How well do deep neural networks trained on object
recognition characterize the mouse visual system?
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Abstract

Recent work on modeling neural responses in the primate visual system has ben-
efited from deep neural networks trained on large-scale object recognition, and
found a hierarchical correspondence between layers of the artificial neural net-
work and brain areas along the ventral visual stream. However, we neither know
whether such task-optimized networks enable equally good models of the rodent
visual system, nor if a similar hierarchical correspondence exists. Here, we ad-
dress these questions in the mouse visual system by extracting features at several
layers of a convolutional neural network (CNN) trained on ImageNet to predict
the responses of thousands of neurons in four visual areas (V1, LM, AL, RL) to
natural images. We found that the CNN features outperform classical subunit
energy models, but found no evidence for an order of the areas we recorded via a
correspondence to the hierarchy of CNN layers. Moreover, the same CNN but with
random weights provided an equivalently useful feature space for predicting neural
responses. Our results suggest that object recognition as a high-level task does
not provide more discriminative features to characterize the mouse visual system
than a random network. Unlike in the primate, training on ethologically relevant
visually guided behaviors — beyond static object recognition — may be needed to
unveil the functional organization of the mouse visual cortex.

1 Introduction

Visual object recognition is a fundamental and difficult task performed by the primate brain via a
hierarchy of visual areas (the ventral stream) that progressively untangles object identity information,
gaining invariance to a wide range of object-preserving visual transformations [} [2]. Fueled by
the advances of deep learning, recent work on modeling neural responses in sensory brain areas
builds upon hierarchical convolutional neural networks (CNNs) trained to solve complex tasks like
object recognition [3]]. Interestingly, these models have not only achieved unprecedented performance
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in predicting neural responses in several brain areas of macaques and humans [4H7]], but they also
revealed a hierarchical correspondence between the layers of the CNNs and areas of the ventral
stream [4} 16]]: the higher the area in the ventral stream, the higher the CNN layer that explained it
best. The same approach also provided a quantitative signature of a previously unclear hierarchical
organization of Al and A2 in the human auditory cortex [7]].

These discoveries about the primate have sparked a still unresolved question: to what extent is visual
object processing also hierarchically organized in the mouse visual cortex and how well can the
mouse visual system be modeled using goal-driven deep neural networks trained on static object
classification? This question is important since mice are increasingly used to study vision due to
the plethora of available experimental techniques such as the ability to genetically identify and
manipulate neural circuits that are not easily available in primates. Recent work suggests that rats
are capable of complex visual discrimination tasks [8] and recordings from extrastriate areas show a
gradual increase in the ability of neurons in higher visual areas to support discrimination of visual
objects [9}110].

Here, we set out to study how well the mouse visual system can be characterized by goal-driven deep
neural networks. We extracted features from the hidden layers of a standard CNN (VGG16, [[L1]])
trained on object categorization, to predict responses of thousands of neurons in four mouse visual
areas (V1, LM, AL, RL) to static natural images. We found that VGG16 yields powerful features for
predicting neural activity, outperforming a Gabor filter bank energy model in these four visual areas.
However, VGG16 does not significantly outperform a feature space produced by a network with an
identical architecture but random weights. In contrast to previous work in primates, our data provide
no evidence so far for a hierarchical correspondence between the deep network layers and the visual
areas we recorded.

2 Model Architecture
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Figure 1: VGG16 based model. Input images are forwarded
trough the core (A) network (first n layers of VGG16) to produce a

itive object classification performance,
and increasing popularity to character-
ize rodent visual areas [10, [13]. The
collection of output feature maps of
a VGGI16 layer — the shared feature
space — was then fed into a spatial
transformer readout for each neuron
(FigmB, see [12] for details). This
readout learns one (x, y) location for
each neuron (its receptive field loca-

feature space shared by all neurons. Then, the spatial transformer
readout (B) finds a mapping between these features and the neural
responses for each neuron separately. The shifter network (an MLP
with one hidden layer) corrects for eye movements. The output
of the readout is multiplied by a gain predicted by the modulator
network (an MLP with one hidden layer) that uses running speed
and pupil dilation. A static nonlinearity converts the result into
the predicted spike rate. All components of the model are trained
jointly end-to-end to minimize the difference between predicted
and observed neural responses.

tion, RF) [12] and extracts a feature vector at this location from multiple downsampled versions
(scales) of the feature maps. The output of the readout is a linear combination of the concatenated
feature vectors. We regularized the feature weights with an L, penalty to encourage sparsity.

Shifter and modulator are multi-layer perceptrons (MLP) with one hidden layer. The shifter takes
the tracked pupil position in camera coordinates and predicts a global receptive field shift (Az, Ay)



in monitor coordinates. The modulator uses the mouse’s running speed, its pupil diameter, and the
derivative to predict a gain for each neuron by which the neuron’s predicted response is multiplied. A
soft-thresholding nonlinearity turns the result into a non-negative spike rate prediction (Fig[T). All
components of the model (excluding the core, which is pre-trained on ImageNet) are trained jointly
end-to-end to minimize the difference between predicted and observed neural responses using Adam
with a learning rate of 10~#, a batch size of 125 and early stopping.

3 Experiments

Neural data. We recorded responses of excitatory neurons in areas V1, LM, AL, and RL (layer
2/3) from two scans from one mouse and a third scan from a second mouse with a large-field-of-view
two-photon mesoscope (see [14]] for details) at a frame rate of 6.7 Hz. We selected cells based on a
classifier for somata on the segmented cell masks and deconvolved their fluorescence traces, yielding
7393, 4674, 4680, 5797 neurons from areas V1, LM, AL, and RL, respectively. We further monitored
pupil position, pupil dilation, and absolute running speed of the animal.

Visual stimuli. Stimuli consisted of 5100 images taken A sample scan
from ImageNet, cropped to 16:9 and converted to gray-
scale. The screen was 55 x 31 cm at a distance of 15 cm,
covering roughly 120° x 90°. In each scan, we showed
5000 of these images once (training and validation set)
and the remaining 100 images 10 times each (test set).
Each image was presented for 500 ms followed by a blank
screen lasting between 300 ms and 500 ms. For each
neuron, we extract the accumulated activity between 50 ms
and 550 ms after stimulus onset using a Hamming window. Figure 2: Neural data. A. Example large-
field-of-view scan. B. Visual paradigm with
sample cell traces
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primates [4] show that a brain area higher in the hierarchy

is better matched (i.¢ has a peak in prediction performance) Figure 3: No clear hierarchical correspon-
by a higher network layer. In contrast, when comparing the = dence. A Test correlation in V1 data for
average performance across cells and scans for each con-  different input resolutions as a function of
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for a hierarchy (Fig[3B) since there is no clear ordering of {)or all four brain areas. Triangles show the
. est predictive layer in each case
the brain areas.

VGG16 outperforms classical models. We then investigate whether the lack of an evident hierar-
chy was due to an overall poor performance of our model. Thus, we first revise how much of the
explainable stimulus-driven variability the VGG16-based model captures. To this end we calculate
the oracle correlation (the conditional mean of n — 1 responses without the model) [12]] obtaining
an upper bound of the achievable performance. Then we evaluate the test correlation of our model
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Figure 4: Performance comparison. A. Density of the distribution of test correlation across all neurons. B.
Percentage of oracle performance. In C and D, each point is the average test correlation performance for one
scan across all neurons. Brain areas are color coded as in A and the dotted line represents the identity. B: VGG16
vs. GFB. C: VGG16 vs. Random network core with the same architecture of VGG16

restricted to visual input information (no shifter and no modulator), against the oracle (FiglB) and
find that VGG16 features explain a substantial fraction of the oracle for the for areas (70-78%)

Second, we consider a subunit energy model with Gabor quadrature pairs as a baseline due to its
competitive predictive performance of macaque V1 responses [5]. We replace the core from Fig. [T]
with a Gabor filter bank (GFB) consisting of a large number of Gabor filters with different orientations,
sizes and spatial frequencies arranged in quadrature pairs, and followed by a squaring nonlinearity [5]].
We find that for all areas and scans, the VGG16 core outperformed the GFB (Fig[[C).

Core with random weights performs similarly. The results so far show that VGG16 provides
a powerful feature space to predict responses, which may suggest that static object recognition
could be a useful high-level goal to describe the function of the mouse visual system. However,
we were surprised that most VGG layers led to similar performance. To understand this result
better, we also evaluated a core with identical architecture but random weights. This random core
performed similarly well as its pre-trained counterpart (Fig[dD), suggesting that training on static
object recognition as a high-level goal is not necessary to achieve state-of-the-art performance in
predicting neural responses in those four visual areas. Instead, a sufficiently large collection of
random features followed by rectification provides a similarly powerful feature space.

The number of LN layers is critical to best match neu-
ral activity. Since random features produced by a linear-
nonlinear (LN) hierarchy closely match the performance
of the pretrained VGG16, we then asked if the number
of LN steps — when accounting for multiple input reso-
lutions — was the key common aspect of these networks
that yielded the best predictions. Effectively, similar to
the case of the pretrained VGG16 core, we found that the
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we studied (Fig. [5). However, it is important to note that

in both cases the increase in performance after the second Figure 5: Normalized performance of the
convolutional layer is only marginal. Overall, we conclude random core with VGG16 architecture for
that the nonlinear degree — number of LN stages — rather ~ all four brain areas. Triangles show the best
than the static object recognition training goal dictates how ~Predictive layers in each case

close the representations are to the neural activity.

5 Discussion

In contrast to similar work in the primate, we find no match between the hierarchy of mouse visual
cortical areas and the layers of CNNs trained on object categorization. Although VGG16 achieves
state-of-the-art performance, it is matched by random weights. There are three implications of our
results: First, our work is in line with previous work in machine learning that shows the power of
random features [[15]. Therefore, we argue that models based on random features should always
be reported as baselines in studies on neural system identification. Second, which VGG layer best
predicted any given brain area depended strongly on the image resolution we used to feed into VGG16.



We observed a similar effect in our earlier work on primate V1 [5]. Thus, the studies reporting a
hierarchical correspondence between goal-driven deep neural networks and the primate ventral stream
should be taken with a grain of salt, as they — to the best of our knowledge — do not include this
control. Third, optimizing the network for static object recognition alone as a high-level goal does
not appear to be the right approximation to describe representations and the visual hierarchy in the
mouse cortex. Although our results do not exclude a potential object processing hierarchy in the
mouse visual system, they suggest that training with more ethologically relevant visually guided
tasks for the mouse could be a more fruitful goal-driven approach to characterize the mouse visual
system [16]]. For instance, an approach with dynamic stimuli such as those found during prey capture
tasks [17] could yield more meaningful features to unveil the functional organization of the mouse
visual system.
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