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ABSTRACT

Cross-lingual embeddings encode meaning of words from different languages into a
shared low-dimensional space. However, despite numerous applications, evaluation
of such embeddings is limited. We focus on diagnosing the problem of words
segregated by languages in cross-lingual embeddings. In an ideal cross-lingual
embedding, word similarity should be independent of language—i.e., words within
a language should not be more similar to each other than to words in another
language. One test of this is modularity, a network measurement that measures the
strength of clusters in a graph. When we apply this measure to a nearest neighbor
graph, imperfect cross-lingual embeddings are sorted into modular, distinct regions.
The correlation of this measurement with accuracy on two downstream tasks
demonstrates that modularity can serve as an intrinsic metric of embedding quality.

1 INTRODUCTION

The success of monolingual word embeddings in natural language processing (Mikolov et al.,
2013b) has encouraged extensions to cross-lingual settings. Cross-lingual embeddings work well for
classification (Klementiev et al., 2012; Ammar et al., 2016) and machine translation (Lample et al.,
2018; Artetxe et al., 2018), even with few bilingual pairs (Artetxe et al., 2017).

But cross-lingual embeddings are not perfect; Section 2 discusses the ways they can fail to capture
meaning across languages. The key underlying assumption for cross-lingual embeddings in many
applications is that monolingual embeddings are consistent across language. However, this assumption
does not always hold: embeddings can be bad monolingually, senses can be mismatched, or cross-
lingual training could fail (Section 4).

We focus on the problems that arise when cross-lingual embeddings are modular by language: words
in one language only appear next to words of the same language (Figure 1). We can diagnose
this problem via graph representations of embeddings (Section 3). We connect vertices (words)
based on their similarity; this representation allows us to apply concepts from network science to
understand embeddings. Our hypothesis is that modularity can reveal whether an embedding is good
or not; low-modularity embeddings should work better in cross-lingual tasks. We make the following
contributions:

• We characterize what makes cross-lingual embeddings good or bad, using modularity to
summarize the structure of the embedding space: cross-lingual embeddings with high
modularity are hypothesized to perform poorly.
• We experimentally explore the relationship between modularity and downstream perfor-

mance on two tasks: cross-lingual document classification in Italian, Japanese, Spanish,
and Danish, and low-resource document retrieval in Hungarian and Amharic, finding strong
correlations between modularity and performance (−.704 and −.357, respectively).
• We analyze the utility of modularity as a metric for evaluating cross-lingual embeddings. It

captures complementary information that is more predictive of downstream performance
than two existing evaluation metrics.
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Figure 1: An example of a
low modularity (high-quality,
languages are mixed) and
high modularity (low-quality)
cross-lingual embedding-
driven lexical graph using
k-nearest neighbors of “eat”
(left) and “firefox” (right) in
English and Japanese.

2 DIAGNOSING CROSS-LINGUAL EMBEDDINGS

It is often helpful to understand the intrinsic characteristics of embeddings that make them useful.
This section first describes cross-lingual embeddings and the ideal characteristics good embeddings
should have. We then discuss three potential problems with cross-lingual embeddings, describing a
possible method of identifying each problem intrinsically.

2.1 BACKGROUND: CROSS-LINGUAL EMBEDDINGS

Word embeddings assign a low-dimensional vector for each word given a monolingual corpus.
Cross-lingual embeddings assign words from different languages into a vector in a shared Euclidean
space. A key assumption is that cross-lingually coherent words have “similar geometric arrange-
ments” (Mikolov et al., 2013a) in the embedding space, enabling “knowledge transfer between
languages” (Ruder et al., 2017).

One approach to building cross-lingual embeddings is to learn a post-hoc mapping between inde-
pendently constructed monolingual embeddings (Vulić and Korhonen, 2016). Given two separate
monolingual embeddings and a bilingual seed lexicon, a projection matrix can map translation pairs
in a given bilingual lexicon to be near each other in a shared embedding space.

Ruder et al. (2017) describe two other approaches to training cross-lingual embeddings: (1) creating
an artificial corpus with words from different languages using a bilingual lexical resource, and (2)
jointly learning two embeddings for each language. However, we focus on mapping-based approaches
because of their applicability to low-resource languages by not requiring large bilingual dictionaries
or parallel corpora (Artetxe et al., 2017; Conneau et al., 2018).

2.2 WHEN DO EMBEDDINGS FAIL?

Good embeddings should be both monolingually coherent and cross-lingually consistent. We now
describe three problems that can arise when learning cross-lingual embeddings.

2.2.1 INCOHERENT NEIGHBORS

The most basic problem in any word embedding is if nearby words in the embedding space are not
related in some way, i.e., the embeddings are incoherent. This can happen if the embeddings are
suboptimally trained or trained from too little data.

How to diagnose: One widely used intrinsic measure used to evaluate the coherence of monolingual
embeddings is QVEC (Tsvetkov et al., 2015). QVEC finds the optimal alignment of each dimension
of given a vector derived from an annotated corpus (e.g., “supersenses”) and each dimension of a
word embedding, then calculates the score as the sum of correlations across all aligned dimensions.
QVEC has been extended to use CCA (QVEC-CCA) to output a score in [−1, 1] to make the scores
comparable across embeddings with different dimensions (Ammar et al., 2016). However, both
QVEC and QVEC-CCA are limited: they require external annotated corpora. This is problematic in
cross-lingual settings since this requires annotation to be consistent across languages (Ammar et al.,
2016), which is a prohibitive restriction for most languages.
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2.2.2 MISMATCHED SENSES ACROSS LANGUAGES

For embeddings that only have a single vector for each word, polysemy can lead to cross-lingual
inconsistency. The monolingual embedding of a word in one language sometimes captures a different
sense of the word than the monolingual embedding in another language. For example, the English
embedding of “firefox” encodes the software sense, while “レッサーパンダ (firefox)” in the
Japanese embedding encodes the animal sense (Figure 1).

How to diagnose: A simple method to detect a mismatch across languages is to calculate the cosine
similarity between the embeddings of a pair of direct translations (Conneau et al., 2018). A low
similarity indicates that they are not cross-lingually consistent. While cross-lingual inconsistency
could be caused by many reasons, a common cause of low similarity, even negative similarity, is a
mismatch in word sense (Section 5).

2.2.3 CLUSTERING BY LANGUAGE
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Figure 2: Local t-SNE (van der
Maaten and Hinton, 2008) of an EN-
JP cross-lingual embedding.

As a result of inconsistency across languages, even when the
sense of translation pairs and its nearest neighbors are matched,
intra-lingual words still sometimes cluster together more closely
than their cross-lingual counterparts. This is apparent by a word
having more intra-lingual nearest neighbors than cross-lingual
nearest neighbors. For example, Figure 2 shows that the intra-
lingual nearest neighbors of “slow”, which are semantically
similar or its morphological variants, have higher similarity
than cross-lingual words in the embedding space.

How to diagnose: Existing approaches do not reliably detect this problem. In the next section, we
propose a graph-based metric to detect when embeddings exhibit clustering by languages.

3 GRAPH-BASED DIAGNOSTICS

We posit that we can understand the quality of cross-lingual embeddings by analyzing characteristics
of a lexical graph (Hamilton et al., 2016). The lexical graph has words as nodes and edges weighted
by their similarity in the embedding space. Given a pair of words (i, j) and associated word vec-
tors (vi, vj), we can compute the similarity between two words by calculating their vector similarity.
We encode this similarity in a weighted adjacency matrix A: Aij = max(0, cos sim(vi, vj)). How-
ever, nodes are only connected to their k-nearest neighbors (Section 5.3 examines the sensitivity to
k); all other edges become zero. Finally, each node i has a label gi indicating the word’s language.

3.1 MODULARITY OF GRAPHS

With a labeled graph, we can now ask whether the graph is modular (Newman, 2010, assortative). In
a cross-lingual lexical graph, modularity is the degree to which words are more similar to words in the
same language than to words in a different language. This is undesirable, because the representation
of words is not transferred across languages. For example, if two words across two languages
have identical meanings in their respective languages, then they should have nearly identical vector
representations in an ideal cross-lingual embedding. If the nearest neighbors of the words are instead
within the same language, then the languages are not being mapped into the cross-lingual space
consistently. In our setting, the language l of each word defines its group, and high modularity
indicates embeddings are more similar within languages than across languages (Newman, 2003;
Newman and Girvan, 2004). In other words, good embeddings should have low modularity.

Conceptually, the modularity of a lexical graph is the difference between the proportion of edges in
the graph that connect two nodes from the same language and the expected proportion of such edges,
where the expected proportion is: given the nodes of the graph, if you randomly connect two nodes,
how likely are they to be of the same language? If modularity is positive, it means that nodes within a
language are connected more often than would be expected by chance, and therefore the structure is
assortative by language.
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If edges were random, the number of edges starting from node i within the same language would
be the degree of node i, di =

∑
j Aij for a weighted graph, following Newman (2004), times the

proportion of words in that language. Summing over all nodes gives the expected number of edges
within a language,

al =
1

2m

∑
i

di1 [gi = l] , (1)

where m is the number of edges, gi is the label of node i, and 1 [·] is an indicator function that
evaluates to 1 if the argument is true and 0 otherwise.

Next, we count the fraction of edges ell that are actually connected to the same language:

ell =
1

2m

∑
ij

Aij1 [gi = l]1 [gj = l] . (2)

Given L different languages, we calculate overall modularity Q by taking the difference between ell
and a2l for all languages:

Q =

L∑
l=1

(ell − a2l ). (3)

Since Q does not necessarily have a maximum value of 1, we normalize modularity:

Qnorm =
Q

Qmax
,where Qmax = 1−

L∑
l=1

(a2l ). (4)

The higher the modularity, the more words from the same language appear as nearest neighbors.
Figure 1 shows the example of a lexical graph with low modularity (left, Qnorm = 0.152) and high
modularity (right, Qnorm = 0.672). In Figure 1b, the lexical graph is modular since “firefox” does
not encode same sense in both languages.

Our hypothesis is that cross-lingual embeddings with lower modularity will be more successful at
cross-lingual transfer in downstream tasks. If this hypothesis holds, then modularity could be a useful
metric for cross-lingual evaluation.

4 EXPERIMENTS: MODULARITY AND DOWNSTREAM SUCCESS

We now investigate whether modularity can predict the effectiveness of cross-lingual embeddings
on two downstream tasks: cross-lingual document classification and document retrieval in low-
resource languages. If modularity has a strong correlation with task performance, it can effectively
characterize the quality of embeddings. To speed up the extraction of k-nearest neighbors, we use
random projection trees (Dasgupta and Freund, 2008).1 We tune k on the German RCV2 dataset, and
set k = 3. We further discuss the sensitivity of k in Section 5.3.

4.1 EXPERIMENT SETUP: WORD EMBEDDINGS Table 1: Dataset statistics.
Language Corpus Size
English (EN) News 23M
Spanish (ES) News 25M
Italian (IT) News 23M
Danish (DA) News 20M
Japanese (JP) News 28M
Hungarian (HU) News 20M
Amharic (AM) LORELEI 28M

To investigate the relationship between embedding
effectiveness and modularity, we explore four differ-
ent cross-lingual embedding methods for six different
language pairs using a mapping approach with a bilin-
gual dictionary, i.e., the cross-lingual embeddings are
trained by learning a mapping between independently
trained monolingual embeddings.

All monolingual embeddings (Table 1) are trained using a skip-gram model with negative sam-
pling (Mikolov et al., 2013b). The dimension size is set to 100 and 200. News articles except for
Amharic are from the Leipzig Corpora (Goldhahn et al., 2012). For Amharic, we use documents
from LORELEI (Strassel and Tracey, 2016). MeCab (Kudo et al., 2004) tokenizes Japanese sentences.
Bilingual lexicons from Rolston and Kirchhoff (2016) induce all cross-lingual embeddings for all
languages except for Danish, which uses Wiktionary.

We used the following four methods for learning cross-lingual mappings:
1https://github.com/spotify/annoy
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Figure 3: Classification accuracy and modularity
of cross-lingual embeddings (ρ = −.704).

Table 2: Average classification accuracy on
(EN→ DA, ES, IT, JP) along with the average
modularity of the corresponding cross-lingual
embeddings trained with different methods.
This table contains the same data as Figure 3
to the left, but grouped by training method.
MSE+Orth has the highest accuracy, which is
captured by its low modularity.

Method Acc. Modularity
Unsupervised 0.166 0.606
MSE 0.399 0.533
CCA 0.502 0.513
MSE+Orth 0.628 0.461

Mean-squared error (MSE) Mikolov et al. (2013a) learn a projection matrix between two em-
beddings by minimizing the mean-squared error of a bilingual entry in a dictionary. We use the
implementation by Artetxe et al. (2016).

MSE with orthogonal constraints (MSE+Orth) The downside of learning a projection matrix
without any constraints is that it can change cosine similarity of words in the original monolingual
embedding space. To preserve cosine similarities in the original monolingual embedding space,
Xing et al. (2015) extend this approach by adding length normalization step to preserve the cosine
similarities in the original monolingual embeddings. Artetxe et al. (2016) apply further preprocessing
by mean centering the monolingual embeddings before learning the projection matrix.

Canonical Correlation Analysis (CCA) Faruqui and Dyer (2014) use CCA to map two separate
monolingual embeddings into a shared space by maximizing the correlation between translation pairs
in a dictionary. We use the implementation by Faruqui and Dyer (2014).

Unsupervised Cross-Lingual Embedding (Unsupervised) Unlike the first three methods which
use an external bilingual lexicon to train the cross-lingual embeddings, Conneau et al. (2018) use an
adversarial approach to align two embedding spaces without using an external bilingual lexicon. We
use the implementation by Conneau et al. (2018).

4.2 TASK 1: CROSS-LINGUAL DOCUMENT CLASSIFICATION

We classify documents from the Reuters RCV1 and RCV2 corpora (Lewis et al., 2004). The docu-
ments are labeled with one of four categories (Corporate/Industrial, Economics, Government/Social,
Markets). We follow Klementiev et al. (2012), but we use all English documents as training data and
use all of the documents in each target language as held-out data. After removing out-of-vocabulary
words, the documents in each language are split into 10% as tuning data and 90% as test data. The
test data in each language contains 10,067 documents for Danish, 25,566 for Italian, 58,950 for
Japanese, and 16,790 for Spanish. We exclude HU and AM because Reuters lacks those languages.
We use a deep averaging network Iyyer et al. (2015) with three layers, 100 hidden states, and 15
epochs to train a classifier. In preliminary experiments, we found that a deep averaging network
resulted in better accuracy compared to an averaged perceptron (Collins, 2002) following Klementiev
et al. (2012).

Results Figure 3 shows the relationship between classification accuracy using each embedding and
the modularity of the corresponding lexical graphs. The Spearman’s correlation between modularity
and classification accuracy on all languages is ρ = −0.704. Upon computing the correlations within
each language pair, we find that modularity has a very strong correlation within EN-JP embeddings
(ρ = −0.881), a strong correlation within EN-IT (ρ = −0.731), and a moderate correlation within
EN-ES embeddings (ρ = −0.707) and EN-DA embeddings (ρ = −0.690). The best classification
accuracy was achieved with embeddings trained by MSE+Orth (Table 2), which is reflected by the
low modularity of these embeddings.
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Table 3: Nearest neighbors in an EN-JP embedding.

市場(market) 終値(closing price)
新興(new coming) 上げ幅(gains)
market 株価(stock price)
markets 年初来(yearly)
軟調(bearish) 続落(continued fall)
マーケット(market) 月限(contract month)

Error Analysis One example of an error
in the EN→ JP classification task is a doc-
ument predicted as “Corporate/Industrial”,
but labeled as “Markets”. One of the key-
words in this document “終値 (closing
price)” has intra-lingual nearest neighbors
(Table 3). This issue is causing failure in
the transfer of information across languages.

4.3 TASK 2: LOW-RESOURCE DOCUMENT RETRIEVAL

As a second downstream task, we turn to an important task for low-resource languages: lexicon
expansion for document retrieval (Gupta and Manning, 2015; Hamilton et al., 2016). Specifically, we
start with a set of English seed words relevant to a particular concept (in our experiments, disasters),
then try to find related words in a target language for which a comprehensive bilingual dictionary does
not exist. Our experiments focus on the disaster domain, where events may require immediate NLP
analysis of low-resource languages (e.g., sorting SMS messages to the appropriate first responder).

We induce keywords in a target language by taking the nearest neighbors of the English seed words
in an cross-lingual embedding. Using the extracted terms, we retrieve disaster-related documents
from the annotated LORELEI corpora (Strassel and Tracey, 2016) by keyword matching and assess
the coverage and relevance of terms extracted. Specifically, we extract the n nearest neighbors of
each seed word, then report the area under the precision-recall curve (AUC) with varying n.

Seed words We select sixteen disaster-related English seed words (see Appendix A), manually
selected from the Wikipedia articles, “Natural hazard” and “Anthropogenic hazard”. Examples of
seed terms include “earthquake” and “flood”.

Table 4: Modularity (Mod) and the area un-
der the precision-recall curve (AUC) on docu-
ment retrieval (EN→ AM, HU) using different
numbers of cross-lingual nearest neighbors.

Lang. Method AUC Mod

AM
Unsupervised 0.236 0.579
MSE 0.578 0.628
CCA 0.345 0.501
MSE+Orth 0.606 0.480

HU
Unsupervised 0.424 0.620
MSE 0.561 0.598
CCA 0.675 0.506
MSE+Orth 0.612 0.447

Spearman Correlation ρ −0.357

Labeled corpora As positively labeled documents,
we use documents from the LORELEI project tagged
as disaster-related, containing any disaster-related an-
notation. There are 64 disaster-related documents in
Amharic, and 117 in Hungarian. We construct a set
of negatively labeled documents from the Bible, be-
cause the LORELEI corpus does not include negative
documents and the Bible is available in all languages
we investigate (Christodouloupoulos and Steedman,
2015). Since disasters are discussed in some chapters
of the Bible, we took only the chapters of the gospels
(89 documents), which do not discuss disasters, and
treated these as non-disaster-related documents.

Results Modularity has a moderate Spearman’s correlation with AUC (Table 4). While modularity
focuses on the assortativity of cross-lingual word embeddings over the entire vocabulary, this task is
more focused on small, specific subset of words, which may explain why the correlations are lower
than for classification.

5 ANALYSIS: UNDERSTANDING MODULARITY AS AN EVALUATION METRIC

The previous section shows that modularity captures whether an embedding is useful, which suggests
that modularity could be used as an intrinsic evaluation metric. Here, we investigate whether
modularity can capture distinct information compared to existing evaluation measures: QVEC-CCA
and cosine similarity between translation pairs (Section 5.1). We also investigate why simpler metrics
do not work well (Section 5.2) and analyze the effect of the number of nearest neighbors k on these
results (Section 5.3).
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Figure 4: We predict the cross-lingual document classification results for DA and IT from Figure 3
using two out of three embedding evaluation techniques. Ablating modularity causes by far the largest
decrease (R2 = 0.878 when using all three features) in R2, showing that it captures information
complementary to the other evaluation metrics.
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5.1 ABLATION STUDY USING LINEAR REGRESSION

We fit a linear regression model (see Appendix B) to predict the classification accuracy given three
intrinsic measures: QVEC-CCA, average cosine similarity of translations, and modularity. We ablate
each of the three measures, fitting linear regression for IT and DA cross-lingual document classification
(Figure 3). We limit to IT and DA because aligned supersense annotations to English ones (Miller
et al., 1993), required to compute QVEC-CCA, are only available in those languages (Montemagni
et al., 2003; Martı́nez Alonso et al., 2015; Martınez Alonso et al., 2016; Ammar et al., 2016).

Omitting modularity hurts the ability to predict the accuracy on cross-lingual document classification
substantially, while omitting the other two measures has only a small effect (Figure 4). Thus,
modularity is complementary to the other two measures and is strongly predictive of classification
accuracy compared to these existing measures.

5.2 SENSE-MISMATCHED TRANSLATION PAIRS

To gain a better understanding of why measures other than modularity do not predict accuracy well,
we examine the cosine similarities of embeddings of direct translations, which one would expect to
be high in a good embedding. Surprisingly, some of the translation pairs used in the seed lexicons
to create the cross-lingual embeddings have negative cosine similarities (Figure 5). Furthermore,
Figure 5 and Table 2 both indicate that the cross-lingual embeddings trained by MSE give lower
classification accuracy than the ones trained by MSE+Orth, yet the overall cosine similarity between
translation pairs is higher in the former. Often, high cosine similarity between translation pairs does
not indicate better classification accuracy.

Upon inspection, the most common cause of negative similarities seems to be mismatches in the
sense of polysemous words. For example, the pair “eddy” in EN and “āzurīti” (whirlpool) in AM has
negative similarity (−0.329) in the EN-AM embedding space. This is because the EN representation
of “eddy” has the name sense, and so its nearest cross-lingual neighbor is “michaels” instead of
“whirlpool”. Similarly, “firefox” and “レッサーパンダ” (firefox) has low similarity (−0.526) and
also has the sense mismatch between EN and JP embeddings.
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5.3 HYPERPARAMETER SENSITIVITY

While modularity itself does not have any adjustable hyperparameters, our method has two hyperpa-
rameters, which are the number of nearest neighbors (k) and the number of trees (t) for computing the
approximate k-nearest neighbors using random projection trees (Dasgupta and Freund, 2008) when
constructing the lexical graph. We conduct a grid search for k ∈ {1, 3, 5, 10, 50, 100, 150, 200} and
t ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500} using the German RCV2 corpus as the held-out
language to tune the hyperparameters. We observed that k had a much larger effect on modularity
than t, so we focus on analyzing the effect of k, using the optimal t = 450.

Our earlier experiments all used k = 3 since it gives the highest Pearson’s and Spearman’s correlation
on the tuning dataset (Figure 6). Surprisingly, the absolute correlation between the downstream task
decreases when setting k > 3, indicating nearest neighbors beyond k = 3 are only contributing noise.

6 RELATED WORK

One major line of work on evaluating cross-lingual embeddings is comparing their similarity with a
fixed set of cross-lingual word pairs rated by humans. In SemEval 2017 Task 2 (Camacho-Collados
et al., 2017), correlations between word similarity and human ratings for a fixed set of language pairs
evaluate cross-lingual embeddings. Another common way of evaluating a cross-lingual embedding
is word translation accuracy using a bilingual lexicon (Upadhyay et al., 2016; Artetxe et al., 2016;
2017; Conneau et al., 2018; Søgaard et al., 2018). Translations are usually retrieved using the nearest
cross-lingual neighbor measured by cosine similarity. Since retrieving closest inter-lingual nearest
neighbors ignores intra-lingual neighbors, cross-lingual embeddings with words being clustered to
its language could still be useful for the word translation task if the closest cross-lingual neighbor
is the correct translation. However, for tasks like cross-lingual document classification, we show in
Section 4.2 that having more intra-lingual nearest neighbors degrades accuracy.

Less work has focused on intrinsic measures that correlate with downstream tasks. Our work
is closest to the work by Søgaard et al. (2018). They compute eigenvalue similarity between
two monolingual lexical subgraphs built by subsampled words from two separate monolingual
embeddings. The resulting eigenvalue similarity has a high correlation with the bilingual lexical
induction task on unsupervised cross-lingual embeddings obtained using the method by Conneau et al.
(2018). In contrast, our cross-lingual lexical graph is directly derived from cross-lingual embeddings.
Furthermore, we do not build subgraphs for samples of words, but rather consider the entire lexical
graph. Finally, we explore the correlation with a classification task, which is a task that requires
assumptions about the consistency across languages.

Lastly, a related line of work is the automated evaluation of probabilistic topic models, which
are another low-dimensional representation of words and documents. Metrics based on word co-
occurrences have been developed for measuring the monolingual coherence of topics (Newman
et al., 2010; Mimno et al., 2011; Lau et al., 2014). Less work has studied evaluation of cross-lingual
topics (Mimno et al., 2009). Some researchers have measured the overlap of direct translations
across topics (Boyd-Graber and Blei, 2009), while Hao et al. (2018) propose a metric based on
co-occurrences across languages that is more general than direct translations.

7 CONCLUSION

Cross-lingual embeddings are often assortative by language, meaning that words have higher intra-
lingual similarity than cross-lingual similarity. Our intrinsic evaluation metric for cross-lingual
embeddings based on graph modularity strongly correlates with downstream cross-lingual extrinsic
evaluations. While modularity is not a direct measurement of the quality of cross-lingual embeddings,
it captures a characteristic of embeddings that is both important for downstream tasks and not captured
by other existing intrinsic measures such as QVEC-CCA or cosine similarity on translation pairs.
Modularity has an additional advantage over the other two measures in that it does not require external
resources, relying only on the structure of the embeddings themselves. We therefore suggest that
practitioners should consider modularity when diagnosing and evaluating cross-lingual embeddings
in addition to other approaches.
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Anders Søgaard, Sebastian Ruder, and Ivan Vulić. 2018. On the limitations of unsupervised bilingual
dictionary induction. In Proceedings of the Association for Computational Linguistics.

Stephanie Strassel and Jennifer Tracey. 2016. LORELEI language packs: Data, tools, and resources
for technology development in low resource languages. In Proceedings of the Language Resources
and Evaluation Conference.

Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Guillaume Lample, and Chris Dyer. 2015. Evaluation
of word vector representations by subspace alignment. In Proceedings of Empirical Methods in
Natural Language Processing.

Shyam Upadhyay, Manaal Faruqui, Chris Dyer, and Dan Roth. 2016. Cross-lingual models of word
embeddings: An empirical comparison. In Proceedings of the Association for Computational
Linguistics.

Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9:2579–2605.
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A SEED WORDS

Table 5 shows the seed words we use to retrieve disaster-related documents in languages other than
English in Section 4.3.

Table 5: Seed Words

criminality sinkholes
terrorism blizzard
war drought
fire hailstorm
avalanche tornado
earthquake flood
lahar wildfire
landslide disease

B LINEAR REGRESSION FITTING

In Section 5.1, we model: y = β0+β1x1+β2x2+β3x3+ε, where y is the cross-lingual classification
accuracy on the Reuters corpus, βi are model parameters, x1 is the modularity, x2 is the QVEC-CCA
score, x3 is the average cosine similarity of translation pairs, and ε is the error term. All input features
are standardized (zero mean, unit variance) before fitting.
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