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ABSTRACT

Character-level language modeling based on Transformer has brought great
success by alleviating limitation of recursive operation. However, existing
Transformer-based models require substantial computational resources, which
hinders the usability of character-level language models in applications with lim-
ited resources. In this paper, we propose a lightweight model, called Group-
Transformer , that factorizes the calculation paths by grouped embedding oper-
ators. Additionally, Group-Transformer employs inter-group linear operators to
prevent performance degradation from the group strategy. With comparison ex-
periments on about five times larger and the best performing LSTM-based models
and compatible parameter size of Transformer-based models, we show that Group-
Transformer has better performance on two benchmark tasks, enwik8 and text8.
Further experiments including ablation studies and qualitative analysis revealed
that the proposed work contributes to the effective lightweight model for practical
application. The implementation code will be available.

1 INTRODUCTION

Character-level language modeling has become a core task in the field of natural language processing
(NLP) such as classification (Zhang et al., 2015), sequence tagging (Guo et al., 2019a), question
answering (He & Golub, 2016), and recognition (Baek et al., 2019; Hwang & Sung, 2016), with its
simplicity on generating text and its adaptability to other languages. Along with the development of
deep learning in NLP, using recurrent neural networks (RNNs) have been a standard way to solve
the problem for many years. Recently, however, a new architecture, Transformer (Vaswani et al.,
2017), have shown promise in addressing this problem and have achieved breakthroughs in general
language modeling (Al-Rfou et al., 2019; Dai et al., 2019).

Though this technique has achieved incredible successes, it has led to the huge size of Transformer-
based models due to building deeper and wider networks. Transformer-XL (Dai et al., 2019) and
GPT-2 (Radford et al., 2019), for instance, contain 277M and 1542M parameters, respectively. This
trend toward a large size model for performance is not suitable for edge device applications, which
require small memory sizes, such as optical character reader (OCR) and speech to text (STT), and
for auto-correction and auto-completion applications that need fast real-time responsiveness.

To tackle this issue, choosing an appropriately efficient strategy becomes more crucial, especially
in the real-world application which requires not only good performance but a lightweight model.
In this paper, we introduce a lightweight transformer for character-level language modeling. Our
method is one of the factorization methods in that it separates the standard linear layer in trans-
former architecture using group-wise linear operation and makes sparse connectivity between linear
transformations. The proposed model is referred to as Group-Transformer since it is inspired by
the group convolution approaches (Zhang et al., 2018; Sandler et al., 2018) that have effectively
compressed huge image processing models for usability on mobile devices.

While the group strategy reduces parameters and calculations in the proposed modules, its mutually
exclusive calculation for the multiple groups compromises performance, caused by the information
loss of inter-group correlations. To compensate for this problem, we added two inter-group opera-
tions that share a common feature over groups for the group attention layer and linking features in
different groups for the group feed-forward layer. By modeling the inter-group information flows,
Group-Transformer becomes performant as well as lightweight.
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We conducted extensive experiments on two benchmark datasets, enwik8 and text8, and found that
Group-Transformer with 6M parameters outperformed all LSTM-based models with under 35M
parameters. Furthermore, Group-Transformer shows better performance when compared against
Transformers with a comparable number of parameters. We provide further analysis to identify the
contributions of our proposed modules in detail. To the best of our knowledge, Group-Transformer
is the first attempt to build a lightweight Transformer with the group strategy.

2 RELATED WORKS

2.1 TOWARDS A LIGHTWEIGHT TRANSFORMER

Since Transformer has become a promising model for diverse NLP tasks, there have been attempts
to improve its efficiency with two majority approaches. The first is to restrict dependencies between
input tokens to reduce superfluous pair-wise calculations (Child et al., 2019; Guo et al., 2019b;
Sukhbaatar et al., 2019a). The approach provides time efficiency during inference, but it does not
address the heavy parameterization of Transformer. The second approach is to develop a lightweight
network architecture while maintaining the properties of Transformer. For example, Tay et al. (2019)
utilize quaternion algebra to build lightweight modules for Transformer. They also use the factorize
the components of the embedding layer, but the expression power can be limited by the connection of
factorized components based on the quaternion principle. Another such approach (Sukhbaatar et al.,
2019b) combined the multi-head attention and point-wise feed-forward layer to devise a unified
module with fewer parameters. Despite these attempts on architectural changes, their models still
struggle to provide a lightweight language model with nearly still 30M parameters. In this work, we
describe a lightweight transformer with less than 10M parameters, which is extremely small when
compared against previous character-level language models.

2.2 GROUP STRATEGY

A group strategy has attracted much attention recently to compress many large and deep state-of-the-
art convolutional neural networks (CNNs) (Krizhevsky et al., 2012; Szegedy et al., 2015; Chollet,
2017). For example, when the group strategy is applied to a standard linear layer with a weight
W ∈ RI×O, the feature map is partitioned into G groups. As a result, the layer is replaced by
G small linear layers where each holds a weight W′ ∈ R(I/G)×(O/G), leading to a significant
parameter reduction. Although intuitively appealing, it has been reported that applying the group
strategy to the model often leads to huge performance degradation, since the features in different
groups cannot interact with each other. To overcome this problem, ShuffleNet (Zhang et al., 2018)
proposed channel shuffle operation to make interactions between different groups. This kind of
consideration has also been applied to recurrent neural networks (RNNs). Kuchaiev & Ginsburg
(2017) proposed group-wise RNN as a special form of ensembled RNNs. But, they did not consider
the interactions between different groups. Inspired by the ShuffleNet, Gao et al. (2018) combined
the shuffling idea into the group-wise RNN and achieved promising results. In this work, we adopt
the group strategy and build the group-wise operations suitable for Transformer architecture.

3 GROUP-TRANSFORMER

Figure 1a shows the overall architecture of Group-Transformer. It consists of a group embedding
(bottom grey box), which embeds a character into grouped features, a group attention (yellow box),
which contains attention modules to identify dependencies in the time domain, and a group feed-
forward layer (green box), which re-configures the grouped features. As can be seen, when an input
character is given, Group-Transformer converts the input into multiple group representation (blue
dots and red dots), processes and merges them to predict the next character. Figure 1b and 1c show
group-wise information flow (blue and red arrows), and inter-group information flow (grey arrow)
in the sub-modules. Without the inter-group information flows, the grouped features are processed
independently. We observed that inter-group modeling ensures that the groups become aware of the
others and prevents different groups hold the same information. The following subsections describe
architectural details of the sub-modules and their relations.
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(a) Group-Transformer (b) Group attention (c) Group feed-forward

Figure 1: Architecture overviews of Group-Transformer and its sub-modules when the number of
groups is two. The gray arrows show the information flow across the entire groups, and the blue and
red arrows indicate the information flow for each group.

3.1 GROUP EMBEDDING LAYER

Group embedding layer identifies a set of embeddings to represent a token. The idea of representing
a sentence, word or even character using a set of vectors can widely be found in many NLP models
that embed input tokens by concatenating (or summing) its embedding and its sub-units’ embed-
dings (Verwimp et al., 2017; Bojanowski et al., 2017; Kim et al., 2019; Zhou et al., 2019). Similarly,
we assume a single character c to be represented with G vector representations of groups, that is,
[uc1, ...,ucG] where ucg ∈ RDgroup , 1 ≤ g ≤ G. When a character is given, the group embedding
layer retrieves a corresponding set of vectors and passes it to the following group attention layer.
Through this paper, we describe a process at a single time step.

3.2 GROUP ATTENTION LAYER

The attention mechanism identifies dependencies between features in the time domain and com-
bines the information of them. It contains three steps; (1) identifying queries, keys, and values,
(2) retrieving relative features at different times, and (3) transforming the attended feature into the
input domain (Vaswani et al., 2017). The main focus of this paper is to apply a group strategy to
the feature space of Transformer. Thus, we let the second step be identical to those of the original
Transformer and focused on the first and the third steps.

Figure 1b explains the architecture of group attention. The multi-head attention module represents
the second step, the under operations identify the queries for the first step, and the upper operations
transform the attention output for the third step. We note that we do not represent the key and
value for the multi-head attention block in the figure because they are possible to come from another
source domain. The group attention processes the grouped features with intra-group operations
(white boxes) and inter-group operations (grey boxes).

Grouped Queries, Keys and Values

Let x = [x1, ..., xG] be a set of input vectors where xg ∈ RDgroup for the group g. Since the multi-head
attention contains H attention modules for a single group, group attention first calculates query qgh
for a group g and its head h as the below,

qgh = xgWq-intra
gh +

∑
g′

xg′Wq-inter
g′h , (1)
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where Wq-intra
gh ∈ RDgroup×(Dgroup/H) and Wq-inter

gh ∈ RDgroup×(Dgroup/H) are linear weights to describe an
intra-group (white boxes) and an inter-group (grey box) combinations, respectively. In the formula,
the first term on the right-hand side identifies a specific feature for the head h in the group g and
the second term determines head-wise features that allow the grouped features to share a common
expression retrieving other features in a different time. When comparing with the fully connected
linear layer over the groups, the approach restricts the connection between the groups, so requires a
fewer number of parameters and calculations.

For the key kgh and the value vgh, we use fully connected layers by using all group pairs g′ and g;
kgh =

∑
g′ xg′Wk

g′gh and vgh =
∑

g′ xg′Wv
g′gh where Wk

g′gh ∈ RDgroup×(Dgroup/H) and Wv
g′gh ∈

RDgroup×(Dgroup/H) are linear weights. As we mentioned, since the keys and the values can be defined
from the other source domain, we use the same formula of the original Transformer, pursuing the
universality of the proposed module.

Multi-head Attention

The identified headed elements are used for connecting features in the time domain. In this step,
position encoding (Vaswani et al., 2017) has an important role for the features to be aware of their
position in an input sequence. In this paper, we apply the relative positional encoding, which de-
scribes a long-length character sequence effectively. By following Dai et al. (2019), we define the
attention score map with the relative positional information and the attention mechanism determines
the attended feature agh of the head h in the group g.

Combination of Multiple Heads

The multiple heads [ag1, ..., agH ] in the group g are combined as the below;

og =
∑
h

(
aghWo-intra

gh +
∑
g′

ag′hWo-inter
g′h

)
, (2)

where Wo-intra
gh ∈ R(Dgroup/H)×Dgroup and Wo-inter

gh ∈ R(Dgroup/H)×Dgroup are linear weights for combining
intra-group and inter-group information, respectively. As can be seen, the final output is determined
with a specific feature from its own group and a shared feature from whole groups. This step utilizes
the same mechanism used to identify the queries with the same objective spreading group-wise
information from multi-headed attention to all groups. These intra-group and inter-group modelings
mainly contribute to reducing the number of parameters and calculations. Finally, the inputs xg are
added into the output og as x̂g = xg + og for a residual connection.

3.3 GROUP FEED-FORWARD LAYER

Group feed-forward layer re-configures the outputs of the attention module, x̂g , by applying group-
wise operation at each position. Figure 1c shows the architecture of the proposed module. As can
be seen, the groups are shuffled (grey box) and support each other. The group-wise features are
processed with two linear transformations and one non-linear activation. As the original module
does, the linear layers in our module transpose the input feature into a high dimensional space with
non-linear activation and transform the output back into the input space.

The group feed-forward layer can be formally explained as follows. Given G input features
[x̂1, ..., x̂G], group feed-forward layer transposes the grouped features into a high dimensional space
as follows;

ȳg = x̂gWf1-intra
g +

∑
g′

x̂g′Wf1-inter
g′g , (3)

where Wf1-intra
g ∈ RDgroup×D̄G and Wf1-inter

g′g ∈ RDgroup×D̄G are linear weights for mapping intra-group
and inter-group information into the D̄G-dimensional space, relatively bigger than Dgroup dimen-
sion. Here, we introduce a low-rank matrix approximation on the inter-group transformation ma-
trix Wf1-inter

g′g . Modeling interactions between the groups requires the G × G numbers of weights,
as well as the multiple weights for the group g, transpose the group into the high dimensional
space for the target group g′. If designing a fully connected weight for all groups like the orig-
inal Transformer, the feed-forward layer still holds heavyweights and expensive calculations. To
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reduce the overburden, we factorize the matrix Wf1-inter
g′g into two matrices, Wf1-inter[1]

g′g ∈ RDgroup×M

and Wf1-inter[2]
g′g ∈ RM×D̄G , inspired by Sainath et al. (2013) and Novikov et al. (2015). The newly

introduced dimension M is smaller than Dgroup, and thus the number of parameters and calculation
is reduced proportionally with the ratio between M and Dgroup. In this paper, we set M as Dgroup/G
to control the dimension relatively with the number of the groups. Interestingly, such matrix fac-
torization can be modeled efficiently with a group-wise linear transformation and a shuffle trick as
shown in Figure 1c. Please refer to the appendix for the detail of the shuffle trick.

Finally, a group-wise linear transformation is applied upon the high-dimensional feature as follow;

yg = ReLU(ȳg)Wf2
g , (4)

where Wf2
g ∈ RD̄G×Dgroup is a linear weight. For a residual connection, each grouped input feature is

added into the output of the group feed-forward layer; ŷg = x̂g + yg .

3.4 RESOURCE REQUIREMENT

Here, we describe the efficiency of Group-Transformer in view of the number of parameters and
required computational costs. When considering the original transformer, its required numbers
of parameters are 4 ∗ O(D2

model) for its attention module (query, key, value, and output linear)
and 2 ∗ O(DmodelD̄model) for its feed-forward module, where D̄model is a bottleneck dimension.
Group-Transformer pursues to reduce the number of parameters by splitting the hidden state into
multiple groups and processing them group-wisely. When we set the total dimension over groups as
Dmodel = Dgroup∗G, the resource requirements of Group-Transformer become (2+ 4

G )∗O(D2
model)

for group attention and 3
G ∗ O(DmodelD̄model) for group feed-forward module. The number of

groups is increasing, the resources is decreasing. Appendix B provides the detailed required re-
sources of all sub-modules and comparisons with those of the original Transformer.

4 EXPERIMENTAL RESULTS

4.1 DATASET AND EXPERIMENTAL SETTINGS

We demonstrate the efficiency of the proposed Group-Transformer with two popular benchmark
datasets, enwik8 and text8. The enwik8 dataset contains 100M of English Wikipedia texts with 204
unique characters including alphabets, non-Latin and special characters. In comparison, the text8
dataset provides 100MB of pre-processed texts only with 27 unique characters by filtering super-
fluous content, such as tables, citations, and punctuation, and by replacing the non-Latin characters
with spelled-out equivalents (i.e., “15” to “one five”). For a fair comparison with previous works,
we used the training/dev/test splits defined by Mahoney (2011) for both enwik8 and text8.

Most of the experimental settings follow those of Dai et al. (2019), where the difference lies in the
hyperparameters that influence the size of the model. We set the number of layers L as 9, and we
fixed the total size of feature Dmodel for a single character as 256 and the total numbers of heads as
8 while the number of groups are explored in {2,4}. For the regularization of the model, we applied
layer normalization (Ba et al., 2016) independently over groups and dropout layers upon the outputs
of the group attention and the group feed-forward layer with the probability p = 0.1. The length of
the feed sequence was 512 with the cached 512-length for the previous sequence (Dai et al., 2019).
We use the Adam optimizer with a learning rate of 2.5e-4, β1 of 0.9, β2 of 0.999, a batch size of
22, the number of iterations of 400,000, and the best model on the validation set is chosen. The
implementation code will be available for the other details.

4.2 COMPARISON AGAINST PRIOR CHARACTER-LEVEL LANGUAGE MODELS

We compare the Group-Transformer against existing character-level language models using under
50M parameters in Table 1. The prior models are grouped according to their methodologies, includ-
ing “LSTM,” and “Transformer”. We observe that the Group-Transformer outperforms the LSTM
models with under 30M parameters and that the 2 Group-Transformer attains the best performance
against all prior LSTM models on the enwik8 dataset. When compared to Transformers, we observe
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enwik8 text8

Category Model # Params bpc # Params bpc

LSTMs

Generic TCN (Bai et al., 2018) - - 5M 1.45
LSTM 1800 units (Mujika et al., 2017) 14M 1.40 - -
small HyperLSTM (Ha et al., 2017) 19M 1.35 - -
RHN - depth 10 (Zilly et al., 2017) 21M 1.30 - -
small mLSTM (Krause et al., 2016) 22M 1.28 20M 1.59
FS-LSTM-4 (Mujika et al., 2017) 27M 1.28 - -
HM-LSTM (Chung et al., 2016) 35M 1.32 35M 1.29

Transformers
All-attention (Sukhbaatar et al., 2019b) 39M 1.01 38M 1.11
Transformer-XL - 12L (Dai et al., 2019) 41M 1.06 - -
T12 (Al-Rfou et al., 2019) 44M 1.11 44M 1.18

Ours (small)

1 Group-Transformer (Transformer-XL - 9L) 8M 1.18 8M 1.27
2 Group-Transformer 9L 7M 1.19 7M 1.26
4 Group-Transformer 9L 4M 1.22 4M 1.30
8 Group-Transformer 9L 3M 1.27 3M 1.34

Table 1: Comparison with the prior character-level language models on enwik8 and text8. We report
bit-per-character (bpc) for test sets as well as the number of parameters.

the Group-Transformers provide lower performances but use extremely lower number of parameters.
The next section describes a fair comparison with Transformer in a lightweight setting.

4.3 COMPARISONS AGAINST LIGHTWEIGHT TRANSFORMERS

Here, we compare Group-Transformers against Transformers with a comparable number of param-
eters and time complexity. In this experiment, we have explored the model settings of Transformer-
XL to identify the Transformer models with under 8M parameters. All models are trained by Adam
with 3e-4 of the learning rate through 200,000 iterations and the length of feed sequence is set to
384.

Class Model (L, Dmodel, Hmodel) # Params FLOPs bpc

Base Transformer-XL 9L (9, 256, 8) 8.1M 9.4B 1.224

[6M-8M]

Transformer-XL 9L (9, 232, 8) 6.6M 7.8B 1.239
Transformer-XL 7L (7, 264, 8) 6.7M 7.7B 1.254
Transformer-XL 5L (5, 304, 8) 6.5M 7.2B 1.263
Group-Transformer with 2 groups (9, 256, 8) 6.8M 6.7B 1.221

[4M-6M]

Transformer-XL 9L (9, 192, 8) 4.4M 5.6B 1.286
Transformer-XL 7L (7, 216, 8) 4.6M 5.4B 1.289
Transformer-XL 5L (5, 256, 8) 4.6M 5.2B 1.304
Group-Transformer with 4 groups (9, 256, 8) 4.3M 4.7B 1.261

[Under 4M]

Transformer-XL 9L (9, 152, 8) 2.9M 3.7B 1.336
Transformer-XL 7L (7, 176, 8) 3.1M 3.7B 1.339
Transformer-XL 5L (5, 208, 8) 3.1M 3.6B 1.340
Group-Transformer with 8 groups (9, 256, 8) 2.9M 3.7B 1.316

Table 2: Comparison of lightweight Transformers that use under 8M parameters. L, Hmodel and
Dmodel indicate the number of layers and heads, the hidden dimension over the model. The FLOPs
indicates the number of calculations to generate 512 length of a character sequence. We used
Dgroup = Dmodel/G and H = Hmodel/G for Group-Transformers to set the same number of the
total heads in the attention module.

Table 2 shows the comparison results, focusing both on the performance and efficiency. At each
class, we tuned Transformer-XL to have the similar number of parameters when the number of
layers are 5, 7, and 9. When compared to Transformers at each category, Group-Transformer shows
better performance than the baseline models. In particular, the 2 Group-Transformer shows its
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efficiency by using 82.1% parameters and 71.3% FLOPs of the base Transformer, but provides
similar performance. The 4 Group-Transformer outperforms the second-best model with a large
margin of 0.025. This is the result of inherent computational efficiency enjoyed by group-wise
operation and our careful design of the inter-group connections.
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Figure 2: Performance comparison of three reduction methods from model parameters such as the
number of layers (“L”), the hidden dimension (“D”), and the number of groups (“G”). The FLOPs
indicates the number of calculations to generate 512 length of a character sequence.

The number of groups can be interpreted as a hyper-parameter affecting the model size. Figure 2
shows the effectiveness of three hyper-parameters such as the number of layers, the size of hidden
dimension, and the number of groups. The default model used Transformer-XL (Dai et al., 2019)
with L = 9, Hmodel = 8, Dmodel = 256, and D̄model = 4 ∗ Dmodel, and then we reduced the
three hyper-parameters. When making the model thinner or shallower, the performances of the
model become worse, but the required resources are getting lower. When comparing ours with
two reduction methods, the group strategy shows better performances than the models requiring
comparable resources. This experiment proved that the feature grouping methods, the main idea
of this paper, is more efficient to reduce the model size and the time complexity than tuning other
model parameters.

4.4 ABLATION STUDIES ON PROPOSED MODULES

Group-Transformer includes two modules utilizing group-wise operations and inter-group modeling.
We conduct ablation studies to identify the contributions of the proposed modules and inter-group
operations.

2 groups 4 groups 8 groups

# Param. FLOPs bpc # Param. FLOPs bpc # Param. FLOPs bpc
Atten. FF. (∆ Param.) (∆ FLOPs) (∆ bpc) (∆ Param.) (∆ FLOPs) (∆ bpc) (∆ Param.) (∆ FLOPs) (∆ bpc)

Original Original 8.1M 9.4B 1.224 8.1M 9.4B 1.224 8.1M 9.4B 1.224

Ours Original 7.8M 9.1B 1.236 7.1M 8.3B 1.247 6.6M 8.0B 1.246
(-0.3M) (-0.3B) (+0.012) (-1.0M) (-1.1B) (+0.023) (-1.5M) (-1.4B) (+0.018)

Original Ours 7.1M 7.0B 1.221 5.3M 5.8B 1.251 4.1M 5.2B 1.284
(-1.0M) (-2.4B) (-0.003) (-2.8M) (-3.6B) (+0.027) (-4.0M) (-4.2B) (+0.060)

Ours Ours 6.8M 6.7B 1.221 4.3M 4.7B 1.261 2.9M 3.7B 1.316
(-1.3M) (-2.7B) (-0.003) (-3.8M) (-4.7B) (+0.037) (-5.2M) (-5.7B) (+0.092)

Table 3: Ablation study on the proposed modules, group attention and group feed-forward layer.

Table 3 shows the module-wise impact on the number of parameters and performance. For a fair
comparison, we set the baseline model to a reduced Transformer-XL (Dai et al., 2019) of less than
8M parameters, and can gradually reduce the model size by replacing the attention and the feed-
forward layer with Group-Transformer module selectively. When replacing the feed-forward layer
with Group-Transformer module, we observe that the number of parameters in all cases decreases
more efficiently than replacing the attention module. Interestingly, when replacing both modules,
the degradation is lower than the sum of the individual performance losses, but the sum of the
individuals’ reduces the required resources. This result demonstrates more efficiency of concurrently
using both group-wise modules.
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Figure 3: Similarity matrices of multi-head attentions. The black box indicates a high similarity of
attention patterns and the white box does the opposite. The red boxes represent groups of the mul-
tiple heads. The similarity is measured based on the euclidean distance between attention weights
over a test sequence.

In addition to this, we also investigate the influence of inter-group operations in our model. When the
inter-group operations are removed (grey boxes in Figure 1b and 1c), we observed the performance
degradation on 2-Group-Transformer by 0.028 bpc and 4-Group-Transformer by 0.051 bpc. These
gaps are relatively huge when compared to the performance gap between Transformer-XL and Group
Transformers in Table 3. The results re-emphasize the importance of inter-group modeling in Group-
Transformer. Figure 3 shows the similarity patterns between the multi-head attention of our models
((a) and (c)) and the ablation models without the inter-group operations ((b) and (d)). As can be seen,
the multi-head attention map from the model without inter-group operations shows high similarities
among different groups, while the proposed model shows the opposite. These similarity patterns
imply that the model cannot fully take advantage of multi-head attention, which is designed to
attend multiple positions of content, without the proposed inter-group operation.

5 CONCLUSION

Recently, remarkable progress has been made in character-level language modeling by Transformer.
The advantage of Transformer lies in its effectiveness in modeling long-term dependencies between
characters. However, the models have been developed with a huge number of parameters, and the
inference of them has required an expensive computational cost. We argue that big models cannot
be used in a limited computational environment. Group-Transformer has been developed to prove
the effectiveness of Transformer in a lightweight setting. We have grouped features and proposed
group-wise operations to reduce the number of parameters and time complexity of Transformer. In
addition, to fully realize the advantage of the original Transformer, we have connected the groups
to interact with each other. When applying Group-Transformer on enwik8 and text8, we found
that Group-Transformer only with 6M parameters achieves better performances than LSTM-based
models holding over 30M parameters. Further analysis has proved the effectiveness of the group
strategy to reduce computational resources.
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A SHUFFLE TRICK FOR GROUP INTERACTION

Here, we describe the shuffle trick used for the inter-group interaction in the group feed-forward
layer;

ȳinter
g =

∑
g′

x̂g′Winter[1]
g′g Winter[2]

g′g , (5)

where Winter[1]
g′g ∈ RDgroup×M and Winter[2]

g′g ∈ RM×D̄group are linear weights used in the low rank ma-
trix factorization. To explain the relationship from the shuffle trick, we describes the operations

10



in the group feed-forward layer in a bottom-up way. When we applying group-wise linear opera-
tions on the input features [x̂1, ..., x̂G], the outputs are formed as [x̂1Winter[1]

1 , ..., x̂GWinter[1]
G ], where

Winter[1]
g ∈ RDgroup×(M∗G), 1 ≤ g ≤ G. By splitting each element into G groups and the shuffle

operation perturbs the outputs as follows;


x̂1Winter[1]
11

x̂2Winter[1]
21

...
x̂GWinter[1]

G1

 ,


x̂1Winter[1]

12

x̂2Winter[1]
22

...
x̂GWinter[1]

G2

...


x̂1Winter[1]

1G

x̂2Winter[1]
2G

...
x̂GWinter[1]

GG



 = Shuffle(




x̂1Winter[1]
11

x̂1Winter[1]
12

...
x̂1Winter[1]

1G

 ,


x̂1Winter[1]

21

x̂1Winter[1]
22

...
x̂1Winter[1]

2G

...


x̂1Winter[1]

G1

x̂1Winter[1]
G2

...
x̂1Winter[1]

GG



),

(6)

where the Shuffle operation transposes the first and second dimensions of G × G ×M matrix and
Winter[1]

g′g ∈ RDgroup×M is a linear weight describing information flow from the group g′ to the group
g. Finally, a linear transformation with a weight Winter[2]

g ∈ R(M∗G)×D̄group is applied at the column
g;

ȳinter
g = Flatten(


x̂1Winter[1]

1g

x̂2Winter[1]
2g

...
x̂GWinter[1]

Gg

)Winter[2]
g =

∑
g′

x̂g′Winter[1]
g′g Winter[2]

g′g . (7)

where the Flatten operation vectorizesG×M matrix toG∗M vector. Therefore, the outputs (ȳinter
g ∈

RD̄group , ∀g), defined with multiple calculations with 2G2 matrices (Winter[1]
g′g and Winter[2]

g′g , ∀g′g), can
be formulated with only 2G matrices ( Winter[1]

g and Winter[2]
g , ∀g) by applying the introduced shuffle

trick.

B REQUIRED RESOURCES OF GROUP-TRANSFORMER

In this section, we compare Group-Transformer from the original transformer in views of the num-
bers of parameters. For a common expression, we denote Dmodel, D̄model, H as the feature size, the
filter size in the feed-forward layer and the number of heads for the original transformer, and we set
the feature size of a group as Dgroup = Dmodel/G, the filter size D̄group = D̄model/G, the number of
heads in a group as Hgroup = H/G for Group-Transformer. In this calculation, we set the filter size
as four times bigger than Dmodel.

B.1 ATTENTION MODULES

The multi-head attention of the original transformer uses 4D2
model of parameters for the query, the

key, the value, and the output. The feature size for the multiple head is usually set as Dmodel/H
where H is the number of the heads. Therefore, all transformations in the module is conducted for
a Dmodel-dimensional input feature to identify a Dmodel-dimensional feature.

In comparison, a group attention requiresG2D2
group +4GD2

group = 2D2
model +

4
GD

2
model of parameters,

including 2GD2
group for Wq-intra

g and Wq-inter
g , 2GD2

group for Wo-intra
g and Wo-inter

g , and G2D2
group for the

keys and the value transformations. As we mentioned, we set DG = Dmodel/G and thus the total
number of the parameters becomes 2D2

model +
4
GD

2
model. When the number of groups is 2, the number

of parameters of group attention is the same with those of the original transformer. However, when
the number of groups increases to 4 or 8, the number of the parameters decreases to 75% or 62.5%
of the original module.

B.2 FEED-FORWARD MODULES

A point-wise feed-forward layer of the original transformer requires 8D2
model of parameters to map

an input feature into 4Dmodel-dimensional space and transpose it back to the input space, Dmodel.

In comparison, a group feed-forward layer requires 8GD2
group + 5G2MDgroup of parameters, in-

cluding 4GD2
group from Wf1-intra

g , G2MDgroup from Wf1-inter[1]
g′g , 4G2MDgroup from Wf1-inter[2]

g′g and
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4GD2
group from Wf2

g . In our experiment, since we setM asDgroup/G, the total number of parameters
becomes 13GD2

group = 13
GD

2
model. When the number of groups is 2, the group feed-forward layer

uses 81% parameters of those of the original transformer. When increasing the number of groups to
4 or 8, the number of the parameters decreases proportionally to 40.6% or 20.3%.

C CHARACTER SEQUENCE GENERATION

To see the effectiveness of our models on real-world applications, we have performed two generative
tasks; word completion and sentence completion. The former is to generate a word and the latter is
to conclude a sentence when a given character sequence is in-complete.

Word completion task: Table 4 shows the generated top 20 words to conclude the in-complete char-
acter sequence, “pr”. Although our 6M and 4M Group-Transformers showed relatively lower scores
(bpc) on the quantitative evaluations, as can be seen, the model still produces all real or plausible
English words without a significant quality gap from the Transformer-XL with 41M parameters.

Seed: mary was not permitted to see them or to speak in her ···(abbreviate) ···proof of guilt if authentic the
inquiry reached the conclusion that nothing was proven from the start this could have been pr ···
(Truth) predicted

Transformer-XL (41M, 1.17 bpc on text8)
proven, proved, proof, presented, proposed, probably, prevented, preceded, predicted, presumed, praised,

preserved, problematic, preferred, present, previously, precisely, printed, produced, profound

2 Group-Transformer (6M, 1.26 bpc on text8)
proven, proof, proved, proposed, present, previously, presented, preserved, printed, probably, practically,

produced, prepared, prohibited, predicted, progressively, profound, primarily, problematic, practical

4 Group-Transformer (4M, 1.30 bpc on text8)
proven, present, proposed, preserved, presented, previously, proved, practiced, produced, prepared, printed,
probably, practically, provided, properly, presumed, praised, presently, prevented, primarily

Table 4: Examples of word completions. The seed text is prepared from text8 test dataset.

Sentence completion task: Table 5 shows the generated sentences. We observe that the all models
generate reasonable sentences.

Seed: By age fifteen, he had already given concerts worldwide. After a short stay at the [[Leipzig
Conservatory]], in [[1876]] he went to study in [[Brussels]]. In [[1880]], he went to · · ·
(Truth) [[Budapest]] to study with [[Franz Liszt]], only to find out that Liszt was in [[Weimar, Germany]].

Transformer-XL (41M, 1.06 bpc on enwik8)
(Sample 1) the [[Laertes Medical School]] in [[London]], to join the [[Excellets Laertes Medical School]].
(Sample 2) study law, married in [[Landjeball]].

2 Group-Transformer (6M, 1.19 bpc on enwik8)
(Sample 1) [[France]] for 4 years.
(Sample 2) study, and to concentrate on the context of his [[later]] study, followed.

4 Group-Transformer (4M, 1.22 bpc on enwik8)
(Sample 1) Scotland, to denounce as an [[architecture|architected]] and analysed [[Leipzig Conservatory]].
(Sample 2) [[England]] for a school at the [[Battle of Engstado Coast Corps]].

Table 5: Examples of sentence completions. The seed text is prepared from enwik8 test dataset.

D WORD-LEVEL LANGUAGE MODEL

The proposed method is focused on developing character-level language models, but the model can
be applied to other NLP tasks. When it comes to the word-level language modeling, compressing
the word embedding layer becomes the most important part for designing a lightweight language
model. Therefore, we set a embedding dimension as 500 and adjusted the number of layers and
the hidden dimension for the models to have the same number of parameters (4.5M). Specifically,
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we set the bottleneck dimension as 4 times larger than the hidden dimension and follows other
experimental settings of Dai et al. (2019). Table 6 compares scale-downed Transformer-XL and the
Group-Transformers. In all multiple settings, the Group-Transformers show better performances
than the baselines.

Model Params Non-embedding params. ppl

Baselines
Transformer-XL (6L, 224d) 139M 4.5M 37.3
Transformer-XL (5L, 248d) 139M 4.6M 37.3
Transformer-XL (4L, 272d) 139M 4.5M 37.4

Ours
4 Group-Transformer (6L, 320d) 139M 4.5M 36.6
4 Group-Transformer (5L, 352d) 139M 4.5M 36.6
4 Group-Transformer (4L, 392d) 139M 4.5M 37.0

Table 6: Comparison with the prior word-level language models on wikitext-103. We report perplex-
ity (ppl) for test sets as well as the number of parameters.

E ABLATION STUDY ON THE NUMBER OF GROUPS

Table 7 shows the performance variation of Group-Transformer as the number of groups change.
Group-Transformer outperforms the baselines in all parameter size categories. The 4 Group-
Transformer performs the best in models with [4M-5M] and [6M-7M] parameters and the 2 Group-
Transformer becomes the best in [2M-4M] parameters.

Model Params enwik8 bpc

[6M-7M]
1 Group-Transformer - base (9L, 232D) 6.6M 1.239
2 Group-Transformer (9L, 256D) 6.8M 1.221
4 Group-Transformer (9L, 328D) 6.8M 1.218
8 Group-Transformer (9L, 400D) 6.8M 1.230

[4M-5M]
1 Group-Transformer - base (9L, 192D) 4.4M 1.286
2 Group-Transformer (9L, 200D) 4.3M 1.267
4 Group-Transformer (9L, 256D) 4.3M 1.263
8 Group-Transformer (9L, 312D) 4.3M 1.278

[2M-4M]
1 Group-Transformer - base (9L, 152D) 2.9M 1.336
2 Group-Transformer (9L, 168D) 3.1M 1.313
4 Group-Transformer (9L, 208D) 2.9M 1.316
8 Group-Transformer (9L, 256D) 3.1M 1.316

Table 7: Performance comparison between the numbers of groups under the similar number of
parameters. We denote “L” and “D” as the number of layers and the hidden dimension, respectively.

F ABLATION STUDY: GROUP OPERATIONS ON QUERIES, KEYS, AND
VALUES

We investigated the effects of all grouping methods in group attention. Table 8 shows that the benefit
on the parameter size is marginal compared to the performance drop when the number of grouping
operations is increased. On the other hand, there is a relatively small performance gap between
grouping targets under the same number of grouping operations.
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Group Operations 2 Group 4 Group 8 Group

Query Key Value Param. bpc Param. bpc Param. bpc

◦ 6.8M 1.221 4.3M 1.261 2.9M 1.316
◦ 6.8M 1.225 4.3M 1.266 2.9M 1.316

◦ 6.8M 1.223 4.3M 1.262 2.9M 1.318

◦ ◦ 6.8M 1.233 4.0M 1.283 2.5M 1.328
◦ ◦ 6.8M 1.231 4.0M 1.277 2.5M 1.334

◦ ◦ 6.8M 1.228 4.0M 1.275 2.5M 1.340

◦ ◦ ◦ 6.8M 1.237 3.7M 1.296 2.0M 1.378

Table 8: Ablation study in modeling query, key, and value with our group operations.
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