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ABSTRACT

Variational Bayesian neural networks (BNNs) perform variational inference over
weights, but it is difficult to specify meaningful priors and approximate posteriors
in a high-dimensional weight space. We introduce functional variational Bayesian
neural networks (fBNNs), which maximize an Evidence Lower BOund (ELBO)
defined directly on stochastic processes, i.e. distributions over functions. We prove
that the KL divergence between stochastic processes equals the supremum of
marginal KL divergences over all finite sets of inputs. Based on this, we introduce
a practical training objective which approximates the functional ELBO using finite
measurement sets and the spectral Stein gradient estimator. With fBNNs, we can
specify priors entailing rich structures, including Gaussian processes and implicit
stochastic processes. Empirically, we find fBNNs extrapolate well using various
structured priors, provide reliable uncertainty estimates, and scale to large datasets.

1 INTRODUCTION

Bayesian neural networks (BNNs) (Hinton & Van Camp, 1993; Neal, 1995) have the potential to
combine the scalability, flexibility, and predictive performance of neural networks with principled
Bayesian uncertainty modelling. However, the practical effectiveness of BNNs is limited by our
ability to specify meaningful prior distributions and by the intractability of posterior inference.
Choosing a meaningful prior distribution over network weights is difficult because the weights have a
complicated relationship to the function computed by the network. Stochastic variational inference
is appealing because the update rules resemble ordinary backprop (Graves, 2011; Blundell et al.,
2015), but fitting accurate posterior distributions is difficult due to strong and complicated posterior
dependencies (Louizos & Welling, 2016; Zhang et al., 2018; Shi et al., 2018a).

In a classic result, Neal (1995) showed that under certain assumptions, as the width of a shallow
BNN was increased, the limiting distribution is a Gaussian process (GP). Lee et al. (2018) recently
extended this result to deep BNNs. Deep Gaussian Processes (DGP) (Cutajar et al., 2017; Salimbeni
& Deisenroth, 2017) have close connections to BNNs due to similar deep structures. However, the
relationship of finite BNNs to GPs is unclear, and practical variational BNN approximations fail to
match the predictions of the corresponding GP. Furthermore, because the previous analyses related
specific BNN architectures to specific GP kernels, it’s not clear how to design BNN architectures for
a given kernel. Given the rich variety of structural assumptions that GP kernels can represent (Ras-
mussen & Williams, 2006; Lloyd et al., 2014; Sun et al., 2018), there remains a significant gap in
expressive power between BNNs and GPs (not to mention stochastic processes more broadly).

In this paper, we perform variational inference directly on the distribution of functions. Specifically,
we introduce functional variational BNNs (fBNNs), where a BNN is trained to produce a distribution
of functions with small KL divergence to the true posterior over functions. We prove that the
KL divergence between stochastic processes can be expressed as the supremum of marginal KL
divergences at finite sets of points. Based on this, we present functional ELBO (fELBO) training
objective. Then we introduce a GAN-like minimax formulation and a sampling-based approximation
for functional variational inference. To approximate the marginal KL divergence gradients, we adopt
the recently proposed spectral Stein gradient estimator (SSGE) (Shi et al., 2018b).
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Figure 1: Predictions on the toy funcction y = x3. Here a× b represents a hidden layers of b units. Red dots
are 20 training points. The blue curve is the mean of final prediction, and the shaded areas represent standard
derivations. We compare fBNNs and Bayes-by-Backprop (BBB). For BBB, which performs weight-space
inference, varying the network size leads to drastically different predictions. For fBNNs, which perform function-
space inference, we observe consistent predictions for the larger networks. Note that the 1 × 100 factorized
Gaussian fBNNs network is not expressive enough to generate diverse predictions.

Our fBNNs make it possible to specify stochastic process priors which encode richly structured
dependencies between function values. This includes stochastic processes with explicit densities,
such as GPs which can model various structures like smoothness and periodicity (Lloyd et al., 2014;
Sun et al., 2018). We can also use stochastic processes with implicit densities, such as distributions
over piecewise linear or piecewise constant functions. Furthermore, in contrast with GPs, fBNNs
efficiently yield explicit posterior samples of the function. This enables fBNNs to be used in settings
that require explicit minimization of sampled functions, such as Thompson sampling (Thompson,
1933; Russo & Van Roy, 2016) or predictive entropy search (Hernández-Lobato et al., 2014; Wang &
Jegelka, 2017).

One desideratum of Bayesian models is that they behave gracefully as their capacity is increased
(Rasmussen & Ghahramani, 2001). Unfortunately, ordinary BNNs don’t meet this basic requirement:
unless the asymptotic regime is chosen very carefully (e.g. Neal (1995)), BNN priors may have
undesirable behaviors as more units or layers are added. Furthermore, larger BNNs entail more
difficult posterior inference and larger description length for the posterior, causing degeneracy for
large networks, as shown in Figure 1. In contrast, the prior of fBNNs is defined directly over the space
of functions, thus the BNN can be made arbitrarily large without changing the functional variational
inference problem. Hence, the predictions behave well as the capacity increases.

Empirically, we demonstrate that fBNNs generate sensible extrapolations for both explicit periodic
priors and implicit piecewise priors. We show fBNNs outperform competing approaches on both small
scale and large scale regression datasets. fBNNs’ reliable uncertainty estimates enable state-of-art
performance on the contextual bandits benchmark of Riquelme et al. (2018).

2 BACKGROUND

2.1 VARIATIONAL INFERENCE FOR BAYESIAN NEURAL NETWORKS

Given a dataset D = {(xi, yi)}ni=1, a Bayesian neural network (BNN) is defined in terms of a prior
p(w) on the weights, as well as the likelihood p(D|w). Variational Bayesian methods (Hinton &
Van Camp, 1993; Graves, 2011; Blundell et al., 2015) attempt to fit an approximate posterior q(w) to
maximize the evidence lower bound (ELBO):

Lq = Eq[log p(D|w)]−KL[q(w)‖p(w)]. (1)
The most commonly used variational BNN training method is Bayes By Backprop (BBB) (Blundell
et al., 2015), which uses a fully factorized Gaussian approximation to the posterior, i.e. q(w) =
N (w;µ,diag(σ2)). Using the reparameterization trick (Kingma & Welling, 2013), the gradients of
ELBO towards µ, σ can be computed by backpropagation, and then be used for updates.

Most commonly, the prior p(w) is chosen for computational convenience; for instance, independent
Gaussian or Gaussian mixture distributions. Other priors, including log-uniform priors (Kingma
et al., 2015; Louizos et al., 2017) and horseshoe priors (Ghosh et al., 2018; Louizos et al., 2017), were
proposed for specific purposes such as model compression and model selection. But the relationships
of weight-space priors to the functions computed by networks are difficult to characterize.
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2.2 STOCHASTIC PROCESSES

A stochastic process (Lamperti, 2012) F is typically defined as a collection of random variables,
on a probability space (Ω,F , P ). The random variables, indexed by some set X , all take values in
the same mathematical space Y . In other words, given a probability space (Ω,Σ, P ), a stochastic
process can be simply written as {F (x) : x ∈ X}. For any point ω ∈ Ω, F (·, ω) is a sample function
mapping index space X to space Y , which we denote as f for notational simplicity.

For any finite index set x1:n = {x1, ...,xn}, we can define the finite-dimensional marginal joint
distribution over function values {F (x1), · · · , F (xn)}. For example, Gaussian Processes have
marginal distributions as multivariate Gaussians.

The Kolmogorov Extension Theorem (Øksendal, 2003) shows that a stochastic process can be
characterized by marginals over all finite index sets. Specifically, for a collection of joint distributions
ρx1:n

, we can define a stochastic process F such that for all x1:n, ρx1:n
is the marginal joint

distribution of F at x1:n, as long as ρ satisfies the following two conditions:

Exchangeability. For any permutation π of {1, · · · , n}, ρπ(x1:n)(π(y1:n)) = ρx1:n
(y1:n).

Consistency. For any 1 ≤ m ≤ n, ρx1:m
(y1:m) =

∫
ρx1:n

(y1:n)dym+1:n.

2.3 SPECTRAL STEIN GRADIENT ESTIMATOR (SSGE)

When applying Bayesian methods to modern probabilistic models, especially those with neural
networks as components (e.g., BNNs and deep generative models), it is often the case that we have to
deal with intractable densities. Examples include the marginal distribution of a non-conjugate model
(e.g., the output distribution of a BNN), and neural samplers such as GANs (Goodfellow et al., 2014).
A shared property of these distributions is that they are defined through a tractable sampling process,
despite the intractable density. Such distributions are called implicit distributions (Huszár, 2017).

The Spectral Stein Gradient Estimator (SSGE) (Shi et al., 2018b) is a recently proposed method for
estimating the log density derivative function of an implicit distribution, only requiring samples from
the distribution. Specifically, given a continuous differentiable density q(x), and a positive definite
kernel k(x,x′) in the Stein class (Liu et al., 2016) of q, they show

∇xi log q(x) = −
∞∑
j=1

[
Eq∇xiψj(x)

]
ψj(x), (2)

where {ψj}j≥1 is a series of eigenfunctions of k given by Mercer’s theorem: k(x,x′) =∑
j µjψj(x)ψj(x

′). The Nyström method (Baker, 1997; Williams & Seeger, 2001) is used to
approximate the eigenfunctions ψj(x) and their derivatives. The final estimator is given by truncating
the sum in Equation (2) and replacing the expectation by Monte Carlo estimates.

3 FUNCTIONAL VARIATIONAL BAYESIAN NEURAL NETWORKS

3.1 FUNCTIONAL EVIDENCE LOWER BOUND (fELBO)

We introduce function space variational inference analogously to weight space variational inference
(see Section 2.1), except that the distributions are over functions rather than weights. We assume
a stochastic process prior p over functions f : X → Y . This could be a GP, but we also allow
stochastic processes without closed-form marginal densities, such as distributions over piecewise
linear functions. For the variational posterior qφ ∈ Q, we consider a neural network architecture
with stochastic weights and/or stochastic inputs. Specifically, we sample a function from q by
sampling a random noise vector ξ and defining f(x) = gφ(x, ξ) for some function gφ. For example,
standard weight space BNNs with factorial Gaussian posteriors can be viewed this way using the
reparameterization trick (Kingma & Welling, 2013; Blundell et al., 2015). (In this case, φ corresponds
to the means and variances of all the weights.) Note that because a single vector ξ is shared among
all input locations, it corresponds to randomness in the function, rather than observation noise; hence,
the sampling of ξ corresponds to epistemic, rather than aleatoric, uncertainty (Depeweg et al., 2017).
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Functional variational inference maximizes the functional ELBO (fELBO), akin to the weight space
ELBO in Equation (1), except that the distributions are over functions rather than weights.

L(q) := Eq[log p(D|f)]−KL[q||p]. (3)

Here KL[q‖p] is the KL divergence between two stochastic processes. As pointed out in Matthews
et al. (2016), it does not have a convenient form as

∫
log q(f)

p(f)q(f)df due to there is no infinite-
dimensional Lebesgue measure (Eldredge, 2016). Since the KL divergence between stochastic
processes is difficult to work with, we reduce it to a more familiar object: KL divergence between
the marginal distributions of function values at finite sets of points, which we term measurement
sets. Specifically, let X ∈ Xn denote a finite measurement set and PX the marginal distribution of
function values at X. We equate the function space KL divergence to the supremum of marginal KL
divergences over all finite measurement sets:
Theorem 1. For two stochastic processes P and Q,

KL[P‖Q] = sup
n∈N,X∈Xn

KL[PX‖QX]. (4)

Roughly speaking, this result follows because the σ-algebra constructed with the Kolmogorov
Extension Theorem (Section 2.2) is generated by cylinder sets which depend only on finite sets of
points. A full proof is given in Appendix A.

fELBO. Using this characterization of the functional KL divergence, we rewrite the fELBO:

L(q) = Eq[log p(D|f)]− sup
n∈N,X∈Xn

KL[q(fX)||p(fX)]

= inf
n∈N,X∈Xn

∑
(xi,yi)∈D

Eq[log p(yi|f(xi))]−KL[q(fX)||p(fX)]

:= inf
n∈N,X∈Xn

LX(q).

(5)

We also denote Ln(q) := inf
X∈Xn

LX(q) for the restriction to sets of n points. This casts maxi-

mizing the fELBO as a two-player zero-sum game analogous to a generative adversarial network
(GAN) (Goodfellow et al., 2014): one player chooses the stochastic network, and the adversary
chooses the measurement set. Note that the infimum may not be attainable, because the size of
the measurement sets is unbounded. In fact, the function space KL divergence may be infinite, for
instance if the prior assigns measure zero to the set of functions representable by a neural network
(Arjovsky & Bottou, 2017). Observe that GANs face the same issue: because a generator network is
typically limited to a submanifold of the input domain, an ideal discriminator could discriminate real
and fake images perfectly. However, by limiting the capacity of the discriminator, one obtains a useful
training objective. By analogy, we obtain a well-defined and practically useful training objective by
restricting the measurement sets to a fixed finite size. This is discussed further in the next section.

3.2 CHOOSING THE MEASUREMENT SET

As discussed above, we approximate the fELBO using finite measurement sets to have a well-defined
and practical optimization objective. We now discuss how to choose the measurement sets.

Adversarial Measurement Sets. The minimax formulation of the fELBO naturally suggests a
two-player zero-sum game, analogous to GANs, whereby one player chooses the stochastic network
representing the posterior, and the adversary chooses the measurement set.

max
q∈Q

Lm(q) := max
q∈Q

min
X∈Xm

LX(q). (6)

We adopt concurrent optimization akin to GANs (Goodfellow et al., 2014). In the inner loop, we
minimize LX(q) with respect to X; in the outer loop, we maximize LX(q) with respect to q.

Unfortunately, this approach did not perform well in terms of generalization. The measurement set
which maximizes the KL term is likely to be close to the training data, since these are the points
where one has the most information about the function. But the KL term is the only part of the fELBO
encouraging the network to match the prior structure. Hence, if the measurement set is close to the
training data, then nothing will encourage the network to exploit the structured prior for extrapolation.
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Sampling-Based Measurement Sets. Instead, we adopt a sampling-based approach. In order to
use a structured prior for extrapolation, the network needs to match the prior structure both near the
training data and in the regions where it must make predictions. Therefore, we sample measurement
sets which include both (a) random training inputs, and (b) random points from the domain where
one is interested in making predictions. We replace the minimization in Equation (6) with a sampling
distribution c, and then maximize the expected LX(q):

max
q∈Q

EDsEXM∼c LXM ,XDs (q). (7)

where XM are M points independently drawn from c.

Consistency. With the restriction to finite measurement sets, one only has an upper bound on the
true fELBO. Unfortunately, this means the approximation is not a lower bound on the log marginal
likelihood (log-ML) log p(D). Interestingly, if the measurement set is chosen to include all of the
training inputs, then L(q) is in fact a log-ML lower bound:
Theorem 2 (Lower Bound). If the measurement set X contains all the training inputs XD, then

LX(q) = log p(D)−KL[q(fX)‖p(fX|D)] ≤ log p(D). (8)

The proof is given in Appendix B.1.

To better understand the relationship between adversarial and sampling-based inference, we consider
the idealized scenario where the measurement points in both approaches include all training locations,
i.e., X = {XD,XM}. Let fM , fD be the function values at XM ,XD, respectively. By Theorem 2,

LXM ,XD (q) = log p(D)−KL[q(fM , fD)‖p(fM , fD|D)]. (9)
So maximizing LXM ,XD (q) is equivalent to minimizing the KL divergence from the true posterior
on points XM ,XD. Based on this, we have the following consistency theorem that helps justify the
use of adversarial and sampling-based objectives with finite measurement points.
Corollary 3 (Consistency under finite measurement points). Assume that the true posterior p(f |D)
is a Gaussian process and the variational family Q is all Gaussian processes. We have the following
results if M > 1 and supp(c) = X :

arg max
q∈Q

{
min
XM
LXM ,XD (q)

}
︸ ︷︷ ︸

Adversarial

= arg max
q∈Q

{
EXM∼c LXM ,XD (q)

}
︸ ︷︷ ︸

Sampling-Based

= p(f |D).
(10)

The proof is given in Appendix B.2. While it is usually impractical for the measurement set to contain
all the training inputs, it is still reassuring that a proper lower bound can be obtained with a finite
measurement set.

3.3 KL DIVERGENCE GRADIENTS

While the likelihood term of the fELBO is tractable, the KL divergence term remains intractable
because we don’t have an explicit formula for the variational posterior density qφ(fX). (Even if
qφ is chosen to have a tractable density in weight space (Louizos & Welling, 2017), the marginal
distribution over fX is likely intractable.) To derive an approximation, we first observe that
∇φKL[qφ(fX)‖p(fX)] = Eq

[
∇φ log qφ(fX)

]
+ Eξ

[
∇φfX(∇f log q(fX)−∇f log p(fX))

]
.

(11)
The first term (expected score function) in Equation (11) is zero, so we discard it.1 The Jacobian
∇φfX can be exactly multiplied by a vector using backpropagation. Therefore, it remains to estimate
the log-density derivatives∇f log q(fX) and∇f log p(fX).

The entropy derivative ∇f log q(fX) is generally intractable. For priors with tractable marginal
densities such as GPs (Rasmussen & Williams, 2006)2 and Student-t Processes (Shah et al., 2014),
∇f log p(fX) is tractable. However, we are also interested in implicit stochastic process priors,
i.e.∇f log p(fX) is also intractable. Because the SSGE (see Section 2.3) can estimate score functions
for both in-distribution and out-of-distribution samples, we use it to estimate both derivative terms in
all our experiments. (We compute∇f log p(fX) exactly whenever it is tractable.)

1But note that it may be useful as a control variate (Roeder et al., 2017).
2Appendix D.1 introduces an additional fix to deal with the GP kernel matrix stability issue.
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Algorithm 1 Functional Variational Bayesian Neural Networks (fBNNs)

Require: Dataset D, variational posterior g(·), prior p (explicit or implicit), KL weight λ.
Require: Sampling distribution c for random measurement points.

1: while φ not converged do
2: XM ∼ c; DS ⊂ D . sample measurement points
3: fi = g([XM ,XDS ], ξi;φ), i = 1 · · · k. . sample k function values
4: ∆1 = 1

k
1
|Ds|

∑
i

∑
(x,y)∇φ log p(y|fi(x)) . compute log likelihood gradients

5: ∆2 = SSGE(p, f1:k) . estimate KL gradients
6: φ← Optimizer(φ,∆1 − λ∆2) . update the parameters
7: end while

3.4 THE ALGORITHM

Now we present the whole algorithm for fBNNs in Algorithm 1. In each iteration, our measurement
points include a mini-batch Ds from the training data and random points XM from a distribution
c. We forward XDs and XM together through the network g(·;φ) which defines the variational
posterior qφ. Then we try to maximize the following objective corresponding to fELBO:

1

|Ds|
∑

(x,y)∈Ds

Eqφ [log p(y|f(x))]− λKL[q(fDs , fM )‖p(fDs , fM )]. (12)

Here λ is a regularization hyperparameter. In principle, λ should be set as 1
|D| to match fELBO in

Equation (5). However, because the KL in Equation (12) uses a restricted number of measurement
points, it only terms a lower bound of the functional KL divergence KL[q(f)‖p(f)], thus bigger λ is
favored to control overfitting. We used λ = 1

|Ds| in practice, in which case Equation (12) is a proper
lower bound of log p(Ds), as shown in Theorem 2. Moreover, when using GP priors, we injected
Gaussian noise on the function outputs for stability consideration (see Appendix D.1 for details).

4 RELATED WORK

Bayesian neural networks. Variational inference was first applied to neural networks by Peterson
(1987) and Hinton & Van Camp (1993). More recently, Graves (2011) proposed a practical method
for variational inference with fully factorized Gaussian posteriors which used a simple (but biased)
gradient estimator. Improving on that work, Blundell et al. (2015) proposed an unbiased gradient
estimator using the reparameterization trick of Kingma & Welling (2013). There has also been
much work (Louizos & Welling, 2016; Sun et al., 2017; Zhang et al., 2018; Bae et al., 2018) on
modelling the correlations between weights using more complex Gaussian variational posteriors.
Some non-Gaussian variational posteriors have been proposed, such as multiplicative normalizing
flows (Louizos & Welling, 2017) and implicit distributions (Shi et al., 2018a). Neural networks
with dropout were also interpreted as BNNs (Gal & Ghahramani, 2016; Gal et al., 2017). Local
reparameterization trick (Kingma et al., 2015) and Flipout (Wen et al., 2018) try to decorrelate the
gradients within a mini-batch for reducing variances during training. However, all these methods
place priors over the network parameters. Often, spherical Gaussian priors are placed over the weights
for convenience. Other priors, including log-uniform priors (Kingma et al., 2015; Louizos et al.,
2017) and horseshoe priors (Ghosh et al., 2018; Louizos et al., 2017), were proposed for specific
purposes such as model compression and model selection. But the relationships of weight-space
priors to the functions computed by networks are difficult to characterize.

Functional Priors. There have been other recent attempts to train BNNs in the spirit of functional
priors. Flam-Shepherd et al. (2017) trained a BNN prior to mimic a GP prior, but they still required
variational inference in weight space. Noise Contrastive Priors (Hafner et al., 2018) are somewhat
similar in spirit to our work in that they use a random noise prior in the function space. The prior is
incorporated by adding a regularization term to the weight-space ELBO, and is not rich enough to
encourage extrapolation and pattern discovery. Neural Processes (NP) (Garnelo et al., 2018) try to
model any conditional distribution given arbitrary data points, whose prior is specified implicitly by
prior samples. However, in high dimensional spaces, conditional distributions become increasingly
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Figure 2: Extrapolating periodic structure. Red dots denote 20 training points. The green and blue lines
represent ground truth and mean prediction, respectively. Shaded areas correspond to standard deviations. We
considered GP priors with two kernels: RBF (which does not model the periodic structure), and PER + RBF
(which does). In each case, the fBNN makes similar predictions to the exact GP. In contrast, the standard BBB
(BBB-1) cannot even fit the training data, while BBB with scaling down KL by 0.001 (BBB-0.001) manages to
fit training data, but fails to provide sensible extrapolations.

complicated to model. Variational Implicit Processes (VIP) (Ma et al., 2018) are, in a sense, the
reverse of fBNNs: they specify BNN priors and use GPs to approximate the posterior. But the use of
BNN priors means they can’t exploit richly structured GP priors or other stochastic processes.

Scalable Gaussian Processes. Gaussian processes are difficult to apply exactly to large datasets
since the computational requirements scale as O(N3) time, and as O(N2) memory, where N is the
number of training cases. Multiple approaches have been proposed to reduce the computational
complexity. However, sparse GP methods (Lázaro-Gredilla et al., 2010; Snelson & Ghahramani,
2006; Titsias, 2009; Hensman et al., 2013; 2015; Krauth et al., 2016) still suffer for very large dataset,
while random feature methods (Rahimi & Recht, 2008; Le et al., 2013) and KISS-GP (Wilson &
Nickisch, 2015; Izmailov et al., 2017) must be hand-tailored to a given kernel.

5 EXPERIMENTS

Our experiments had two main aims: (1) to test the ability of fBNNs to extrapolate using various struc-
tural motifs, including both implicit and explicit priors, and (2) to test if they perform competitively
with other BNNs on standard benchmark tasks such as regression and contextual bandits.

In all of our experiments, the variational posterior is represented as a stochastic neural network
with independent Gaussian distributions over the weights, i.e. q(w) = N (w;µ,diag(σ2)).3 We
always used the ReLU activation function unless otherwise specified. Measurement points were
sampled uniformly from a rectangle containing the training inputs. More precisely, each coordinate
was sampled from the interval [xmin − d

2 , xmax + d
2 ], where xmin and xmax are the minimum and

maximum input values along that coordinate, and d = xmax − xmin. For experiments where we used
GP priors, we first fit the GP hyperparameters to maximize the marginal likelihood on subsets of the
training examples, and then fixed those hyperparameters to obtain the prior for the fBNNs.

5.1 EXTRAPOLATION USING STRUCTURED PRIORS

Making sensible predictions outside the range of the observed data requires exploiting the underlying
structure. In this section, we consider some illustrative examples where fBNNs are able to use
structured priors to make sensible extrapolations. Appendix C.2 also shows the extrapolation of
fBNNs for a time-series problem.

5.1.1 LEARNING PERIODIC STRUCTURES

Gaussian processes can model periodic structure using a periodic kernel plus a RBF kernel:

k(x, x′) = σ2
1 exp

{
−2 sin2(π|x− x′|/p)

l21

}
+ σ2

2 exp

(
− (x− x′)2

2l22

)
(13)

where p is the period. In this experiment, we consider 20 inputs randomly sampled from the
interval [−2,−0.5] ∪ [0.5, 2], and targets y which are noisy observations of a periodic function:
y = 2 ∗ sin(4x) + ε with ε ∼ N (0, 0.04). We compared our method with Bayes By Backprop
(BBB) (Blundell et al., 2015) (with a spherical Gaussian prior on w) and Gaussian Processes. For

3 One could also use stochastic activations, but we did not find that this gave any improvement.
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Figure 3: Implicit function priors and fBNN approximate posteriors. The leftmost column shows 3 prior
samples. The other three columns show independent runs of the experiment. The red dots denote 40 training
samples. We plot 4 posterior samples and show multiples of the predictive standard derivation as shaded areas.

fBNNs and GPs, we considered both a single RBF kernel (which does not capture the periodic
structure) and PER + RBF as in eq. (13) (which does).4

As shown in Fig. 2, BBB failed to fit the training data, let alone recover the periodic pattern (since its
prior does not encode any periodic structure). For this example, we view the GP with PER + RBF as
the gold standard, since its kernel structure is designed to model periodic functions. Reassuringly,
the fBNNs made very similar predictions to the GPs with the corresponding kernels, though they
predicted slightly smaller uncertainty. We emphasize that the extrapolation results from the functional
prior, rather than the network architecture, which does not encode periodicity, and which is not well
suited to model smooth functions due to the ReLU activation function.

5.1.2 IMPLICIT PRIORS

Because the KL term in the fELBO is estimated using the SSGE, an implicit variational inference
algorithm (as discussed in Section 2.3), the functional prior need not have a tractable marginal density.
In this section, we examine approximate posterior samples and marginals for two implicit priors:
a distribution over piecewise constant functions, and a distribution over piecewise linear functions.
Prior samples are shown in Figure 3; see Appendix D.2 for the precise definitions. In each run of
the experiment, we first sampled a random function from the prior, and then sampled 20 points from
[0, 0.2] and another 20 points from [0.8, 1], giving a training set of 40 data points. To make the
task more difficult for the fBNN, we used the tanh activation function, which is not well suited for
piecewise constant or piecewise linear functions.5

Posterior predictive samples and marginals are shown for three different runs in Figure 3. We observe
that fBNNs made predictions with roughly piecewise constant or piecewise linear structure, although
their posterior samples did not seem to capture the full diversity of possible explanations of the data.
Even though the tanh activation function encourages smoothness, the network learned to generate
functions with sharp transitions.

5.2 PREDICTIVE PERFORMANCE

5.2.1 SMALL SCALE DATASETS

Following previous work (Hernández-Lobato & Adams, 2015), we then experimented with standard
regression benchmark datasets from the UCI collection (Asuncion & Newman, 2007). In particular,
we only used the datasets with less than 2000 data points so that we could fit GP hyperparameters by

4Details: we used a BNN with five hidden layers, each with 500 units. The inputs and targets were normalized
to have zero mean and unit variance. For all methods, the observation noise variance was set to the true value.
We used the trained GP as the prior of our fBNNs. In each iteration, measurement points included all training
examples, plus 40 points randomly sampled from [−5, 5]. We used a training budget of 80,000 iterations, and
annealed the weighting factor of the KL term linearly from 0 to 1 for the first 50,000 iterations.

5Details: the standard deviation of observation noise was chosen to be 0.02. In each iteration, we took all
training examples, together with 40 points randomly sampled from [0, 1]]. We used a fully connected network
with 2 hidden layers of 100 units, and tanh activations. The network was trained for 20,000 iterations.
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Table 1: Averaged test RMSE and log-likelihood for the regression benchmarks.

Test RMSE Test log-likelihood
Dataset BBB Noisy K-FAC FBNN BBB Noisy K-FAC FBNN

Boston 3.171±0.149 2.742±0.125 2.378±0.104 -2.602±0.031 -2.446±0.029 -2.301±0.038
Concrete 5.678±0.087 5.019±0.127 4.935±0.180 -3.149±0.018 -3.039±0.025 -3.096±0.016
Energy 0.565±0.018 0.485±0.023 0.412±0.017 -1.500±0.006 -1.421±0.005 -0.684±0.020
Wine 0.643±0.012 0.637±0.011 0.673±0.014 -0.977±0.017 -0.969±0.014 -1.040±0.013
Yacht 1.174±0.086 0.979±0.077 0.607±0.068 -2.408±0.007 -2.316±0.006 -1.033±0.033

maximizing marginal likelihood exactly. Each dataset was randomly split into training and test sets,
comprising 90% and 10% of the data respectively. This splitting process was repeated 10 times to
reduce variability.6

We compared our fBNNs with Bayes By Backprop (BBB) (Blundell et al., 2015) and Noisy K-FAC
(Zhang et al., 2018). In accordance with Zhang et al. (2018), we report root mean square error
(RMSE) and test log-likelihood. The results are shown in Table 1. On most datasets, our fBNNs
outperformed both BBB and NNG, sometimes by a significant margin.

5.2.2 LARGE SCALE DATASETS

Observe that fBNNs are naturally scalable to large datasets because they access the data only through
the expected log-likelihood term, which can be estimated stochastically. In this section, we verify
this experimentally. We compared fBNNs and BBB with large scale UCI datasets, including Naval,
Protein Structures, Video Transcoding (Memory, Time) and GPU kernel performance. We randomly
split the datasets into 80% training, 10% validation, and 10% test. We used the validating set to select
the hyperparameters and performed early stopping.

Table 2: Averaged test RMSE and log-likelihood for the regression benchmarks.

Test RMSE Test log-likelihood
Dataset N BBB FBNN BBB FBNN

Naval 11934 1.6E-4±0.000 1.2E-4±0.000 6.950±0.052 7.130±0.024
Protein 45730 4.331±0.033 4.326±0.019 -2.892±0.007 -2.892±0.004
Video Memory 68784 1.879±0.265 1.858±0.036 -1.999±0.054 -2.038±0.021
Video Time 68784 3.632±1.974 3.007±0.127 -2.390±0.040 -2.471±0.018
GPU 241600 21.886±0.673 19.50±0.171 -4.505±0.031 -4.400±0.009

Both methods were trained for 80,000 iterations.7 We used 1 hidden layer with 100 hidden units for
all datasets. For the prior of fBNNs, we used a GP with Neural Kernel Network (NKN) kernels as
used in Sun et al. (2018). We note that GP hyperparameters were fit using mini-batches of size 1000
with 10000 iterations. In each iteration, measurement sets consist of 500 training samples and 5 or 50
points from the sampling distribution c, tuned by validation performance. We ran each experiment 5
times, and report the mean and standard deviation in Table 2. More large scale regression results with
bigger networks can be found at Appendix C.4 and Appendix C.5.

5.3 CONTEXTUAL BANDITS

One of the most important applications of uncertainty modelling is to guide exploration in settings
such as bandits, Bayesian optimization (BO), and reinforcement learning. In this section, we
evaluate fBNNs on a recently introduced contextual bandits benchmark (Riquelme et al., 2018). In
contextual bandits problems, the agent tries to select the action with highest reward given some input
context. Because the agent learns about the model gradually, it should balance between exploration

6Details: For all datasets, we used networks with one hidden layer of 50 hidden units. We first fit GP
hyper-parameters using marginal likelihood with a budget of 10,000 iterations. We then trained the observation
variance and kept it lower bounded by GP observation variance. FBNNs were trained for 2,000 epochs. And in
each iteration, measurement points included 20 training examples, plus 5 points randomly sampled.

7We tune the learning rate from [0.001, 0.01]. We tuned between not annealing the learning rate or annealing
it by 0.1 at 40000 iterations. We evaluated the validating set in each epoch, and selected the epoch for
testing based on the validation performance. To control overfitting, we used Gamma(6., 6.) prior following
(Hernández-Lobato & Adams, 2015) for modelling observation precision and perform inference.
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Table 3: Contextual bandits regret. Results are relative to the cumulative regret of the Uniform algorithm.
Numbers after the algorithm are the network sizes. We report the mean and standard derivation over 10 trials.

M. RANK M. VALUE MUSHROOM STATLOG COVERTYPE FINANCIAL JESTER ADULT
FBNN 1× 50 4.7 41.9 21.38 ± 7.00 8.85 ± 4.55 47.16 ± 2.39 9.90 ± 2.40 75.55 ± 5.51 88.43 ± 1.95
FBNN 2× 50 6.5 43.0 24.57 ± 10.81 10.08 ± 5.66 49.04 ± 3.75 11.83 ± 2.95 73.85 ± 6.82 88.81 ± 3.29
FBNN 3× 50 7 45.0 34.03 ± 13.95 7.73 ± 4.37 50.14 ± 3.13 14.14 ± 1.99 74.27 ± 6.54 89.68 ± 1.66
FBNN 1× 500 3.8 41.3 21.90 ± 9.95 6.50 ± 2.97 47.45 ± 1.86 7.83 ± 0.77 74.81 ± 5.57 89.03 ± 1.78
FBNN 2× 500 4.2 41.2 23.93 ± 11.59 7.98 ± 3.08 46.00 ± 2.01 10.67 ± 3.52 68.88 ± 7.09 89.70 ± 2.01
FBNN 3× 500 4.2 40.9 19.07 ± 4.97 10.04 ± 5.09 45.24 ± 2.11 11.48 ± 2.20 69.42 ± 7.56 90.01 ± 1.70
MULTITASKGP 4.3 41.7 20.75 ± 2.08 7.25 ± 1.80 48.37 ± 3.50 8.07 ± 1.13 76.99 ± 6.01 88.64 ± 3.20
BBB 1× 50 10.8 52.7 24.41 ± 6.70 25.67 ± 3.46 58.25 ± 5.00 37.69 ± 15.34 75.39 ± 6.32 95.07 ± 1.57
BBB 1× 500 13.7 66.2 26.41 ± 8.71 51.29 ± 11.27 83.91 ± 4.62 57.20 ± 7.19 78.94 ± 4.98 99.21 ± 0.79
BBALPHADIV 15 83.8 61.00 ± 6.47 70.91 ± 10.22 97.63 ± 3.21 85.94 ± 4.88 87.80 ± 5.08 99.60 ± 1.06
PARAMNOISE 10 47.9 20.33 ± 13.12 13.27 ± 2.85 65.07 ± 3.47 17.63 ± 4.27 74.94 ± 7.24 95.90 ± 2.20
NEURALLINEAR 10.8 48.8 16.56 ± 11.60 13.96 ± 1.51 64.96 ± 2.54 18.57 ± 2.02 82.14 ± 3.64 96.87 ± 0.92
LINFULLPOST 8.3 46.0 14.71 ± 0.67 19.24 ± 0.77 58.69 ± 1.17 10.69 ± 0.92 77.76 ± 5.67 95.00 ± 1.26
DROPOUT 5.5 41.7 12.53 ± 1.82 12.01 ± 6.11 48.95 ± 2.19 14.64 ± 3.95 71.38 ± 7.11 90.62 ± 2.21
RMS 6.5 43.9 15.29 ± 3.06 11.38 ± 5.63 58.96 ± 4.97 10.46 ± 1.61 72.09 ± 6.98 95.29 ± 1.50
BOOTRMS 4.7 42.6 18.05 ± 11.20 6.13 ± 1.03 53.63 ± 2.15 8.69 ± 1.30 74.71 ± 6.00 94.18 ± 1.94
UNIFORM 16 100 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

and exploitation to maximize the cumulative reward. Thompson sampling (Thompson, 1933) is
one promising approach which repeatedly samples from the posterior distribution over parameters,
choosing the optimal action according to the posterior sample.

We compared our fBNNs with the algorithms benchmarked in (Riquelme et al., 2018). We ran
the experiments for all algorithms and tasks using the default settings open sourced by Riquelme
et al. (2018). For fBNNs, we kept the same settings, including batchsize (512), training epochs
(100) and training frequency (50). For the prior, we use the multi-task GP of Riquelme et al.
(2018). Measurement sets consisted of training batches, combined with 10 points sampled from data
regions. We ran each experiment 10 times; the mean and standard derivation are reported in Table 3
(Appendix C.1 has the full results for all experiments.). Similarly to Riquelme et al. (2018), we also
report the mean rank and mean regret.

As shown in Table 3, fBNNs outperformed other methods by a wide margin. Additionally, fBNNs
maintained consistent performance even with deeper and wider networks. By comparison, BBB
suffered significant performance degradation when the hidden size was increased from 50 to 500.
This is consistent with our hypothesis that functional variational inference can gracefully handle
networks with high capacity.

5.4 BAYESIAN OPTIMIZATION

Another domain where efficient exploration requires accurate uncertainty modeling is Bayesian
optimization. Our experiments with Bayesian optimization are described in App C.3. We compared
BBB, RBF Random Feature (Rahimi & Recht, 2008) and our fBNNs in the context of Max-value
Entropy Search (MES) (Wang & Jegelka, 2017), which requires explicit function samples for Bayesian
Optimization. We performed BO over functions sampled from Gaussian Processes corresponding
to RBF, Matern12 and ArcCosine kernels, and found our fBNNs achieved comparable or better
performance than RBF Random Feature.

6 CONCLUSIONS

In this paper we investigated variational inference between stochastic processes. We proved that the
KL divergence between stochastic processes equals the supremum of KL divergence for marginal
distributions over all finite measurement sets. Then we presented two practical functional variational
inference approaches: adversarial and sampling-based. Adopting BNNs as the variational posterior
yields our functional variational Bayesian neural networks. Empirically, we demonstrated that fBNNs
extrapolate well over various structures, estimate reliable uncertainties, and scale to large datasets.
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A FUNCTIONAL KL DIVERGENCE

A.1 BACKGROUND

We begin with some basic terminology and classical results. See Gray (2011) and Folland (2013) for
more details.
Definition 1 (KL divergence). Given a probability measure space (Ω,F , P ) and another probability
measure M on the smae space, the KL divergence of P with respect to M is defined as

KL[P‖M ] = sup
Q

KL[PQ‖MQ]. (14)

where the supremum is taken over all finite measurable partitions Q = {Qi}ni=1 of Ω, and PQ,MQ
represent the discrete measures over the partition Q, respectively.
Definition 2 (Pushforward measure). Given probability spaces (X,FX , µ) and (Y,FY , ν), we say
that measure ν is a pushforward of µ if ν(A) = µ(f−1(A)) for a measurable f : X → Y and any
A ∈ FY . This relationship is denoted by ν = µ ◦ f−1.
Definition 3 (Canonical projection map). Let T be an arbitrary index set, and {(Ωt,Ft)}t∈T be
some collection of measurable spaces. For each subset J ⊂ I ⊂ T , define ΩJ =

∏
t∈J Ωt. We call

πI→J the canonical projection map from I to J if

πI→J(w) = w|J ∈ ΩJ ,∀w ∈ ΩI . (15)

Where w|J is defined as, if w = (wi)i∈I , then w|J = (wi)i∈J .
Definition 4 (Cylindrical σ-algebra). Let T be an arbitrary index set, (Ω,F) be a measurable space.
Suppose

ΩT = {f : f(t) ∈ Ω, t ∈ T}. (16)
is the set of Ω-valued functions. A cylinder subset is a finitely restricted set defined as

Ct1,··· ,tn(B1, · · · , Bn) = {f ∈ ΩT : f(ti) ∈ Bi, 1 ≤ i ≤ n}. (17)

Let

Gt1,··· ,tn = {Ct1,··· ,tn(B1, · · · , Bn) : Bi ∈ F , 1 ≤ i ≤ n}

GΩT =
∞
∪
n=1

∪
ti∈T,i≤n

Gt1,··· ,tn (18)

We call the σ-algebra FT := σ(GΩT ) as the cylindrical σ-algebra of ΩT , and (ΩT ,FT ) the
cylindrical measurable space.

The Kolmogorov Extension Theorem is the foundational result used to construct many stochastic
processes, such as Gaussian processes. A particularly relevant fact for our purposes is that this theorem
defines a measure on a cylindrical measurable space, using only canonical projection measures on
finite sets of points.
Theorem 4 (Kolmogorov extension theorem (Øksendal, 2003)). Let T be an arbitrary index set.
(Ω,F) is a standard measurable space, whose cylindrical measurable space on T is (ΩT ,FT ).
Suppose that for each finite subset I ⊂ T , we have a probability measure µI on ΩI , and these
measures satisfy the following compatibility relationship: for each subset J ⊂ I , we have

µJ = µI ◦ π−1
I→J . (19)

Then there exists a unique probability measure µ on ΩT such that for all finite subsets I ⊂ T ,

µI = µ ◦ π−1
T→I . (20)

In the context of Gaussian processes, µ is a Gaussian measure on a separable Banach space, and the
µI are marginal Gaussian measures at finite sets of input positions (Mallasto & Feragen, 2017).
Theorem 5. Suppose that M and P are measures on the sequence space corresponding to outcomes
of a sequence of random variablesX0, X1, · · · with alphabetA. Let Fn = σ(X0, · · · , Xn−1), which
asymptotically generates the σ-algebra σ(X0, X1, · · · ). Then

KL[P‖M ] = lim
n→∞

KL[PFn‖MFn ] (21)

Where PFn ,MFn denote the pushforward measures with f : f(X0, X1, · · · ) = f(X0, · · · , Xn−1),
respectively.
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A.2 FUNCTIONAL KL DIVERGENCE

Here we clarify what it means for the measurable sets to only depend on the values at a countable set
of points. To begin with, we firstly introduce some definitions.

Definition 5 (Replacing function). For f ∈ ΩT , t0 ∈ T, v ∈ Ω, a replacing function frt0,v is,

frt0,v(t) =

{
f(t), t 6= t0
v, t = t0

. (22)

Definition 6 (Restricted Indices). For H ∈ FT , we define the free indices τ c(H):

τ c(H) = {t | for any f ∈ H,we have frt,v ∈ H for all v ∈ Ω} (23)

The complement τ(H) = T\τ c(H) is the set of restricted indices. For example, for the set H =
{f |f ∈ RT , f(0) ∈ (−1, 2), f(1) ∈ (0, 1)}, the restricted indices are τ(H) = {0, 1}.

Restricted index sets satisfy the following properties:

• for any H ∈ FT , τ(H) = τ(Hc).

• for any indices set I and measureable sets {Hi;Hi ∈ FT }i∈I , τ( ∪
i∈I
Hi) ⊆ ∪

i∈I
τ(Hi).

Having defined restricted indices, a key step in our proof is to show that, for any measureable set H
in a cylindrical measureable space (ΩT ,FT ), its set of restricted indices τ(H) is countable.

Lemma 6. Given a cylindrical measureable space (ΩT ,FT ), for any H ∈ FT , τ(H) is countable.

Proof. DefineH = {H|H ∈ FT , τ(H) is countable},H ⊆ FT . By the two properties of restricted
indices in Definition 6,H is a σ-algebra on ΩT .

On the other hand, FT = σ(GΩT ). Because any set in GΩT has finite restricted indices, GΩT ⊆ H.
ThereforeH is a σ-algebra containing GΩT . ThusH ⊇ σ(GΩT ) = FT .

Overall, we concludeH = FT . For any H ∈ FT , τ(H) is countable.

Theorem 7. For two stochastic processes P,M on a cylindrical measurable space (ΩT ,FT ), the
KL divergence of P with respect to M satisfies,

KL[P‖M ] = sup
Td

KL[PTd‖MTd ],

where the supremum is over all finite indices subsets Td ⊆ T , and PTd ,MTd represent the canonical
projection maps πT→Td of P,M , respectively.

Proof. Recall that stochastic processes are defined over a cylindrical σ-algebra FT . By Lemma 6,
for every set H ∈ FT , the restricted index set τ(H) is countable. Our proof proceeds in two steps:

1. Any finite measurable partition of ΩT corresponds to a finite measurable partition over some
ΩTc , where Tc is a countable index set.

2. Correspondence between partitions implies correspondence between KL divergences.

3. KL divergences over a countable indices set can be represented as supremum of KL diver-
gences over finite indices sets.

Step 1. By Definition 1,
KL[P‖M ] = sup

QΩT

KL[PQΩT
‖MQΩT

],

where the sup is over all finite measurable partitions of the function space ΩT , denoted by QΩT :

QΩT = {Q(1)

ΩT
, . . . , Q

(k)

ΩT
|
k⋃
i=1

Q
(i)

ΩT
= ΩT , Q

(i)

ΩT
∈ FT are disjoint sets, k ∈ N+}.
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By Lemma 6, each τ(Q
(i)

ΩT
) is countable. So the combined restricted index set Tc :=

k⋃
i=1

τ(Q
(i)

ΩT
) is

countable.

Consider the canonical projection mapping πT→Tc , which induces a partition on ΩTc , denoted by
QΩTc :

Q
(i)

ΩTc
= πT→Tc(Q

(i)

ΩT
).

The pushforward measure defined by this mapping is

PTc = P ◦ π−1
T→Tc , MTc = M ◦ π−1

T→Tc .

Step 2. Then we have

KL[P‖M ] = sup
QΩT

KL[PQΩT
‖MQΩT

] (24)

= sup
QΩT

∑
i

P (Q
(i)

ΩT
) log

P (Q
(i)

ΩT
)

M(Q
(i)

ΩT
)

(25)

= sup
Tc

sup
Q

ΩTc

∑
i

PTc(Q
(i)

ΩTc
) log

PTc(Q
(i)

ΩTc
)

MTc(Q
(i)

ΩTc
)

(26)

= sup
Tc

KL[PTc‖MTc ], (27)

Step 3. Denote D(Tc) as the collection of all finite subsets of Tc. For any finite set Td ∈ D(Tc), we
denote PTd as the pushforward measure of PTc on ΩTd . From the Kolmogorov Extension Theorem
(Theorem 4), we know that PTd corresponds to the finite marginals of P at ΩTd . Because Tc is
countable, based on Theorem 5, we have,

KL[P‖M ] = sup
Tc

KL[PTc‖MTc ]

= sup
Tc

sup
Td∈D(Tc)

KL[PTd‖MTd ]. (28)

We are left with the last question: whether each Td is contained in some D(Tc) ?

For any finite indices set Td, we build a finite measureable partitionQ. Let Ω = Ω0∪Ω1,Ω0∩Ω1 = ∅.
Assume |Td| = K,Td = {Td(k)}k=1:K , let I = {Ii|Ii = (Ii1, I

i
2, · · · IiK)}i=1:2K to be all K-length

binary vectors. We define the partition,

Q = {Qi}i=1:2K , (29)

Qi =
K
∩
k=1
{f |
{
f(Tf (k)) ∈ Ω0, I

i(k) = 0

f(Tf (k)) ∈ Ω1, I
i(k) = 1

}. (30)

Through this settting, Q is a finite parition of ΩT , and Tc(Q) = Td. Therefore Td in Equation (28)
can range over all finite index sets, and we have proven the theorem.

KL[P‖M ] = sup
Td

KL[PTd‖MTd ]. (31)

A.3 KL DIVERGENCE BETWEEN CONDITIONAL STOCHASTIC PROCESSES

In this section, we give an example of computing the KL divergence between two conditional
stochastic processes. Consider two datasets D1,D2, the KL divergence between two conditional
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stochastic processes is

KL[p(f |D1)‖p(f |D2)] = sup
n,x1:n

KL[p(fx|D1)‖p(fx|D2)]

= sup
n,x1:n

Ep(fx,fD1∪D2 |D1) log
p(fx, fD1∪D2 |D1)

p(fx, fD1∪D2 |D2)

= sup
n,x1:n

Ep(fx,fD1∪D2 |D1) log
p(fD1∪D2 |D1)p(fx|fD1∪D2 ,D1)

p(fD1∪D2 |D2)p(fx|fD1∪D2 ,D2)

= sup
n,x1:n

Ep(fx,fD1∪D2 |D1) log
p(fD1∪D2 |D1)p(fx|fD1∪D2)

p(fD1∪D2 |D2)p(fx|fD1∪D2)

= KL[p(fD1∪D2 |D1)‖p(fD1∪D2 |D2)] (32)

Therefore, the KL divergence between these two stochastic processes equals to the marginal KL
divergence on the observed locations. When D2 = ∅, p(f |D2) = p(f), this shows the KL divergence
between posterior process and prior process are the marginal KL divergence on observed locations.

This also justifies our usage of M measurement points in the adversarial functional VI and sampling-
based functional VI of Section 3.

B ADDITIONAL PROOFS

B.1 PROOF FOR EVIDENCE LOWER BOUND

This section provides proof for Theorem 2.

Proof of Theorem 2. Let XM = X\XD be measurement points which aren’t in the training data.

LX(q) = Eq[log p(yD|fD) + log p(fX)− log qφ(fX)]

= Eq[log p(yD|fD) + log p(fD, fM )− log qφ(fD, fM )]

= log p(D)− Eq
[
log

qφ(fD, fM )p(D)

p(yD|fD)p(fD, fM )

]
= log p(D)− Eq

[
log

qφ(fD, fM )

p(fD, fM |D)

]
= log p(D)−KL[qφ(fD, fM )‖p(fD, fM |D)] (33)

B.2 CONSISTENCY FOR GAUSSIAN PROCESSES

This section provides proof for consistency in Corollary 3.

Proof of Corollary 3. By the assumption that both q(D) and p(f |D) are Gaussian processes:

p(f(·)|D) : GP(mp(·), kp(·, ·)), (34)
q(f(·)) : GP(mq(·), kq(·, ·)), (35)

where m and k denote the mean and covariance functions, respectively.

In this theorem, we also assume the measurement points cover all training locations as in Equation (9),
where we have (based on Theorem 2):

LX(q) = log p(D)−KL[q(fD, fM )‖p(fD, fM |D)] ≤ log p(D). (36)

Therefore, when the variational posterior process is sufficiently expressive and reaches its optimum,
we must have KL[q(fD, fM )‖p(fD, fM |D)] = 0 and thus KL[q(fM )‖p(fM |D)] = 0 at XM =
[x1, . . . ,xM ]> ∈ XM , which implies

N (mp(X
M ), kp(X

M ,XM )) = N (mq(X
M ), kq(X

M ,XM )). (37)
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(a) BBB (b) FBNN (c) GP

Figure 4: Predictions on Mauna datasets. Red dots are training points. The blue line is the mean prediction and
shaded areas correspond to standard deviations.

Here m(X) = [m(x1), . . . ,m(xM )]>, and
[
k(XM ,XM )

]
ij

= k(xi,xj).

Remember that in sampling-based functional variational inference, XM are randomly sampled from
c(x), and supp(c) = X . Thus when it reaches optimum, we have EXM∼cKL[q(fM )‖p(fM |D)] = 0.
Because the KL divergence is always non-negative, we have that KL[q(fM )‖p(fM |D)] = 0 for
any XM ∈ XM . For adversarial functional variational inference, this is also obvious due to
sup
XM

KL[q(fM )‖p(fM |D)] = 0.

So we have that Equation (37) holds for any XM ∈ XM . Given M > 1, then for ∀1 ≤ i < j ≤M ,
we have mp(xi) = mq(xi), and kp(xi,xj) = kq(xi,xj), which implies

mp(·) = mq(·), kp(·, ·) = kq(·, ·). (38)

Because GPs are uniquely determined by their mean and covariance functions, we arrive at the
conclusion.

C ADDITIONAL EXPERIMENTS

C.1 CONTEXTUAL BANDITS

Here we present the full table for the contextual bandits experiment.

Table 4: Contextual bandits regret. Results are relative to the cumulative regret of the Uniform algorithm.
Numbers after the algorithm are the network sizes. We report the mean and standard derivation over 10 trials.

M. RANK M. VALUE MUSHROOM STATLOG COVERTYPE FINANCIAL JESTER ADULT CENSUS WHEEL
FBNN 1× 50 5.875 46.0 21.38 ± 7.00 8.85 ± 4.55 47.16 ± 2.39 9.90 ± 2.40 75.55 ± 5.51 88.43 ± 1.95 51.43 ± 2.34 65.05 ± 20.10
FBNN 2× 50 7.125 47.0 24.57 ± 10.81 10.08 ± 5.66 49.04 ± 3.75 11.83 ± 2.95 73.85 ± 6.82 88.81 ± 3.29 50.09 ± 2.74 67.76 ± 25.74
FBNN 3× 50 8.125 48.9 34.03 ± 13.95 7.73 ± 4.37 50.14 ± 3.13 14.14 ± 1.99 74.27 ± 6.54 89.68 ± 1.66 52.37 ± 3.03 68.60 ± 22.24
FBNN 1× 500 4.875 45.3 21.90 ± 9.95 6.50 ± 2.97 47.45 ± 1.86 7.83 ± 0.77 74.81 ± 5.57 89.03 ± 1.78 50.73 ± 1.53 63.77 ± 25.80
FBNN 2× 500 5.0 44.2 23.93 ± 11.59 7.98 ± 3.08 46.00 ± 2.01 10.67 ± 3.52 68.88 ± 7.09 89.70 ± 2.01 51.87 ± 2.38 54.57 ± 32.92
FBNN 3× 500 4.75 44.6 19.07 ± 4.97 10.04 ± 5.09 45.24 ± 2.11 11.48 ± 2.20 69.42 ± 7.56 90.01 ± 1.70 49.73 ± 1.35 61.57 ± 21.73
MULTITASKGP 5.875 46.5 20.75 ± 2.08 7.25 ± 1.80 48.37 ± 3.50 8.07 ± 1.13 76.99 ± 6.01 88.64 ± 3.20 57.86 ± 8.19 64.15 ± 27.08
BBB 1× 50 11.5 56.6 24.41 ± 6.70 25.67 ± 3.46 58.25 ± 5.00 37.69 ± 15.34 75.39 ± 6.32 95.07 ± 1.57 63.96 ± 3.95 72.37 ± 16.87
BBB 1× 500 13.375 68.1 26.41 ± 8.71 51.29 ± 11.27 83.91 ± 4.62 57.20 ± 7.19 78.94 ± 4.98 99.21 ± 0.79 92.73 ± 9.13 55.09 ± 13.82
BBALPHADIV 16.0 87.4 61.00 ± 6.47 70.91 ± 10.22 97.63 ± 3.21 85.94 ± 4.88 87.80 ± 5.08 99.60 ± 1.06 100.41 ± 1.54 95.75 ± 12.31
PARAMNOISE 10.125 53.0 20.33 ± 13.12 13.27 ± 2.85 65.07 ± 3.47 17.63 ± 4.27 74.94 ± 7.24 95.90 ± 2.20 82.67 ± 3.86 54.38 ± 16.20
NEURALLINEAR 10.375 52.3 16.56 ± 11.60 13.96 ± 1.51 64.96 ± 2.54 18.57 ± 2.02 82.14 ± 3.64 96.87 ± 0.92 78.94 ± 1.87 46.26 ± 8.40
LINFULLPOST 9.25 — 14.71 ± 0.67 19.24 ± 0.77 58.69 ± 1.17 10.69 ± 0.92 77.76 ± 5.67 95.00 ± 1.26 CRASH 33.88 ± 15.15
DROPOUT 7.625 48.3 12.53 ± 1.82 12.01 ± 6.11 48.95 ± 2.19 14.64 ± 3.95 71.38 ± 7.11 90.62 ± 2.21 58.53 ± 2.35 77.46 ± 27.58
RMS 8.875 53.0 15.29 ± 3.06 11.38 ± 5.63 58.96 ± 4.97 10.46 ± 1.61 72.09 ± 6.98 95.29 ± 1.50 85.29 ± 5.85 75.62 ± 30.43
BOOTRMS 7.5 51.9 18.05 ± 11.20 6.13 ± 1.03 53.63 ± 2.15 8.69 ± 1.30 74.71 ± 6.00 94.18 ± 1.94 82.27 ± 1.84 77.80 ± 29.55
UNIFORM 16.75 100 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

C.2 TIME-SERIES EXTRAPOLATION

Besides the toy experiments, we would like to examine the extrapolation behavior of our method
on real-world datasets. Here we consider a classic time-series prediction problem concerning the
concentration of CO2 in the atmosphere at the Mauna Loa Observatory, Hawaii (Rasmussen &
Williams, 2006). The training data is given from 1958 to 2003 (with some missing values). Our goal
is to model the prediction for an equally long period after 2003 (2004-2048). In Figure 4 we draw the
prediction results given by BBB, fBNN, and GP. We used the same BNN architecture for BBB and
fBNN: a ReLU network with 2 hidden layers, each with 100 units, and the input is a normalized year
number augmented by its sin transformation, whose period is set to be one year. This special design
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allows both BBB and fBNN to fit the periodic structure more easily. Both models are trained for 30k
iterations by the Adam optimizer, with learning rate 0.01 and batch size 20. For fBNN the prior is the
same as the GP experiment, whose kernel is a combination of RBF, RBF×PER (period set to one
year), and RQ kernels, as suggested in Rasmussen & Williams (2006). Measurement points include
20 training samples and 10 points sampled from U[1958, 2048], and we jointly train the prior GP
hyperparameters with fBNN.

In Figure 4 we could see that the performance of fBNN closely matches the exact prediction by GP.
Both of them give visually good extrapolation results that successfully model the long-term trend,
local variations, and periodic structures. In contrast, weight-space prior and inference (BBB) neither
captures the right periodic structure, nor does it give meaningful uncertainty estimates.

C.3 BAYESIAN OPTIMIZATION

(a) RBF (b) ArcCosine (c) Matern12

Figure 5: Bayesian Optimization. We plot the minimal value found along iterations. We compare fBNN,
BBB and Random Feature methods for three kinds of functions corresponding to RBF, Order-1 ArcCosine and
Matern12 GP kernels. We plot mean and 0.2 standard derivation over 10 independent runs.

In this section, we adopt Bayesian Optimization to explore the advantage of coherent posteriors.
Specifically, we use Max Value Entropy Search (MES) (Wang & Jegelka, 2017), which tries to
maximize the information gain about the minimum value y?,

αt(x) = H(p(y|Dt,x))−H(p(y|Dt,x, y
?)) ≈ 1

K

∑
y?

[
γy?(x)φ(γy?(x))

Ψ(γy?(x))
− log(Ψ(γy?(x)))]

Where φ and Ψ are probability density function and cumulative density function of a standard normal
distribution, respectively. The y? is the minimum of a random function from the posterior, and
γy?(x) = µt(x)−y?

σt(x) .

With a probabilistic model, we can compute or estimate the mean µt(x) and the standard deviation
σt(x). However, to compute the MES acquisition function, samples y? of function minima are
required as well, which leads to difficulties. Typically when we model the data with a GP, we can get
the posterior on a specific set of points but we don’t have access to the extremes of the underlying
function. In comparison, if the function posterior is represented in a parametric form, we can perform
gradient decent easily and search for the minima.

We use 3-dim functions sampled from some Gaussian process prior for Bayesian optimization.
Concretely, we experiment with samples from RBF, Order-1 ArcCosine and Matern12 kernels. We
compare three parametric approaches: fBNN, BBB and Random Feature (Rahimi & Recht, 2008).
For fBNN, we use the true kernel as functional priors. In contrast, ArcCosine and Matern12 kernels
do not have simple explicit random feature expressions, therefore we use RBF random features for
all three kernels. When looking for minima, we sample 10 y?. For each y?, we perform gradient
descent along the sampled parametric function posterior with 30 different starting points. We use 500
dimensions for random feature. We use network with 5 × 100 for fBNN. For BBB, we select the
network within 1 × 100, 3 × 100. Because of the similar issue in Figure 1, using larger networks
won’t help for BBB. We use batch size 30 for both fBNN and BBB. The measurement points contain
30 training points and 30 points uniformly sampled from the known input domain of functions. For
training, we rescale the inputs to [0, 1], and we normalize outputs to have zero mean and unit variance.
We train fBNN and BBB for 20000 iterations and anneal the coefficient of log likelihood term linearly
from 0 to 1 for the first 10000 iterations. The results with 10 runs are shown in Figure 5.
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As seen from Figure 5, fBNN and Random feature outperform BBB by a large margin on all three
functions. We also observe fBNN performs slightly worse than random feature in terms of RBF
priors. Because random feature method is exactly a GP with RBF kernel asymptotically, it sets a
high standard for the parametric approaches. In contrast, fBNN outperforms random feature for both
ArcCosine and Matern12 functions. This is because of the big discrepancy between such kernels and
RBF random features. Because fBNN use true kernels, it models the function structures better. This
experiment highlights a key advantage of fBNN, that fBNN can learn parametric function posteriors
for various priors.

C.4 VARYING DEPTH

Table 5: Averaged test RMSE and log-likelihood for the regression benchmarks. We compared BBB, fBNNs
and VFE. The numbers a× b represent networks with a hidden layers of b units.

Test RMSE Test log-likelihood
Dataset N BBB FBNN VFE BBB FBNN VFE

Kin8nm (1×100) 8192 0.082±0.001 0.079±0.001 0.071±0.001 1.082±0.008 1.112±0.007 1.241±0.005
Kin8nm (2×100) 8192 0.074±0.001 0.075±0.001 0.071±0.001 1.191±0.006 1.151±0.007 1.241±0.005
Kin8nm (5×500) 8192 0.266±0.003 0.076±0.001 0.071±0.001 -0.279±0.007 1.144±0.008 1.241±0.005
Power Plant (1×100) 9568 4.127±0.057 4.099±0.051 3.092±0.052 -2.837±0.013 -2.833±0.012 -2.531±0.018
Power Plant (2×100) 9568 4.081±0.054 3.830±0.055 3.092±0.052 -2.826±0.013 -2.763±0.013 -2.531±0.018
Power Plant (5×500) 9568 17.166±0.099 3.542±0.054 3.092±0.052 -4.286±0.007 -2.691±0.016 -2.531±0.018

To compare with Variational Free Energy (VFE) (Titsias, 2009), we experimented with two medium-
size datasets so that we can afford to use VFE with full batch. For VFE, we used 1000 inducing
points initialized by k-means of training point. For BBB and FBNNs, we used batch size 500 with a
budget of 2000 epochs. As shown in Table 5, FBNNs performed slightly worse than VFE, but the
gap became smaller as we used larger networks. By contrast, BBB totally failed with large networks
(5 hidden layers with 500 hidden units each layer). Finally, we note that the gap between FBNNs and
VFE diminishes if we use fewer inducing points (e.g., 300 inducing points).

C.5 LARGE SCALE REGRESSION WITH DEEPER NETWORKS

Table 6: Large scale regression. BBB and FBNN used networks with 5 hidden layers of 100 units.

Test RMSE Test log-likelihood
Dataset N BBB FBNN SVGP BBB FBNN SVGP

Naval 11934 1.3E-4±0.000 0.7E-4±0.000 0.3E-4±0.000 6.968±0.014 7.237±0.009 8.523±0.06
Protein 45730 3.684±0.041 3.659±0.026 3.740±0.015 -2.715±0.012 -2.721±0.010 -2.736±0.003
Video Memory 68784 0.984±0.074 0.967±0.040 1.417±0.234 -1.231±0.078 -1.337±0.058 -1.723±0.179
Video Time 68784 1.056±.0.178 1.083±0.288 3.216±1.154 -1.180±0.070 -1.468±0.279 -2.475±0.409
GPU 241600 5.136±0.087 4.806±0.116 21.287±0.571 -2.992±0.013 -2.973±0.019 -4.557±0.021

In this section we experimented on large scale regression datasets with deeper networks. For BBB
and fBNNs, we used a network with 5 hidden layers of 100 units, and kept all other settings the
same as Section 5.2.2. We also compared with the stochastic variational Gaussian processes (SVGP)
(Hensman et al., 2013), which provides a principled mini-batch training for sparse GP methods, thus
enabling GP to scale up to large scale datasets. For SVGP, we used 1000 inducing points initialized
by k-means of training points (Note we cannot afford larger size of inducing points because of the
cubic computational cost). We used batch size 2000 and iterations 60000 to match the training time
with fBNNs. Likewise for BNNs, we used validation set to tune the learning rate from {0.01, 0.001}.
We also tuned between not annealing the learning rate or annealing it by 0.1 at 30000 iterations. We
evaluated the validating set in each epoch, and selected the epoch for testing based on the validation
performance. The averaged results over 5 runs are shown in Table 6.

As shown in Table 6, SVGP performs better than BBB and fBNNs in terms of the smallest naval
dataset. However, with dataset size increasing, SVGP performs worse than BBB and fBNNs by a
large margin. This stems from the limited capacity of 1000 inducing points, which fails to act as
sufficient statistics for large datasets. In contrast, BNNs including BBB and fBNNs can use larger
networks freely without the intractable computational cost.
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D IMPLEMENTATION DETAILS

D.1 INJECTED NOISES FOR GAUSSIAN PROCESS PRIORS

For Gaussian process priors, p(fX) is a multivariate Gaussian distribution, which has an explicit
density. Therefore, we can compute the gradients∇f log pφ(fX) analytically.

In practice, we found that the GP kernel matrix suffers from stability issues. To stabilize the gradient
computation, we propose to inject a small amount of Gaussian noise on the function values, i.e., to
instead estimate the gradients of∇φKL[qφ∗pγ‖p∗pγ ], where pγ = N (0, γ2) is the noise distribution.
This is like the instance-noise trick that is commonly used for stabilizing GAN training (Sønderby
et al., 2016). Note that injecting the noise on the GP prior is equivalent to have a kernel matrix
K + γ2I. Beyond that, injecting the noise on the parametric variational posterior does not affect the
reparameterization trick either. Therefore all the previous estimation formulas still apply.

D.2 IMPLICIT PRIORS

Our method is applicable to implicit priors. We experiment with piecewise constant prior and
piecewise linear prior. Concretely, we randomly generate a function f : [0, 1]→ R with the specific
structure. To sample piecewise functions, we first sample n ∼ Poisson(3.), then we have n+1 pieces
within [0, 1]. We uniformly sample n locations from [0, 1] as the changing points. For piecewise
constant functions, we uniformly sample n + 1 values from [0, 1] as the function values in each
piece; For piecewise linear functions, we uniformly sample n+ 1 values for the values at first n+ 1
locations, we force f(1) = 0.. Then we connect together each piece by a straight line.
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