof Assistant for Higher-Order Logic.
Lecture Notes in Computer Science. Springer.

Pednault, E. P. D. 1989. ADL: exploring the middle ground
between STRIPS and the situation calculus. In International
Conference on Principles of Knowledge Representation and
Reasoning (KR), 324–332.
Pommerening, F., and Helmert, M. 2015. A normal
form for classical planning tasks. In Proceedings of the
Twenty-Fifth International Conference on Automated Plan-
ning and Scheduling, ICAPS 2015, Jerusalem, Israel, June
7-11, 2015., 188–192.
Slaney, J. K., and Thiébaux, S. 2001. Blocks world revisited.
Artif. Intell. 125(1-2):119–153.

Zambon, E., and Rensink, A. 2018. Recipes for coffee:
Compositional construction of JAVA control flow graphs in
GROOVE. In Principled Software Development, 305–323.

