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ABSTRACT

Convolutional Neural Networks (CNN) have achieved state-of-the-art perfor-
mance in different computer vision tasks, but at a price of being computationally
and power intensive. At the same time, only a few attempts were made toward a
deeper understanding of CNNs. In this work, we propose to use semantic prun-
ing technique toward not only CNN optimization but also as a way toward getting
some insight information on convolutional filters correlation and interference. We
start with a pre-trained network and prune it until it behaves as a single class clas-
sifier for a selected class. Unlike the more traditional approaches which apply
retraining to the pruned CNN, the proposed semantic pruning does not use re-
training. Conducted experiments showed that a) for each class there is a pruning
ration which allows removing filters with either an increase or no loss of clas-
sification accuracy, b) pruning can improve the interference between filters used
for classification of different classes c) effect between classification accuracy and
correlation between pruned filters groups specific for different classes.

1 INTRODUCTION

Convolutional Neural Networks (CNN) provides high quality features that are used in vari-
ous tasks such as object recognition (Ouyang et al., 2015; Wang et al., 2015; Lin et al., 2017a;
Hu et al., 2017), scene classification (Zhou et al., 2014; Ren & Li, 2015), semantic segmen-
tation Girshick et al. (2014); Husain et al. (2017), image captioning (Anderson et al., 2017;
Rennie et al., 2017; Yao et al., 2017; Lu et al., 2017), raw audio generation (van den Oord et al.,
2016), data analytics (Najafabadi et al., 2015). Unlike engineered features, where one or multiple
features have been designed with specific domain knowledge (SIFT (Lowe, 1999) ,SURF (Bay et al.,
2008), LBP (Ojala et al., 1994), Canny (Canny, 1986), etc.), features in CNN are obtained by di-
rectly learning representations (filters) from the data without explicit domain expertise.

While using a large number of learned filters in CNNs creates high-quality features, it also re-
quires significant computational resources. The filter learning and the inference processes need
resources such as GPU or TPUs to tackle the computational overhead. Recently, multiple opti-
mization methods were proposed, with the target to reduce the computational overhead of either
the learning or the inference processes. For instance, in the learning optimization approach, the
following works have been done (Zhang et al., 2018; Lin et al., 2017b). On the other hand, the
number of the current works targeting the optimization of the inference are: reduced precision
computation (Rastegari et al., 2016; Courbariaux et al., 2016; Zhou et al., 2016), look-up and pre-
computing (Abdiyeva et al., 2018; Brendel & Bethge, 2019), pruning (Anwar et al., 2015; Li et al.,
2016; Zhu & Gupta, 2017; Raghu et al., 2017; Morcos et al., 2018; Ma et al., 2019) and knowledge
distillation (Hinton et al., 2015).

The work described in this paper continues in the direction of inference optimization by pruning.
However, the pruning is only used as a tool for studying the interpretability of CNNs filter. Pruning
is the process of removing redundant filters from the network (Anwar et al., 2015; Li et al., 2016;
Zhang et al., 2017; Zylberberg, 2017; Zhu & Gupta, 2017; Raghu et al., 2017; Morcos et al., 2018;
Ma et al., 2019). In current approaches, the pruning process consists of the following steps: train
CNN, remove redundant filters and retrains the network to preserve the original accuracy. The pro-
posed pruning method, however, does not involve retraining of the pruned network. The motivation
of this work is the interpretation of CNNs: pruned and unpruned filters are analyzed to evaluate
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class-wise relations and dependencies. In particular, the pruning applied to AlexNet is used to ex-
plore and study whether one can obtain a new single class classifier by dropping the selected filters
in the original multi-class classifier instead of an expensive training process of a new classifier.

The interpretability of the network resulting from pruning can be seen as a filter-wise and signal-
wise network dissection: The removal of filters in a controlled manner allows us to determine how
different classified objects affects other classes, how the density of the classes in the learned feature
space affects the accuracy of a classification and how the structure of the learned multi-class feature
space allows to improve the accuracy of a single-class classification. Therefore, the pruning used
in this work can also be seen as an approach to CNN understanding (Bau et al., 2017; Zylberberg,
2017; Kindermans et al., 2017; Morcos et al., 2018).

The proposed method, referred to as semantic pruning, is performed as follows: we start from a CNN
trained to distinguish q classes. Then we reduce the multi-class CNN to the single class classification
problem, by removing unrelated to the selected class labels. To remove filters, we measure each
filter’s contribution (activation magnitude) toward recognition of a target object class. Filters with
the highest contributions were preserved, and the remaining filters were dropped from the network.
The pruned and unpruned filters are analyzed for correlation, overlap and other measures allowing
us to determine class-wise interactions.

The contribution of this paper can be summarized as the following:

• investigated the sensitivity of object classification to semantic pruning,

• study of the interference between class wise filters in CNN,

This paper is organized as follows. Section 2 introduces semantic pruning concept. Section 3
describes the experiments and the results and Section 4 concludes the findings.

2 PROPOSED SEMANTIC PRUNING

Let Fi ∈ R
M×M×D be a filter in layer j of a convolutional network. Let, Bj ∈ R

X×Y×D be an
input tensor to the layer j. X and Y are spatial dimensions. To calculate the output tensor Bj+1

of the layer j input tensor Bj is convolved with the set of filters L = {F1 ...,FD′} of layer j. Lets
denote the output of the convolution operation between input tensor Bj and a single filter Fi as Ri:

Ri = Fi ⊙ Bj (1)

Then B
j+1
(:,:,i) = Ri

(a) (b)

Figure 1: (a) Convolutional layer operation and (b) computation of the filter Activation Magnitude.

Definition 1 (Pruning). Let L = {F1, . . . ,FD′} be a convolutional layer, Fi ∈ R
M×M×D be

a single filter of the layer with an input tensor Bj ∈ R
X×Y×D. Bj+1 = L ⊙ Bj (eq. 1) with

Bj+1 ∈ R
X′

×Y ′
×D′

. Pruning layer L denoted as Ω(L) is the process of removing one or more
Fi from L resulting in a new set of filters Ω(L) = L

′ = {F1, . . . ,FD′′}. Hence, a new output is

B
′

j+1 = L
′ ⊙ Bj with B

′

j+1 ∈ R
X′

×Y ′
×D′′

such that D′′ ≤ D′.

In this work, we propose a semantic pruning method that is applied with respect to each selected
class separately. We determine the amount of pruned filters for each object class λi ∈ Λ =
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{λ1, . . . , λq} where q is the number of classes in the dataset. To determine which filters can be
removed, the process of pruning requires a measure of contribution. In this work, we propose to use
activation magnitude as filter removal criteria.

Definition 2 (Activation Magnitude r̄). Let R ∈ R
X′

×Y ′

be a result of convolution between input
tensor and a single filter in the layer, then activation magnitude for each filter Fi is computed as
follows:

r̄i =

X′∑

x=1

Y ′∑

y=1

Rx,y,i (2)

with r̄ ∈ R
1×1×D′

.

The schema for calculating r̄ is shown in Figure 1b.

We propose to perform pruning for each class separately; hence, we split the dataset into subsets
of images belonging to the same class. Let D = {δ1, . . . , δn} be the dataset containing the n data
samples. Let Λ = {λ1, . . . , λq} be the number of object classes in the dataset. Then, Dλc

⊂ D

be a subset of D containing all data samples with class label λc. The number of samples in Dλc
is

denoted as p, such that p ≤ n. Let r̄i(δo) be the activation magnitude of a filter Fi resulting from
using input sample δo ∈ Dλc

. We want to measure the response of each filter w.r.t. to the individual
class. Therefore, we propose to accumulate the activation magnitudes of all samples belonging to
the selected class. The resultant value is denoted as Accumulated Response.

Definition 3 (Accumulated Response γ). r̄i
λc is the Accumulated Response for filter Fi and object

class λc and defined as shown in eq. 3

γ = r̄λc

i =

p∑

o=1

r̄i(δo) (3)

The process of semantic pruning starts by separating the dataset D into subsets Dλc
= {δ1, . . . , δp}

with p being the number of samples in the subset Dλi
, for object label λc ∈ Λ = {λ1, . . . , λq} with q

being the number of object classes. Let m be the total number of filters in AlexNet. We calculate the

accumulated response r̄λc = {r̄λc

1 , . . . , r̄λc

m } for each filter in the network and for selected number
of object classes from the dataset. The percentage of pruned filters is represented by the parameter
θ (pruning ratio) such that θ = [0, . . . , 1]. For instance, for θ = 0.1, the 10% of filters with lowest
accumulated response will be pruned. In this work, let Fσ and Fσ̄ be the set of unpruned and pruned
filters for a given γ respectively. The process of filter pruning can be performed using two different
approaches: network wise and layer-wise. Network wise pruning (NWP) is performed on filters
F from all layers of the network. Filters are sorted according to their corresponding accumulated
responses, and the filters with the smallest values are removed in correspondence to the pruning
ratio θ. On the other hand, Layer wise pruning (LWP) separates filters into groups, each containing
filters from one layer. The pruning is then applied to each layer separately. However, as a result
of removing certain filters, the activation response for the filters in the consecutive layers can get
affected, and therefore, higher potential of pruning can be achieved. Therefore, we also provided a
comparison between these two cases, referred to as Direct and Residual Pruning.

Two settings were used toward varying-parameter θ . These approaches will be referred to as discrete
and continuous pruning. For discrete pruning, the values are changes with the fixed step size, while
for continues pruning the wider range of values is explored.

3 EXPERIMENTS

To illustrate the effectiveness of the semantic pruning approach, we applied the method on the model
trained for an object classification task. In our experiments we used AlexNet (Krizhevsky et al.,
2012) trained on ImageNet (Russakovsky et al., 2015) dataset. The AlexNet network consists of five
convolutional and three fully connected layers. Fully connected layers are referred to as classifier.
The convolutional layers are referred to as feature extractor.

The ImageNet data set contains 1000 object classes; however, due to computational constraints, we
evaluated our method on randomly chosen 50 classes, to show the further potential of the method.
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Figure 2: AlexNet average accuracy for differ-
ent pruning rations θ

Figure 3: Comparison of classification accuracy
between unpruned AlexNet and pruned using
NWP-M, LWP-33, NWP-66, LWP-66.

The experimental section is organized as follows:

• Sensitivity to pruning

• Study of the Filter Interference

3.1 SENSITIVITY TO PRUNING

We started our study by firstly evaluating the sensitivity of the single class classifier for pruning.
In particular, we started with an evaluation of the discrete pruning approach. We applied it to both
layer-wise (LWP) and network-wise pruning(NWP).

3.1.1 DISCRETE PRUNING

The process of semantic pruning starts by separating the dataset into subsets of images belonging to
the selected object label. Let m be the total number of filters in AlexNet. We calculated accumulated
responses γ for all m filters in the network. Then we sorted the values in the descending order and
applied four different settings to access the effect of discrete pruning:

• 0 score - removing all filters with γ ≤ 0

• 0.33 - removing 33% of Filters with lowest value of γ

• 0.66 - removing 66% of Filters with lowest value of γ

• median (M) - Filters with γ value lower than the median of all γ were removed.

The procedure was repeated for all selected 50 classes separately.

Figure 2 shows the effect of discrete pruning on the number of parameters removed and preserved.
Experiments indicated that pruning filters with NWP-0 and NWP-33 affect the average network ac-
curacy by around 10% (Figure 2), while layer-wise pruning looks to be more resistant toward higher
ratios. However, both the LWP-M and NWP-66/LWP-66 result in a serious drop of network accuracy
(green, red and purple lines in Figure 3), and the difference between layer-wise and network-wise
pruning are not as large as expected (red and purple lines).

Figure 2 also shows that removing even the least active layer-wise filters reduces the general network
accuracy. This can be seen when comparing NWP-33 and LWP-33 in Figure 2 and 3 respectively.
However, it can also be observed that the classification of certain classes becomes more accurate
while other classes suffer much steeper loss in classification accuracy for LWP-33 (Figure 3 yellow
curve).

Finally, note that no normalization of activity measure was used. The reason for not using normal-
ization is due to the fact that we are evaluating pruning with respect to one class at a time. There-
fore, normalizing the activity with respect to the whole data set would result in sample dependent
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pruning and therefore remove the desired class wise pruning result. Additionally, normalizing with
respect to one class at a time will introduce different minimal and maximal filter activities making
a magnitude-based comparison between classes meaningless. Therefore, simply taking into account
the NWP or LWP allows to account for both these effects and still provide reasonable information
about the pruned and unpruned filters.

Figure 4 shows how the pruning affects the individual layers of filters in the feature extractor. Fig-
ure 4a shows the relative amount of pruned filters at ratio of 5%, Figure 4b at 25% and Figure 4c at
50%. The x axis indicates the layer and y axis the mount of filters.

total weights

resudual pruning

direct pruning

Layer

Layerwise Pruning for class "thunder snake"

(a)

total weights

resudual pruning

direct pruning

Layer

Layerwise Pruning for class "thunder snake"

(b)

total weights

resudual pruning

direct pruning

Layer

Layerwise Pruning for class "thunder snake"

(c)

Figure 4: The relative amount of filter pruned by layer and by pruning ratio (a) θ = 0.05, (b)
θ = 0.25, (c) θ = 0.5

In Figure 4 the Direct Pruning (DP) represents the number of filters removed by the semantic pruning
method. The Residual Pruning (RP) represents the pruning resulting from the DP pruning. The RP
pruning represents the filters that became inactive on average because their input becomes 0 on
average after the DP pruning. Observe that similarly to the previous experiment, filters in 0th layer
do not get pruned at all. Similarly, filters in the 4th layer do not get pruned as well at low θ. Filters
from the 1st and 2nd layer is the one most pruned in DP while the filters of the 3rd layer are pruned
as a consequence in RP. Additionally, notice that at 50% of pruning ration almost all filters from
the 2nd layer are removed as a result of pruning. It is very interesting to see that even with higher
pruning ratios, the 0th layer is not pruned at all and the 4th layer is pruned only at higher values of
θ. This means that the encoding provided by the first and last layer seems to be the most crucial and
the densest.

3.1.2 CONTINUOUS PRUNING

The experiments with discrete pruning showed some important information about structural rela-
tionships of filters and the accuracy of classification of certain classes. However this information
is only partial complete and therefore a continuous process of pruning was also evaluated with re-
spect to individual class accuracies. In the continuous pruning, θ was set to 0 and was increased by
0.1 until reaching θ = 0.6 (representing 60% pruning ratio). Figure 5 show the plot of class-wise
accuracy for twelve selected object labels. It can be noticed that:

• Several classes are not affected by the pruning unless a very large ratio (θ ≥ 0.15) of filters
is pruned (Figure 5e- 5h).

• Additionally, several classified classes has its accuracy increased after pruning. This is
quite remarkable as this also entails that there can be interference between filters. (Fig-
ure 5a- 5d).

3.2 STUDY OF THE INTERFERENCE

Semantic pruning showed that pruning least active filters from one class can result in increased
accuracy of classification. The possible explanation for the phenomena is filters interference within
an overcrowded region of the feature space.

To investigate these phenomena in more details, we decided to investigate how many different and
shared filters are pruned, and how the pruning affected the class density within the feature space.
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(a) switch (b) sliding door (c) jigsaw puzzle (d) bullet proof vest

(e) apron (f) badger (g) Christmas stocking (h) jeep

(i) cardigan (j) maraca (k) lighter (l) ringneck snake

Figure 5: Examples of (a)-(d) object classes that improved for pruning ratio θ > 0, (e)-(h) that for
certain ratio θ > 0 have same accuracy of classification as when θ = 0 and (i)-(l) object classes
for which classification accuracy was always worse than when classifying when θ = 0. x-axis - θ,
y-axis - accuracy.

In order to determine the overlap between object classes, inter-class feature overlap was computed
by calculating the intersection of unpruned Fσ and pruned Fσ̄ sets of filters. Let two object classes

λ1 and λ2 be represented by F
λ1

σ , F
λ1

σ̄ and F
λ2

σ , F
λ2

σ̄ respectively. Then let ρσ = F
λ1

σ ∩ F
λ2

σ and

ρ̄σ = F
λ1

σ̄ ∩ F
λ2

σ̄ be a double measure filter similarity. The reason for using both Fσ and Fσ̄ is to
utilize two sources of information. In other words, we want to determine similarities of features
which are required, and what features are not required by the object class. Higher is the value of Fσ

higher the similarity of filters used for classification of λ1 and λ2.

Figure 6 provides the correlation between pruned and un-pruned filters for the three classes. (Only
three classes were selected due to the space limitations.) All three classes represent different be-
haviour toward pruning: performance improvement, pruning resistant and accuracy degradation.

The general trend for all three graphs for non-pruned filters is that the correlation between filters is
constantly decreasing, as one can expect. More interesting trends, however, can be observed for the
correlation between pruned filters.

The first object class we would look at is jigsaw puzzle. According to Figure 5c, there is a significant
effect of the pruning on the classification accuracy of the jigsaw puzzle class. Possible explanation
can be provided by the fact that the classes-neighbours (Figure 6a and Figure 6d) for this class
are semantically unrelated. Hence, the reduction in a correlation of pruned filters is reducing the
interference with class-neighbours filters (θ ∈ {0.075, 0.2}), which match the region of the sudden
jump in accuracy according to Figure 5c. It is also can be noticed that for θ = 0.3 semantically
unrelated classes started to have increased in pruned-filter correlation to the jigsaw puzzle class,
which reflected in the sudden accuracy drop in Figure 5c. A similar trend can be observed for
another class jeep. At the region where θ ∈ {0.05, 0.15} , we can see that correlation with more
semantically related classes: beach vagon, recreational vehicle, is increasing, while sax and jigsaw
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Figure 6: Correlation of filters (a)-(c) left after pruning, (d)-(f) removed after pruning
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(a) non-pruned filter correlation (b) non-pruned filter correlation (c) PCA projection of activation magni-
tudes

Figure 7: Correlation of filters left after pruning (a), removed by pruning (b) and PCA mapping of
accumulated response for class apron

puzzle is decreasing. It is possible to assume that, the effect of interference from unrelated filters is
reducing, and as a result, improves the model accuracy, as shown in Figure 5h. The last example
is provided for the class from the group, which was negatively affected by the pruning (Figure 5k).
Looking at Figure 6f we can see that lighter class has a high correlation for pruned filters with
neighbouring classes; hence the effect of interference from the class-neighbours was not negated,
which is reflected in the accuracy drop. However, one can observe that during the drop in pruned
filter correlation for θ ∈ {0.15, 0.21} there is a sudden jump in classification accuracy (Figure 5k).

More extended evaluation is provided in Figure 7 for the class apron. According to Figure 7b, at the
pruning rations θ = [0.1, 0.2] the correlation between pruned filters is increasing with such classes
as hoopskirt, Christmas stoking and miniskirt, while the correlation is reducing for volleyball and
sax. Semantically, the first three classes are more related to the class apron than the last 2. In such
a way, at pruning ratio, θ = [0.1, 0.2] filters would be more associated with the related classes,
which at the same time should positively affect the performance. That is what can be observed in
Figure 5e. There is a performance jump in that region for θ = [0.1, 0.2]. Further, the point can be
supported by calculating the accumulated responses γapron = {γapron

1 , · · · , γapron
q } for all filters

in AlexNet and mapping them to 2D space through PCA dimensionality reduction. 2D projections
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(Figure 7c) shows that at the pruning ratio 0.15 (which is in range of 0.1-0.2) class apron lay closer
to the correlated classes, and moving away from unrelated ”sax” and ”volleyball” classes. While
at the pruning ratio 0.4, it got moved to the unrelated classes again, which also affected the model
accuracy.

The general observation from this experiment leads to the conclusion that the objects are represented
in the feature space in areas of different density. Interestingly, the accuracy of classes was improving
for the pruning ratios at which the correlation of pruned filters with semantically related classes
was increasing, while the correlation with semantically unrelated filters was decreasing. These
observations are supporting the hypothesis about filter interference and giving a promising direction
for further investigation and potential classification accuracy improvements. Conducted experiments
showed an interesting observation about the correlation between accuracy and class-wise similarity
between pruned filters Fσ̄ .

4 CONCLUSIONS

We presented a study of semantic CNN pruning. The results indicate that classification classes
are asymmetrically represented by filters resulting in the fact that some object classes have their
classification accuracy increased when pruned for. We also observed that objects classes represented
in densely populated parts of the feature space share very similar filters. Such object classes when
pruned for the least active filters (small γ) have a tendency to affect close neighbouring classes more
directly and therefore, the classification accuracy of the pruned object increases. Additionally, we
also observed that the filters in the lowest layer are rarely pruned, similarly to the first layer. Finally,
we observed that there is an interference between filters affecting classification accuracy, and there
is a correlation between accuracy and class-wise similarity between pruned filters. As future work,
we plan to extend our work to more classes and more models. In addition, we will study the effect
of filter overlap on convolutional networks safety and adversarial examples phenomena.
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