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Abstract

We study the robust one-bit compressed sensing problem whose goal is to design an
algorithm that faithfully recovers any sparse target vector θ0 ∈ Rd uniformly from
m quantized noisy measurements. Under the assumption that the measurements
are sub-Gaussian, to recover any k-sparse θ0 (k � d) uniformly up to an error ε
with high probability, the best known computationally tractable algorithm requires1

m ≥ Õ(k log d/ε4). In this paper, we consider a new framework for the one-
bit sensing problem where the sparsity is implicitly enforced via mapping a low
dimensional representation x0 through a known n-layer ReLU generative network
G : Rk → Rd. Such a framework poses low-dimensional priors on θ0 without
a known basis. We propose to recover the target G(x0) via an unconstrained
empirical risk minimization (ERM) problem under a much weaker sub-exponential
measurement assumption. For such a problem, we establish a joint statistical
and computational analysis. In particular, we prove that the ERM estimator in
this new framework achieves an improved statistical rate of m = Õ(kn log d/ε2)
recovering any G(x0) uniformly up to an error ε. Moreover, from the lens of
computation, we prove that under proper conditions on the ReLU weights, our
proposed empirical risk, despite non-convexity, has no stationary point outside of
small neighborhoods around the true representation x0 and its negative multiple.
Furthermore, we show that the global minimizer of the empirical risk stays within
the neighborhood around x0 rather than its negative multiple. Our analysis sheds
some light on the possibility of inverting a deep generative model under partial
and quantized measurements, complementing the recent success of using deep
generative models for inverse problems.

1 Introduction

Quantized compressed sensing investigates how to design the sensing procedure, quantizer and
reconstruction algorithm so as to recover a high dimensional vector from a limited number of
quantized measurements. The problem of one-bit compressed sensing, which aims at recovering a
target vector θ0 ∈ Rd from single-bit observations yi = sign(〈ai, θ0〉), i ∈ {1, 2, · · · ,m}, m� d
and random sensing vectors ai ∈ Rd, is particularly challenging. Previous theoretical successes
on this problem (e.g. Jacques et al. (2013); Plan and Vershynin (2013)) mainly rely on two key
assumptions: (1) The Gaussianity of the sensing vector ai, (2) The sparsity of the vector θ0 on a given
basis. However, the practical significance of these assumptions are rather limited in the sense that it
is difficult to generate Gaussian vectors and high dimensional targets in practice are often distributed

∗Equal Contribution
1Here, an algorithm is “computationally tractable” if it has provable convergence guarantees. The notation

Õ(·) omits a logarithm factor of ε−1.
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near a low-dimensional manifold rather than sparse on some given basis. The goal of this work is to
make steps towards addressing these two limitations.

Specifically, we introduce a new framework for robust dithered one-bit compressed sensing where
the structure of target vector θ0 is represented via a ReLU network G : Rk → Rd, i.e. θ0 = G(x0)
for some x0 ∈ Rk and k � d. Building upon this framework, we propose a new recovery algorithm
by solving an unconstrained ERM. We show this algorithm enjoys the following favorable properties:

• Statistically, when taking measurements ai to be sub-exponential random vectors, with high
probability and uniformly for any G(x0) ∈ G(Rk) ∩ Bd2(R), where Bd2(R) is the ball of radius
R > 0 centered at the origin, the solution G(x̂m) to the ERM recovers the true vector G(x0) up to
error ε when the number of samples m ≥ O(kn log4(ε−1)(log d+ log(ε−1))/ε2). In particular,
our result does not require REC type assumptions adopted in previous analysis of generative signal
recovery works and at the same time weakens the known sub-Gaussian assumption adopted in
previous one-bit compressed sensing works. When the number of layers n is small, this result meets
the minimax optimal rate (up to a logarithm factor) for sparse recovery and simultaneously improves
upon the best known Õ(k log d/ε4) statistical rate for computationally tractable algorithms.

• Computationally, we show that solving the ERM and approximate the true representation x0 ∈ Rk
is tractable. More specifically, we prove with high probability, there always exists a descent direc-
tion outside two small neighborhoods around x0 and its negative multiple with radiusO(ε1/4), uni-
formly for any x0 ∈ Bk2(R′) withR′ = (0.5+ε)−n/2R, when the ReLU network satisfies a weight
distribution condition with parameter ε > 0 and m ≥ O(kn log4(ε−1)(log d + log(ε−1))/ε2).
Furthermore, when ε is small enough, one guarantees that the solution x̂m stays within the neigh-
borhood around x0 (rather than its negative multiple). Our result is achieved without assuming the
REC type conditions and under quantization errors, thereby improving upon previously known
computational guarantees for ReLU generative signal recovery in linear models with small noise.

From a technical perspective, our proof makes use of the special piecewise linearity property of ReLU
network. The merits of such a property in the current scenario are two folds: (1) It allows us to replaces
the generic chaining type bounds commonly adopted in previous works (e.g. Dirksen and Mendelson
(2018a)) by novel arguments that are “sub-Gaussian free”. (2) From a hyperplane tessellation point of
view, we show that for a given accuracy level, a binary embedding of G(Rk) ∩ Bd2(R) into Euclidean
space is “easier” in that it requires less random hyperplanes than that of a bounded k sparse set.

Notations. Throughout the paper, let Sd−1 and B(x, r) denotes the unit sphere and the ball of radius
r centered at x in Rd, respectively. For a random variable X ∈ R, the Lp-norm (p ≥ 1) is denoted
as ‖X‖Lp := E[|X|p]1/p. The Olicz ψ1-norm is denoted as ‖X‖ψ1

:= supp≥1 p
−1‖X‖Lp . We

say a random variable is sub-exponential if its ψ1-norm is bounded. A random vector x ∈ Rd is
sub-exponential if there exists a a constant C > 0 such that supt∈Sd−1 ‖ 〈x, t〉 ‖ψ1

≤ C. We use
‖x‖ψ1

to denote the minimal C such that this bound holds. Furthermore, C,C ′, c, c1, c2, c3, c4, c5
denote absolute constants, their actual values can be different per appearance.

2 Models and Main Results

In this paper, we focus on one-bit recovery model in which one observes quantized measurements of
the following form

y = sign(〈a,G(x0)〉+ ξ + τ), (1)

where a ∈ Rd is a random measurement vector, ξ ∈ R is a random pre-quantization noise with an
unknown distribution, τ is a random quantization threshold (i.e. dithering noise), and x0 ∈ Rk is the
unknown representation to be recovered. We are interested the high-dimensional scenario where the
dimension of the representation space k is potentially much less than the ambient dimension d. The
function G : Rk → Rd is a fixed ReLU neural network of the form:

G(x) = σ ◦ (Wnσ ◦ (Wn−1 · · ·σ ◦ (W1x))), (2)

where σ(x) = max(x, 0) and σ ◦ (x) denotes the entry-wise application of σ(·). We consider a
scenario where the number of layers n is smaller than d, Wi ∈ Rdi×di+1 , dn+1 = d and di ≤ d, ∀i ∈
{1, 2, · · · , n}. Throughout the paper, we assume that G(x0) is bounded, i.e. there exists an R ≥ 1
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such that ‖G(x0)‖2 ≤ R, and we take τ ∼ Uni[−λ,+λ], i.e. a uniform distribution bounded by
a chosen parameter λ > 0. Let {(ai, yi)}mi=1 be i.i.d. copies of (a, y). Our goal is to compute an
estimator G(x̂m) of G(x0) such that ‖G(x̂m)−G(x0)‖2 is small.

We propose to solve the following ERM for x̂m:

x̂m ∈ arg min
x∈Rk

L(x) := ‖G(x)‖22 −
2λ

m

m∑
i=1

yi 〈ai, G(x)〉 , (3)

where yi = sign(〈ai, G(x0)〉+ ξi + τi). It is worth mentioning, in general, there is no guarantee that
the minimizer of L(x) is unique. Nevertheless, in Section §2.2, we will show that any solution x̂m to
this problem must stay inside small neighborhoods around the true signal x0 and its negative multiple
with high probability.

2.1 Statistical Guarantee

Our statistical guarantee relies on the following assumption on the measurement vector and noise:
Assumption 2.1. The measurement vector a ∈ Rd is mean 0, isotropic and sub-exponential. The
noise ξ is also a sub-exponential random variable.

Under this assumption, we have the following main statistical performance theorem:
Theorem 2.1. Suppose Assumption 2.1 holds and consider any ε ∈ (0, 1). Set the constant Ca,ξ,R =
max{c1(R‖a‖ψ1

+ ‖ξ‖ψ1
), 1}, λ ≥ 4Ca,ξ,R · log(64Cψ,ξ,R · ε−1) and

m ≥ c2‖a‖2ψ1
λ2 log2(λm)(kn log(ed) + k log(2R) + k logm+ u)/ε2. (4)

Then, with probability at least 1− c3 exp(−u), ∀u ≥ 0, any solution x̂m to (3) satisfies

‖G(x̂m)−G(x0)‖2 ≤ ε
for all x0 such that ‖G(x0)‖2 ≤ R, where c1, c2, c3 ≥ 1 are absolute constants.
Remark 2.1. It is easy to verify that the sample complexity enforced by (4) holds when

m ≥ C ′ · C2
a,ξ,R log4(Ca,ξ,R · ε−1)(kn log(ed) + k log(2R) + k log(ε−1) + u)/ε2

where C ′ is a large enough absolute constant. This gives the m = O(kn log4(ε−1)(log d +
log(ε−1))/ε2) statistical rate. The question whether or not the dependency on n is redundant
(comparing to that of sparse recovery guarantees) warrants further studies.
Remark 2.2. Note that our result is a uniform recovery result in the sense that the bound ‖G(x̂m)−
G(x0)‖2 ≤ ε holds with high probability uniformly for any target x0 ∈ Rk such that ‖G(x0)‖2 ≤ R.
This should be distinguished from known bounds (Plan and Vershynin (2013); Zhang et al. (2014);
Goldstein et al. (2018); Thrampoulidis and Rawat (2018)) on sparse one-bit sensing which hold
only for a fixed sparse vector. Furthermore, though assuming boundedness of G(x0), our recovery
algorithm solves for the minimizer without knowing this bound, which is favorable for practice.

2.2 Global Landscape of the Proposed ERM

Before presenting the results on the global landscape, we first introduce some notations used in
the rest of this paper. For any fixed x, we define W+,x := diag(Wx > 0)W , in which we
set the rows of W having negative product with x to be zeros. We further define Wi,+,x :=
diag(WiWi−1,+,x · · ·W1,+,xx > 0)Wi, where only active rows of Wi are kept. Thus, we can
represent the RuLU network by G(x) = (Πn

i=1Wi,+,x)x := Wn,+,xWn−1,+,x · · ·W1,+,xx.
Definition 2.1 (Weighted Distribution Condition (WDC) (Hand and Voroninski, 2018; Hand et al.,
2018)). The matrix W ∈ Rd′×k′ satisfies the Weighted Distribution Condition with constant εwdc if
for any nonzero vectors x1, x2 ∈ Rk′ ,∥∥W>+,xW+,z −Qx,z

∥∥
2
≤ εwdc, with Qx,z :=

π − θx,z
2π

Ik′ +
sin θx,z

2π
Mx̂↔ẑ.

where we have θx,z = ∠(x, z) and Mx̂↔ẑ is the matrix that transforms x̂ to ẑ, ẑ to x̂, and ϑ to 0 for
any ϑ ∈ span({x, z})⊥. Here we define x̂ := x/‖x‖2, ẑ := z/‖z‖2.
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Before presenting Theorem 2.2 and 2.3, we define the directional derivative along non-zero z as

DzL(x) =

{〈
∇L(x), z/‖z‖2

〉
, if L(x) is differentiable at x

limN→+∞
〈
∇L(xN ), z/‖z‖2

〉
, otherwise

where {xN} is a sequence such that xN → x and L(x) is differentiable at any xN . Such sequence
must exist due to the piecewise linearity of G(x). For any x such that L(x) is differentiable, the
gradient of L(x) is can be easily computed as

∇L(x) = 2
( n∏
j=1

Wj,+,x

)>( n∏
j=1

Wj,+,x

)
x− 2λ

m

m∑
i=1

yi

( n∏
j=1

Wj,+,x

)>
ai. (5)

Next, we will present Theorem 2.2 to show that under certain conditions, local minimum can only lie
in small neighborhoods of two points x0 and its negative multiple −ρnx0.
Theorem 2.2. Suppose that G is a ReLU network with Wi satisfying WDC with error εwdc for
all i = 1, . . . , n where n > 1. With probability 1 − c1 exp(−u), for any nonzero x0 satisfying
‖x0‖2 ≤ R(1/2 + εwdc)−n/2, if we set 88πn8ε

1/4
wdc ≤ 1, λ ≥ 4Ca,ξ,R · log(64Cψ,ξ,R · ε−1

wdc) ,

m ≥ c2‖a‖2ψ1
λ2 log2(λm)(kn log(ed) + k log(2R) + k logm+ u)/ε2

wdc,

for any nonzero x, set vx = limxN→x∇L(xN ) where {xN} is the sequence such that ∇L(xN )
exists for all xN (and vx = ∇L(x) if L(x) is differentiable at x), then, there exists a constant ρn ≤ 1
such that the directional derivative satisfies:

Case 1: if ‖x0‖22 > 2nεwdc, then

D−vxL(x) < 0,∀x /∈ B(x0, 616n3ε
1/4
wdc‖x0‖2) ∪ B(−ρnx0, 5500n14ε

1/4
wdc‖x0‖2) ∪ {0},

DwL(0) < 0,∀w 6= 0

Case 2: if ‖x0‖22 ≤ 2nεwdc, then

D−vxL(x) < 0,

∀x /∈ B(x0, 616n3ε
1/4
wdc‖x0‖2) ∪ B(−ρnx0, 5500n14ε

1/4
wdc‖x0‖2) ∪ B(0, 2n/2ε

1/2
wdc).

where ρn =
∑n−1
i=0

sin θ̌i
π

(∏n−1
j=i+1

π−θ̌j
π

)
, g(θ) = cos−1

(
(π−θ) cos θ+sin θ

π

)
, θ̌0 = π, and θ̌i =

g(θ̌i−1).

Note that in the above theorem, case 1 indicates that the when the magnitude of the true representation
‖x0‖22 is larger than the accuracy level εwdc, the global minimum lies in small neighborhoods around
x0 and its scalar multiple −ρnx0, while for any point outside the neighborhoods of x0 and −ρnx0,
one can always find a direction with a negative directional derivative. Note that x = 0 is a local
maximum due to DwL(0) < 0 along any non-zero directions w. One the other hand, case 2 implies
that when ‖x0‖22 is smaller than εwdc, the global minimum lies in the neighborhood around 0 (and
thus around x0). Moreover, in the following theorem, we further pin down the global minimum of
the loss function for case 1.
Theorem 2.3. Suppose that G is a ReLU network with Wi satisfying WDC with error εwdc for all
i = 1, . . . , n where n > 1. Assume that c1n3ε

1/4
wdc ≤ 1 , and x0 is any nonzero vector satisfying

‖x0‖2 ≤ R(1/2 + εwdc)−n/2. Then, with probability 1 − 2c4 exp(−u), for any x0 such that
‖x0‖22 ≥ 2nεwdc, setting λ ≥ 4Ca,ξ,R · log(64Cψ,ξ,R · ε−1

wdc), and

m ≥ c2‖a‖2ψ1
λ2 log2(λm)(kn log(ed) + k log(2R) + k logm+ u)/ε2

wdc,

we have
L(x) < L(z),∀x ∈ B(φnx0, c3n

−5‖x0‖2), and ∀z ∈ B(−ζnx0, c3n
−5‖x0‖2),

where c1, c2, c3, c4 are absolute constants, φn, ζn are any scalars in [ρn, 1]. Particularly, we have
c3n
−5 < minn≥2 ρn such that the radius c3n−5‖x0‖2 < ρn‖x0‖2 for any n.

Remark 2.3. The significance of Theorem 2.3 are two folds: first, it shows that the value of ERM is
always smaller around x0 compared to its negative multiple −ρnx0; second, when the accuracy level
εwdc is small, one can guarantee that the global minimum of L(x) stays around x0. In particular, by
Theorem 2.2 and 2.3, our theory implies that if εwdc ≤ cn−76 for some constant c, then the global
minimum of the proposed ERM (3) is in B(φnx0, c3n

−5‖x0‖2). Since we do not focus on optimizing
the order of n here, further improvement of such a dependency will be one of our future works.
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