Extending Sliding-step Importance Weighting
from Supervised Learning to Reinforcement Learning

Tian Tian, Richard S. Sutton

University of Alberta, Alberta, Canada
{ttian, rsutton } @ualberta.ca

Abstract

Stochastic gradient descent (SGD) has been in the
center of many advances in modern machine learn-
ing. SGD processes examples sequentially, updat-
ing a weight vector in the direction that would most
reduce the loss for that example. In many applica-
tions, some examples are more important than oth-
ers and, to capture this, each example is given a
non-negative weight that modulates its impact. Un-
fortunately, if the importance weights are highly
variable they can greatly exacerbate the difficulty of
setting the step-size parameter of SGD. To ease this
difficulty, Karampatziakis and Langford [2011] de-
veloped a class of elegant algorithms that are much
more robust in the face of highly variable impor-
tance weights in supervised learning. In this pa-
per we extend their idea, which we call “sliding
step,” to reinforcement learning, where importance
weighting can be particularly variable due to the
importance sampling involved in off-policy learn-
ing algorithms. We compare two alternative ways
of doing the extension in the linear function approx-
imation setting, then introduce specific sliding-step
versions of the TD(0) and Emphatic TD(0) learning
algorithms. We prove the convergence of our algo-
rithms and demonstrate their effectiveness on both
on-policy and off-policy problems. Overall, our
new algorithms appear to be effective in bringing
the robustness of the sliding-step technique from
supervised learning to reinforcement learning.

1 Importance weighting in SGD

In recent years, deep learning has dominated the field of ma-
chine learning, making advances in natural language pro-
cessing, image recognition, and many other areas. At the
heart of deep learning is stochastic gradient descent (SGD),
which processes a series of random examples (x, y;),t =
0,1,2,... one at a time, and adjusts the weight vector w €
R™ in the direction that would most reduce the loss .J between
the target y; and its estimate §(x;; w):

Wiyl = Wt — aVJ(yt, 29(3%; 'wt))7

where « is the step-size parameter that controls the amount
of adjustment to w in each time step ¢.

In many applications, some examples are more important
than others. For instance, the score of a final exam is usu-
ally weighted more than midterms or quizzes. One per-
son’s consumer preference may bias towards one company
more than another. Nonnegative scalars called importance
weights, denoted h, are given to examples to quantify their
relative importance. Importance weights appear in many ma-
chine learning algorithms, including boosting [Freund and
Schapire, 1995], covariate shift [Huang et al., 2006], active
learning [Beygelzimer et al., 2009], and reinforcement learn-
ing [Precup et al., 2001; Sutton et al., 2016] algorithms.

One way of incorporating importance weights into SGD
is to scale the gradient by h linearly, and thus the update
changes to ahVJ. If a is not made sufficiently small, a large
h may result in overshooting an example’s target, resulting in
a greater loss than before the update. This problem is illus-
trated in Figure 1(a). We could use a small step-size parame-
ter to account for updates with large importance weights, but
this might make unnecessarily small updates for other exam-
ples, resulting in unreasonably slow learning.

To address this problem, Karampatziakis and Langford
[2011] developed a class of algorithms that are much more
robust in the face of highly variable importance weights in
supervised learning. Their idea, which we call “sliding step”
would sub-divide w’s update into k steps, each with a step-
size parameter of ah/k. In each of the k steps, we recom-
pute the gradient and adjust the weight vector in the newly
computed direction. By tending k to infinity, the step-size pa-
rameter «h/k becomes infinitesimal, we acquire a new class
of algorithms. In Figure 1(b), the trajectory of w, along the
loss surface can be seen to be sliding towards the optimum
weight for example (2, y:), giving rise to the name sliding
step. Because the gradient is recomputed in every of the k
steps, the gradient of the loss will tend to O along the & steps
as the estimate tends to y;. Thus, the estimate §(x+; wiy1)
will never overshoot y;.

In this paper, we extend the sliding step idea from super-
vised learning to reinforcement learning, specifically, to a
class of temporal difference (TD) learning algorithms. Un-
like supervised learning algorithms, the target of the linear
TD update is also an estimate that depends on the current
value of w. We propose two new algorithms in the one-

<
v~

ahV.J

\A .
™4

T ? T

wi Wit Wi

Wt

(a) without sliding step (b) with sliding step

Figure 1: A demonstration of the sliding-step technique on a one

dimensional squared loss surface J = % (y — §(+; w¢))*. The blue
diamonds indicate the optimum weight for example (z+, y).

step linear function approximation setting: sliding-step TD
and sliding-step Emphatic TD. We prove the convergence of
sliding-step TD and demonstrate both algorithm’s effective-
ness on three problems: a 5-state Markov chain, a 1000-state
random walk, and the off-policy “chicken problem” of Ghi-
assian et al. [2018]. Our empirical results suggest our algo-
rithms retain the robustness of the sliding-step technique from
the supervised learning setting.

2 Sliding-step technique in the supervised
learning setting

We discuss the sliding-step technique in the supervised learn-
ing setting using the linear model (i.e., §(x; w) = ' w) and
the squared loss. Recall that the sliding step idea subdivides
the SGD update w; + ahs (y: — x:wt):ct into k steps, where
in each of the k steps, the gradient is recomputed and an inter-
mediate update is made to the weight vector with a step-size
of ah/k. Denoting an intermediate update to w as w,, where
the subscript corresponds to each of the &k steps, we get the
following procedure.

In the first step, we compute the gradient of the loss at wy,
and make the first intermediate update to the weight vector
with an adjustment of chy /k:

- ah
w :wt—i—Tt(yt—w;rwt)a:t (1)

In the second step, we recompute the gradient of the loss
at wy (i.e., —(y; — ' w1)x;), and make a second interme-
diate update to the weight vector along this newly computed
direction with an adjustment of ah,/k:

- - ah 5
Wy = Wy + Tt(yt —x, W), 2)

2
=w; + (2 (akht> - (akht> w;rfﬂt) (ye — w:wt)wt
3

To get (3), we plug (1) into w; of (2) and expand the re-
cursion. After performing k intermediate weight updates and
using the binomial expansion, we obtain:

1-(1- a,gtm;wt)’“(

a:;ract

wy = wy + ye — @)z 4

By setting w;4; = wj, and taking k£ — oo, we obtain:

1 —exp(—ahx, x
Wiyl = Wt + p(T @, Tt))
T, Ty

(ye — l’:wt)ﬂ?t;
)]

using the fact that limy, oo (1 + 2z/k)* = exp(2).

We could set wy41 to wy (4) without taking & to infinity.
However, the benefit of using (5) instead of (4) is that we do
not need to set a value for the k. The limit of this gradient
procedure as the step-size parameter becomes infinitesimal
allows us to generalize (4) to (5) with only a small additional
computational cost of an exponential function.

The outcome of the sliding-step technique is an expression
that replaces the «. The sliding-step algorithm (5) contains
the expression (1 — exp(—ahz/ ;))/x, x;, which trun-
cates ah to 1/x, ¢, when ah is large. The effect of the
truncation bounds the magnitude of the update to the weight
vector, and hence reduces the variance of the iterates at the
expense of bias. Additionally, 1/, x; also normalizes the
input, which again bounds the magnitude of the update.

3 Reinforcement learning setting

A common formalism used in reinforcement learning (RL) is
the Markov decision process, which consists of a set of states
S, aset of actions .4, world probability p : Sx AxS — [0, 1],
a set of rewards R, and a discount factor v € [0,1]. At each
discrete time step ¢, an agent in state S; € S takes an action
A; € A according to a policy 7 : S x A — [0,1]. The
agent then transitions from the state Sy to a new state S; 1,
and obtains a numerical reward R; 11 € R C R.

We are interested in making long term predictions from
every s € S w.r.t. the policy 7:

Ur(8) = Ex[Ris1 + YRiy2 + V2 Rips +...1S = 5] (6)

Temporal difference (TD) learning, a major part of RL,
comprises a class of algorithms that aim to evaluate the state
value (6) for every s € S. A key feature of TD algorithms
such as TD [Sutton, 1988] and Emphatic TD [Sutton et al.,
2016] is bootstrapping, where the estimate of a state value is
updated based on the estimate of the value of the successor
state.

There are on-policy and off-policy TD algorithms. An off-
policy TD algorithm evaluates the policy 7 based on actions
selected by a different behaviour policy, denoted p. This re-
sults in a different state visitation distribution, and so, the fre-
quency of the observed rewards will be different than if
were followed. We can correct this distribution mismatch via
importance sampling, allowing us to compute the expectation
under 7. Off-policy learning algorithms such as off-policy
TD [Precup et al., 2001], Emphatic TD [Sutton et al., 2016]
and gradient-based TD [Sutton et al., 2008, 2009] use impor-
tance sampling ratios to correct for the mismatch in the sam-
pling frequency. The importance sampling ratio at time step ¢
is defined to be the ratios of the action probabilities under the
two policies: p; = m(A4|St)/p(As|St), where p(als) > 0
for every state and action for which 7(a|s) > 0. If the two
policies are the same (i.e. p = 1 for all state and action pairs),
then we return to the on-policy case.

For non-tabular settings where an agent only has access to a
state’s feature vector x(s) € R", a state value is represented
by a function of the state’s features, parameterized by w €
R™. We shall use «(S;) and @, interchangeably throughout
the rest of the paper.

If we have the values of v, then we can employ SGD in
the supervised learning setting to update the weight vector:

Wiyl = Wy + a(v-rr(st) - CL‘tT’wt)mt, @)
where x, w; is the linear function approximation of v, (S;)
However, the goal is to compute v, and we do not have
access to this function. We can construct the one-step boot-
strapping target R;. 1 + x, L 1w, in every time step since the
reward and the feature vector of the next state are available.
By replacing v, (S) in (7) with the one-step bootstrapping
target, we obtain linear TD(0):

Wi = wy + o (Rip1 + thTHwt —xz/w)z, (8)

TD error: &

Linear Emphatic TD(0) [Sutton et al., 2016] is defined by
the following stochastic update to the weight vector,

Wi = wy + aFypdx(St) 9
where F; = vp;_1F;—1 +i(S;) and Fy =1

The quantity F' € [0, co] is called the emphasis', which em-
phasizes a state value’s update based on the interest expressed
for that state. An interest expressed for a state is defined as
the function 7 : S — [0, 00). Expressing high interest for a
state will shift the accuracy of the estimate towards that state.
Because F; can take on large values due to interest and im-
portance sampling ratios in the off-policy setting, one update
to w can result in a large change if « is not made sufficiently
small. This motivates the need for a way to robustly account
for importance weights, especially in linear Emphatic TD(0).

For the remainder of this paper, we omit writing the (0) in
the following algorithms as we restrict ourselves to the one-
step case.

4 Extending the sliding step idea to
reinforcement learning

We compare two ways of doing the extension in reinforce-
ment learning, and then introduce specific sliding-step ver-
sions of (8) and (9).

At first glance, the extension seems almost straightforward.
However, the target of the TD error in (8) and (9) both depend
on the current value of weight vector w;. Contrary to super-
vised learning, we have two ways to update the intermediate
weights:

1. semi-gradient: considers only the effect of changing w;
on the prediction while ignoring the effect on the target.

2. full-gradient: considers the effect of changing w; on
both the target and prediction.

"For the one-step case, F is the emphasis. In the more general
case, I is the follow-on trace and not the emphasis.

4.1 The sliding-step TD algorithm

Following the sliding-step procedure outlined in Section 2,
we apply the semi-gradient approach to the update d;x+ in
(8) by keeping the target constant for each of the k steps, but
allow the weight vector in the prediction to change (boxed
below):

~ @ T T
w; = w + E(Rt-i-l + YT W — T wy)x,

~ ~ - T T ~
Wy = w1 + — (Ryq1 + 7T we — | T, Wy)y

k

cun (3(2) - (2) oo

1- (1 — %w;rwt)k
x) z
By taking k£ — oo, we obtain sliding-step TD:

5tmt-

’lbk:wt—‘r

1 —exp(—az/
Wiyl = Wy + p(_r ¢ t) 6,5%,5. (10)
Ty Tt

4.2 The sliding-step Emphatic TD algorithm
Following similar steps in Section 4.1, we apply the semi-
gradient approach to the update F}p;d.x: in (9) and obtain
the sliding-step Emphatic TD algorithm:

1 — exp(—aFpx/ @)
Wi = W + T 01t
T, Ty

where Ft = ’}/ptletfl + Z(St)

and Fp=1.

4.3 Issues with full-gradient approach to TD

There are some issues with applying the full-gradient ap-
proach to TD. Applying the full-gradient approach to TD en-
tails substituting the intermediate weights into both the target
and prediction at each of the k steps. This results in the fol-
lowing variant:
1 —exp(—a(x; — yxii1) xy)

(@t —ywry1) T4

Denoting ¢ = (z; — Y1) x;, we see that ¢ can be 0
or negative. If ¢ = 0, the expression (1 — exp(—ac))/c is
undefined. If ¢ < 0, the expression is greater than « and
grows exponentially, recreating the original issue of making
large updates. Due to this, we do not consider this variant in
our experiments.

Wiyl = Wy + 5twt.

5 Convergence of tabular sliding-step TD
with probabiliy 1

We prove the convergence of on-policy sliding-step TD in the

tabular setting using an existing proof by Tsitsiklis [1994].
In the tabular setting, the agent has access to the states. Let

V; € RISl denote a vector of state values of a size equal to

the cardinality of S. Then, each component V;(s),s € S is

updated independently and asynchronously according to:

Viri(s) = Vils)
| L= exp(-ai(s)ry)

@aﬂ+7w@ﬁ—%@07 an

where s’ denotes the next state and Ry is the immediate
reward obtained after one state transition. The random
sequence of step-size parameters o (s), one for every s € S,
satisfies the usual step-size conditions of Robbins and Monro
[1951]. Algorithm (11) defines the value update for state s
for time step ¢ = 1,2,.... If state s is not observed at ¢,
then a;(s) = 0 and no update is made to the value of state s.
If state s is observed at ¢, then the value of state s changes
while all other state values remain unchanged, similar to
tabular TD. We define x5 : S — [0,00). It only depends on
state s because (11) pertains to the update of value for state s.
We introduce # to makes it more comparable to z(s) " x(s)
of the linear sliding-step TD defined by (10).

Theorem 5.1. Vi(s) defined by the update rule (11) con-
verges to vy (s) with probability 1 for all s € S in the case
of

(1) vy <1lor

(2) v =1, and the policy m is a proper stationary policy
under the condition that oy (s) is F (t)—measurable (i.e., the
random variable is completely determined by the history:
So, R1,0(50), Vo, S1, R1,...,S:.) and satisfies the Rob-
bins and Monro [1951] step-size conditions:

Z a(s) = oo,
t=0

Note: (a(8)) is a separate sequence for every state s € S.

> ai(s)<oo wp. 1l (12)
t=0

Proof. For each state s € S, we show the random sequence
((1 — exp(—ai(s)ks))/kKs) also satisfy the step-size condi-
tions. Then the rest follows from Tsitsiklis [1994].

Let X,, = > ;" o1 — exp(—au(s)ks). Since the sequence
(X,,) is monotonically increasing, the limit of X,, exists.
To show that the limit of X, is equal to infinity, we use
exp(—z) <1+ 22 — z forx € [0,00):

1 — exp(—rsai(s)) > keay(s) — k2al(s),

n n n
S 1 exp(—an(s)rg) 2w D anls) — k2 al(s).
t=0 t=0 =0

Taking the limit of the partial sum,

n—oo n—roo

n n
lim X, > ks lim tz_; i (s) — K2 nli_)néo;af(s) = 0.

LetY, = Y"1 (1—exp(—rsay(s)))?. Since the sequence
(Y,,) is monotonically increasing, the limit of Y,, exists. To
show that the limit of Y,, is finite, we use exp(—z) > 1 — x
for z € [0, 00):

(1 — exp(—rsu(s)))* < (Ks0u(s))

n

Z(l — exp(—ksi(8)))? < K2 Zaf(s)
t=0

t=0
The limit of the partial sum Y, is finite:

lim Y, < lim HiZaf(s) < 0.

n— 00 n—00
t=0

Since & is a constant given a state, so is 1 /x5, and the scaled
sequence ((1 — exp(—ay(s)ks))/ks) is also a sequence of
step-size parameters that satisfy (12) for every s € S. O

6 Convergence result of linear sliding-step TD

If the feature vectors are all of the same magnitude, the on-
policy sliding-step TD in the linear function approximation
setting (10) converges to the fixed point of linear TD defined
by (8) with probability 1. We replace the constant « of (10)
with o (e.g., oy = 1/t,t = 1,2,...). If (s)Tx(s) = C
forall s € S, then (1 —exp(—a,C))/C satisfies the step-size
conditions from Theorem 5.1. Thus, sliding-step TD is lin-
ear TD with a special step-size of form (1 — exp(—a:C))/C,
and (10) converges to the fixed point of linear TD follow-
ing from Tsitsiklis and Van Roy [1997]. Some examples
of feature vectors that have the same magnitude include
the basis unit vectors and normalized feature vectors (i.e.,
x(s)/\/x(s)Tx(s) forall s € S).

In general, the behaviour of sliding-step TD depends
on the choice of . When « is small, the expression
(1 — exp(—ax(s) Tx(s)))/x(s) Tz(s) is approximately a,
and sliding-step TD should behave similarly to linear TD.

7 Experiments

We examine the performance of sliding-step TD and sliding-
step Emphatic TD with different feature representations and
step-size parameter settings. We focus on three synthetic
problems to allow straight forward study of the properties of
the algorithms. Particularly, we are interested in the accu-
racy of the learned estimates, as well as the rate of learning
in each evaluation. To measure how well the state value es-
timates approximate v, we use the root-mean-squared value

error (RMSVE): \/Zses d.(s) (’Uﬂ(s) - af;(s)Tu;) 2’ where

d, is the steady-state distribution of the Markov chain in-
duced by 7.

7.1 Five-state Markov chain

In this on-policy experiment, we test sliding-step TD with
various feature representations with varying magnitude in the
feature vectors (i.e., = ' «). This experiment has five states,
and the state transitions are exactly like the setup in Bradtke
and Barto [1996] with v = 0.9, but the rewards consist of
both positive and negative values covering a larger range of
values.

(a) state transition probabilities

(b) rewards

Figure 2: The state transitions and rewards of the five-state Markov
chain.

[-160.59 —117.66 80.84 —158.6 61.56 0.31 1851 1.22
177.58 210.62 —128.85 —29.88 54.83 -1.91 -251 221
—55.58 —86.12 —24.54 149.71 -75.27 -0.16 7.3 3.07
46.78 -96.32 78.13 —8.75 —122.62 0.04 8.6 0.04
—-92.71 33.7 —31.62 1.8 —115.98 0.55 33.84 1.54
X X3
[0.31 1.55 18.51 0.6 1.22 —160.59 80.84 61.56
-191 177 -251 071 221 177.58 —128.85 54.83
0.16 0.23 7.3 1.04 3.07 —55.58 —24.54 —75.27
0.04 195 8.6 0.23 0.04 46.78 78.13 —122.62
0.55 046 33.84 1.18 1.54 -92.71 -31.62 —115.98
XQ X4

Figure 3: Four different feature representations of the five-state
Markov chain, each chosen to represent different broad scenarios.
Each row of the feature matrix is a feature vector of a state.

Of note, the rank of matrices X; and X5 equals the
number of states, while the rank of matrices X3 and X} is
less than the number of states. In X3 and X}, linear functions
would not be able to represent all of the state values exactly.
The magnitude of the feature vectors of matrices X; and X4
are roughly the same but large, while that of matrices X5 and
X3 vary considerably. We ran each experiment for 100,000
steps, and results are averaged over 50 independent runs.

Discussion: ~ With various feature representations of
varying magnitude, we observed evidence of robustness
in sliding-step TD w.r.t « in Figure 4. As a bonus, we
observed a speedup in sliding-step TD when the magnitude
of the feature vectors varied significantly. This is observed
in Figure 4(i-1) for feature matrices Xo and Xs3. In the
case when the magnitude of the feature vectors is all large,
sliding-step TD still needs a small « so not to diverge. With
small a’s, we found no statistically significant speedup in
sliding-step TD, which is consistent with the analysis in
Section 6.

7.2 1000-state random walk

In this on-policy experiment, we test sliding-step Emphatic
TD in the presence of large importance weights. The orig-
inal experiment [Sutton and Barto, 2018] consists of states
numbered 1 through 1000, with terminal states to the left of
state 1 and the right of state 1000. The agent starts in state
500 and takes the left or right action with equal probability.
Once committed to an action, the agent transitions to one of
its 100 neighbours with equal probability. The rewards are
all 0 except -1 when reaching the left terminal state and +1
when reaching the right terminal state. We looked at two in-
stances of the problem with transitions to 50 neighbours and
20 neighbours, varying the lengths of the random walk. Treat-
ing it as an undiscounted task with an interest of 1 for each
state, longer episodes will result in larger emphasis.

We consider two feature representations: tile coding and
Fourier basis [Sutton and Barto, 2018]. For tile coding, there
are 50 tilings, where each tiling is offset by four states. Every
100 states are tiled together. We run each experiment for
5000 episodes and then repeat for 30 independent runs.

Discussion: With large emphasis, we observed evi-
dence of robustness in sliding-step Emphatic TD w.r.t. « in

Figure 5. Going from 50 neighbours to 20 neighbours, the
emphasis on average increases. In response to the larger
value in emphasis, the optimal « for sliding-step Emphatic
TD shifted from an order of 10~° to 10~%. With small «’s,
we found no statistically significant speedup in sliding-step
Emphatic TD.

7.3 The chicken problem

In this off-policy experiment of Ghiassian et al. [2018], we
test sliding-step Emphatic TD in the off-policy setting. This
experiment consists of 8§ states with 1 terminal state, and the
agent starts in the first four states with equal probability. If
the agent is within the first four states, then the behaviour and
target policies are the same, and the agent goes forward. If
the agent has passed the first four states, the behaviour pol-
icy chooses to go forward or go back to the first four states
with equal probability. The target policy, however, will al-
ways choose to go forward. If the agent goes forward and
makes it to the terminal state, then it receives a reward of 1
and terminates. All other rewards are 0, and a discount rate
of v = 0.9 was used.

We ran each experiment for 5000 episodes, and the results
are averaged over 100 independent runs. For every run, we
randomly generated a new set of feature vectors to represent
the eight states. Each feature vector is {0,1}%. To main-
tain a feature matrix of rank 6, no feature vectors are all zeros.

Discussion: In the off-policy setting, we observed evi-
dence of robustness in sliding-step Emphatic TD w.r.t. « in
Figure 6. Each with their optimized «, sliding-step Emphatic
TD learned slightly faster than Emphatic TD as evident in
Figure 6(b).

8 Conclusion

We have shown multiple generalizations of the sliding-step
idea to temporal difference learning and derived a class of
sliding-step TD algorithms: sliding-step TD and sliding-step
Emphatic TD.

Sliding-step TD is similar in form to TD, but differs in
the expression (1 — exp(—ax " x))/x " replacing the usual
step-size parameter ««. We prove that the tabular sliding-step
TD in the on-policy setting converges with probability 1. We
also showed that for the linear case, if the feature vectors are
all of the same magnitudes, sliding-step TD is TD with a spe-
cial step-size expression and converges to the fixed point of
TD with probability 1. For the general case where the magni-
tude of the feature vectors is not the same, we found that the
behaviour of sliding-step TD depends on the choice of a.

We give substantial evidence for the robustness of sliding-
step TD methods in several experiments with multiple repre-
sentations and an off-policy example with sliding-step Em-
phatic TD. In the experiment when the magnitude of the
feature vectors varied significantly, we observed a speedup
in sliding-step TD. A possible explanation for this speedup
could be due to sliding-step’s step-size expression normaliz-
ing the feature vectors, bounding the size of the update made
to the weight vector.

TD o
% Sliding-step
= Sliding/step Sliding-gtep
89 1
50 A T T T T T T
107° 1073 107! 10~ 10-% 107!
« n
© %, (@ X,

g D D
n
=
o

230 1 5831 g-step TD| 381 Shiding-step TD

107 10-6 10-5 106 105 104
a n
@ X4 (h) X4

400 400 400 400
<
[} TD D D D
Z L N

] - 232 S 229 T
* Sliding-step TD ® 77 Sliding-step TD Sliding-step TD Sliding-step TD
0 5I0 100 0 .SIU 100 0 5‘0 100 0 510
Steps (in thousands) Steps (in thousands) Steps (in thousands) Steps (in thousands)

(i) Xo () X, diminishing

(K) X5

() X3 diminishing

100

Figure 4: Five-state Markov chain: sensitivity graphs (a, ¢, e, g) are shown w.r.t. constant o. Sensitivity graphs (b, d, f, h) are optimized for

7 and shown w.r.t. 1 of diminishing a(t)

n
1+t/7

. Learning curve (i, k) are shown with optimized constant o while (j,1) are shown with

optimized n, 7 for the diminishing case. The RMSVE of the learning curves are averaged over 50 runs. The RMSVE of the sensitivity graphs
are averages of 100 thousand steps and then averaged over 50 runs. All figures include error bars for standard error, but they are smaller than

the line width in display.

Emphatic|TD
w
=
g Sliding-step
o Sliding-skep Emphatic TD iding-step
Emphatic \D :
000] p 0067 0,067 Emphatic TD
109 105 107 10-° 10—° 10— 10-5 10 101 10t 106 To-s 101 T0-3
a « a

(@) 50 neighbours
with tile coding

(b) 50 neighbours
with Fourier basis

(c) 20 neighbours
with Fourier basis

Figure 5: 1000-state random walk: RMSVE of the sensitivity graphs are averages of 5000 episodes and then averaged over 30 runs. All

figures include error bars.

RMSVE

2.70

Emphatic TD
i Sliding-step
\ Emphatic TD

0.18

@

Episodes

()

Figure 6: Chicken problem: learning curve is shown with optimized a. The RMSVE of the learning curve is averaged over 100 runs. The
RMSVE of the sensitivity graph is averages of the 500 episodes and then averaged over 100 runs. All figures include error bars.

References

Alina Beygelzimer, Sanjoy Dasgupta, and John Langford.
Importance weighted active learning. In Proceedings of
the 26th International Conference on Machine Learning,
pages 49-56, 2009.

Steven J. Bradtke and Andrew G. Barto. Linear least-squares
algorithms for temporal difference learning. Machine
Learning, 22:33-57, 1996.

Yoav Freund and Robert E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. J. Comput. Syst. Sci., 55:119—-139, 1995.

Sina Ghiassian, Andrew Patterson, Martha White, Richard S.
Sutton, and Adam White. Online off-policy prediction.
CoRR, abs/1811.02597, 2018.

Jiayuan Huang, Alexander J. Smola, Arthur Gretton,
Karsten M. Borgwardt, and Bernhard Scholkopf. Correct-
ing sample selection bias by unlabeled data. In Advances
in Neural Information Processing Systems 19, 2006.

Nikos Karampatziakis and John Langford. Online importance
weight aware updates. In Proceedings of the 27th Confer-
ence on Uncertainty in Artificial Intelligence, pages 392—
399, 2011.

Doina Precup, Richard S. Sutton, and Sanjoy Dasgupta. Off-
policy temporal-difference learning with function approx-
imation. In Proceedings of the 18th International Confer-
ence on Machine Learning, pages 417-424, 2001.

Herbert Robbins and Sutton Monro. A stochastic approxima-
tion method. The Annals of Mathematical Statistics, 22,
1951.

Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning: An Introduction. The MIT Press, second edi-
tion, 2018.

Richard S Sutton, Hamid R. Maei, and Csaba Szepesvari.
A convergent o(n) temporal-difference algorithm for off-
policy learning with linear function approximation. In
Advances in Neural Information Processing Systems 21,
2008.

Richard S. Sutton, Hamid R. Maei, Doina Precup, Shal-
abh Bhatnagar, David Silver, Csaba Szepesvari, and Eric
Wiewiora. Fast gradient-descent methods for temporal-
difference learning with linear function approximation. In
Proceedings of the 26th Annual International Conference
on Machine Learning, 2009.

Richard S. Sutton, Rupam A. Mahmood, and Martha White.
An emphatic approach to the problem of off-policy
temporal-difference learning. Journal of Machine Learn-
ing Research 17, 73:1-29, 2016.

Richard S. Sutton. Learning to predict by the methods of
temporal differences. Machine Learning, 3:9-44, 1988.

John N. Tsitsiklis and Benjamin Van Roy. An analysis of
temporal-difference learning with function approximation.
Technical report, IEEE Transactions on Automatic Con-
trol, 1997.

John N. Tsitsiklis. Asynchronous stochastic approximation
and g-learning. Machine Learning, 16:185-202, 1994.

	Importance weighting in SGD
	Sliding-step technique in the supervised learning setting
	Reinforcement learning setting
	Extending the sliding step idea to reinforcement learning
	The sliding-step TD algorithm
	The sliding-step Emphatic TD algorithm
	Issues with full-gradient approach to TD

	Convergence of tabular sliding-step TD with probabiliy 1
	Convergence result of linear sliding-step TD
	Experiments
	Five-state Markov chain
	1000-state random walk
	The chicken problem

	Conclusion

