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Abstract
The interpretability of an AI agent’s behavior is of utmost
importance for effective human-AI interaction. To this end,
there has been increasing interest in characterizing and gen-
erating interpretable behavior of the agent. An alternative ap-
proach to guarantee that the agent generates interpretable be-
havior would be to design the agent’s environment such that
uninterpretable behaviors are either prohibitively expensive
or unavailable to the agent. To date, there has been work un-
der the umbrella of goal or plan recognition design exploring
this notion of environment redesign in some specific instances
of interpretable of behavior. In this position paper, we scope
the landscape of interpretable behavior and environment re-
design in all its different flavors. Specifically, we focus on
three types of interpretable behaviors – explicability, legibil-
ity and predictability – and present a general framework for
environment design that can be instantiated to achieve these
behaviors. We also discuss how specific instantiations of this
framework correspond to prior works on environment design,
and identify exciting opportunities for future work.

1 Introduction
The design of human-aware AI agents must ensure that its
decisions are interpretable to the human in the loop. Unin-
terpretable behavior can lead to increased cognitive load on
the human – from reduced trust, productivity to increased
risk of danger around the agent (Fan et al. 2008). Chris-
tensen et al. (2009) emphasises in the Roadmap for U.S.
Robotics – “humans must be able to read and recognize
agent activities in order to interpret the agent’s understand-
ing”. The agent’s behavior may be uninterpretable if the
human: (1) has incorrect notion of the agent’s beliefs and
capabilities (Zhang et al. 2017; Chakraborti et al. 2017b;
Kulkarni et al. 2019) (2) is unaware of the agent’s goals
and rewards (Dragan and Srinivasa 2013; Kulkarni, Srivas-
tava, and Kambhampati 2019) (3) cannot predict the agent’s
plan or policy (Fisac et al. 2018; Kulkarni, Srivastava, and
Kambhampati 2019). Thus, in order to be interpretable, the
agent must take into account the human’s expectations of its
behavior – i.e. the human mental model (Chakraborti et al.
2017a). There are many ways in which considerations of the
human mental model can affect agent behavior.
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1.1 The Landscape of Interpretable Behavior
There has been significant interest recently in characterizing
different notions of interpretable behavior of a human-aware
AI agent (Chakraborti et al. 2019). Three important proper-
ties of interpretable behaviors emerge, namely – (1) expli-
cability: when the agent behavior conforms to the expecta-
tions of the human; (2) legibility: when the agent behavior
reveals its objectives or intentions to the observer; and (3)
predictability: when the (remaining) agent behavior can be
precisely predicted by the human.

In existing works, the generation of these behaviors was
explored from the point of view of the agent – i.e. the agent
altered its planning process by using its estimation of the
mental model of the human in the loop in order to exhibit
the desired behavior. We refer the reader to (Chakraborti et
al. 2019) for a detailed treatise of these concepts.

1.2 Environment Design
A parallel thread of work, under the umbrella of goal and
plan recognition design, has looked at the notion of chang-
ing the environment of an agent to increase interpretability
of the behaviors available to an agent. The design of envi-
ronment can be optimized in order to maximize (or mini-
mize) some objective for the actor (for example, optimal-
cost to a goal, desired behavioral property) (Zhang, Chen,
and Parkes 2009; Keren et al. 2017). An environment design
problem takes the initial environment configuration as input,
along with set of modifications allowed in the environment
and outputs a sequence of modifications, which can be ap-
plied to the initial environment to derive a new environment
in which the desired objective is optimized. The problem
of environment design is more suited for structured settings
where an actor performs repetitive objectives (for example,
on factory floors, etc). It is also suited for settings involv-
ing multiple actors, where the expectations of the observers
are the same but there are multiple actors in the environ-
ment, making environment design an effective choice (for
example, in restaurants with waiter robots where the human
customers have same expectations).

Goal (and Plan) Recognition Design In existing work,
the concept of environment design for planning agents has
been studied in the concept of goal (or plan) recognition
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Figure 1: The office assistant domain: (a) The original domain; (b) The domain can be updated for more explicable behavior by
disabling the robot coffee holder; (c) To induce legible behavior, we can add dividing walls to constrain the agent and help the
observer reduce uncertainty in their mental model; and (d) To induce predictable behavior we can reduce uncertainty about the
order of pickup by including a tray that allows the agent to pick up the objects in any order.

design (Keren, Gal, and Karpas 2014; Mirsky et al. 2019)
in order to make the goals (or plans) of an actor easier to
recognize to the observer. Immediately, this should remind
the reader of legibility (and predictability) introduced above.
The goal of this paper is to bridge the gap between these two
parallel threads of work and explore the full spectrum of in-
terpretable behavior in the context of environment design.
We will discuss how existing work in environment design
fits into this narrative and highlight much needed gaps in
existing work as exciting avenues for future work.

1.3 Why Design for Interpretability
Adopting the reasoning capabilities of an agent to deal with
the human mental model, as done in classical human-aware
decision-making versus the design of environments are in-
deed complimentary approaches towards achieving the same
purpose: behavior of the agent that is more interpretable to
the observer. While one could conceive of the most general
framework that accounts for both, it is useful to recognize
that these have their own unique set of features. Perhaps, the
biggest advantage of environment design is that the process
of generation of interpretable behavior is offloaded from the
actor onto the design process. In other words, the compu-
tational overhead of generating interpretable behavior – in
having to deal with the human mental model and reason in
the space of models – is now part of the design process only,
which can be done offline.

We will see later, in our formulation, how the actor in the
“Design for Interpretability” is modeled as a cost-optimal
agent that is able to produce interpretable behavior while
still planning in the traditional sense. In addition, design also
means that the observer does not have to count on the agent
to be cooperative and interpretable, and instead can deal with
adversarial agents as well. At the end of this paper, we will
see that this advantage does come with a caveat.

In general, the notion of interpretable behavior is com-
plemented by communication: e.g. authors in (Chakraborti,

Sreedharan, and Kambhampati 2019) balance considera-
tions of explanations and explicability, while authors in
(Chakraborti et al. 2018) balance out intention projection ac-
tions for the sake of legibility and predictability. Communi-
cation operates in model space by being able to change the
observer’s beliefs. Design, also operating in model space,
can be seen as an alternative to communication that comple-
ments the notion of interpretable behavior.

1.4 An Illustration of Design for Interpretability
Consider an office setting where an office assistant robot,
responsible for delivering items such as coffee or mail to
the employees, is about to be deployed (Figure 1a). The
robot (actor) will be supervised by office security guards
(observer) who have worked with previous generation of-
fice assistant robots and have some expectations regarding
their functions. In particular, they expect the robot to carry
one item at a time (i.e. either mail or coffee) and each robot
generally has a strong preference on the order in which it
picks up these items (though the order changes from robot
to robot). Unknown to the guards, the new model adds more
flexibility to the robot by (1) removing the need for the
robots to have fixed preference on the order to pick up items
and (2) installs a coffee cup holder that allows the robot to
carry both mail and coffee at the same time. Now if we allow
the new robot to simply act optimally in the original setting,
it would unnecessary confuse the observers.

If the robot was built to generate interpretable behavior, it
will change its behavior (and possibly settle for suboptimal
decisions in its own model) in order to conform to expecta-
tions or it will provide explanations that address these model
differences. However, the same effect can be achieved if the
designers who are deploying the robot also designed the en-
vironment to ensure that decisions of the new robot remain
interpretable to the occupants of the office.

If the designers wish to prioritize explicability, then the
change that they would need to make would be to disable the



coffee holder, this will cause the robot to choose one of the
items first, deliver it and then move on to the second one. For
explicability, it does not matter which one the robot chooses
as the user would simply assume that the order chosen by
the robot is the one enforced by the robot’s model. As for
legibility, the aim is to help the user differentiate between
the models as early as possible, one way to do it would be to
disable the coffee holder and then build introduce obstacles
as shown in Figure 1c. Finally, for predictability, the focus is
to allow the user to be able to predict the entire plan as early
as possible. One possible design for this scenario is to dis-
able the coffee holder and provide the robot with a tray that
allows the robot to carry both items at the same time. The
observer can see the tray and realizes the robot can place
both items in the tray and the order of picking up no longer
matters. In predictability, we may need to add additional ob-
stacles to further restrict the space of possible plans that can
be done by the robot (Figure 1d).

2 Background
An interpretable decision making problem involves two en-
tities: an actor (A) and an observer (O). The actor operates
in an environment while being observed by the observer.

Definition 1. An interpretable decision making problem is
a tuple, PInt = 〈PA,PO, Int〉, where:

- PA is the decision making problem of the actor A

- PO = {P iO} is observer’s mental model of the actor, rep-
resented by a set of possible decision making problems
that the observer believes that the actor may be solving.

- Int : Π → R is the interpretability score that is used to
evaluate agent plans (where Π is the space of plans)

Interestingly, we do not require that PA ∈ PO – i.e. the
problems in PO can be different from PA in all possible
aspects (e.g. state space, action space, initial state and goals).
The solution to PInt is a plan or policy that not only solves
PA but also satisfies some desired properties of interpretable
behaviors (measured through the interpretability score). The
score could reflect properties like explicability, legibility or
predictability of the plan.

Explicability The actor’s behavior is considered explica-
ble if it aligns with at least one of the observer’s expected
plans (as per their mental model). The set of plans expected
by the observer consists of all the cost-optimal solutions for
problems in PO. The target of explicability is thus to gener-
ate behavior that belongs to this set of expected plans.

Legibility With legibility, the objective of the actor is to
inform the observer about its model – i.e. reduce the size
of PO. An actor’s behavior is said to be perfectly legible if
it can be derived from only one model in PO. The longer
it takes for a plan prefix to achieve this, the worse is the
plan’s legibility. This notion of interpretability thus helps the
observer narrow down their belief over the possible actor
models as quickly as possible.

Predictability The objective of the actor with predictabil-
ity is to generate the most disambiguating behavior – i.e.
given the actor’s plan prefix, the observer should be able to
predict its completion. These predictions would be in terms
of cost-optimal completions of a given prefix in the possi-
ble problems in the mental model. This means that if there
exists the same unique completion in all of the models then
the plan is predictable even though not legible. The shorter
the length of the disambiguating plan prefix, the better the
predictability of the plan. An empty prefix would thus cor-
respond to the most predictable plan.

3 Design for Interpretability
In this section, we present a general formulation for the de-
sign problem for interpretable behaviors. Given an environ-
ment design, we assume that the actor is a rational agent and
therefore is incentivized to generate cost-optimal plans. Let
the set of cost optimal plans of the actor be Π∗PA

. A cost-
optimal plan solution to PA can exist anywhere on the spec-
trum of interpretability from high to low. Therefore, we need
a measure to quantify the interpretability score for the ac-
tor’s set of cost-optimal plans. To that end, we introduce the
worst-case interpretability score wci as follows:
Definition 2. The worst-case interpretability score wci(·),
for PInt is defined as

wci(PInt) = min
π∈Π∗

PA

Int(π) (1)

Int(·) is instantiated for each type of interpretable behav-
ior separately and is discussed in detail at the end of this
section. The higher the interpretablity score, the better the
interpretability of the behavior (in terms of either of three
properties). Therefore, the worst-case interpretability score
is the minimum interpretability score of a cost-optimal plan
of the actor.

We can now define the design problem for interpretabil-
ity. When a modification is applied to the environment, both
the actor’s decision making problem and the observer’s men-
tal model are modified, thereby changing the worst-case in-
terpretability score of the actor’s cost-optimal plans for the
given decision making problem. LetP denote the set of valid
configurations in the real environment. Although PA ∈ P ,
problems in PO might not necessarily be in P if the ob-
server has incorrect or infeasible notions about the actor’s
model. Therefore, we represent the set of configurations that
the observer thinks are possible as P̃ , and PO ⊆ P̃ .
Definition 3. The design problem for interpretability, DP-
Int, is a tuple 〈P0

Int,∆,ΛA,ΛO〉 where,

• P0
Int = 〈P 0

A,PO
0, Int〉 where P 0

A ∈ P and PO
0 ⊆ P̃

are the initial models.
• ∆ is the set of modifications that can be applied to the

environment. ξ is a sequence of modifications.
• ΛA : ∆ × P → P and ΛO : ∆ × P̃ → P̃ are the model

transition function that specify the resulting model after
applying a modification to the existing models.
The set of possible modifications includes modifying the

set of states, action preconditions, action effects, action



costs, initial state and goal. Each modification ξ ∈ ∆ is as-
sociated with a cost, such that, C(ξ) =

∑
ξi∈ξ C(ξ). After

applying ξ to both P 0
A and PO

0, the resulting actor deci-
sion making problem model and observer mental model are
represented as P |ξ|A and PO

|ξ| respectively.
Let P |ξ|Int be the modified interpretable decision making

problem after applying the modification ξ to PInt. Our ob-
jective here is to solve DP-Int such that the worst-case inter-
pretability score of PInt is maximized. Apart from that, the
design cost of ξ has to be minimized, as well as the cost of a
plan πA that solves P |ξ|A .
Definition 4. A solution to DP-Int, is a sequence of modifi-
cations ξ with

min(−wci(P |ξ|Int), C(ξ), cost(πA)) (2)

This completes the general framework of design for in-
terpretability. In the following, we will look at specific in-
stances of design for the different notions of interpretability.

3.1 Design for Explicability
In order to be explicable, the actor’s plan has to be con-
sistent with the observer’s expectations of it. The observer
has an implicit assumption that the actor is a rational agent.
Therefore the set of plans expected by the observer includes
the cost-optimal plans for all the planning models in the ob-
server’s mental model. Let Π∗PO

be the set of expected plans
for the observer. Given the set of expected plans, the explica-
bility of the actor’s plan depends on how different it is from
the expected plans. In order to quantify the explicability of
a plan, we introduce the following scoring function:
Definition 5. The explicability score Exp(·) of an actor’s
plan πA that solves PA is defined as follows:

Exp(πA) = max
π∈Π∗

PO

e−δPO
(πA,π) (3)

Here δPO
(·) computes the distance between two plans

with respect to the observer’s mental model. For example,
the distance function could compute a cost-based difference
between the two plans in the observer’s mental model. Plug-
ging this scoring function in Equation 2 allows us to instan-
tiate the design problem for explicability.

3.2 Design for Legibility
In order to be legible, the actor’s plan has to reveal its prob-
lem to the observer as early on as possible. Therefore, the
legibility of a plan is inversely proportional to the length of
its shortest prefix that has unique cost optimal completion
for more than one problem in the observer’s mental model.
Definition 6. The legibility score Leg(·) of an actor’s plan,
πA, that solves PA is defined as follows:

Leg(πA) = min
π̃A∈Π̃PA

e−|π̃A| (4)

such that ∃(P iO, P
j
O) ∈ PO, i 6= j with unique cost optimal

completion of π̃A in each model, and Π̃PA
is the set of all

prefixes of πA. Plugging this scoring function in Equation 2
allows us to instantiate the design problem for legibility.

Goal Recognition Design The work on goal recognition
design (GRD) (Keren, Gal, and Karpas 2014) is a special
case of the design problem for legibility. The GRD prob-
lem involves an actor and an observer where the observer’s
mental model consists of planning models that have the ex-
act same state space, actions and initial state as the actor’s
planning model. However, each planning model in the ob-
server’s mental model has a different goal. The actor’s true
goal is one of them, and the objective of GRD problem is
to redesign the environment, such that, the true goal of the
actor is revealed to the observer as early as possible. The in-
terpretability problem defined here is a general one, where
the observer’s mental model can be different in all possible
ways from the actor’s actual planning model.

3.3 Design for Predictability
In order to be predictable, the plan has to be the most-
disambiguating plan among the set of plans the observer
is considering – i.e. the observer should be able to predict
the rest of the plan after seeing the prefix. Therefore, pre-
dictability of a plan is inversely proportional to the length of
its shortest prefix which ensures only one optimal comple-
tion solving only a single problem in the observer’s mental
model. We can quantify the predictability score as follows:

Definition 7. The predictability score Pred(·) of an actor’s
plan πA that solves PA is defined as follows:

Pred(πA) = min
π̃A∈Π̃PA

e−|π̃A| (5)

such that ∃!π ∃P iO ∈ PO where π is an optimal comple-
tion of π̃A, and Π̃PA

is the set of all prefixes of a plan πA.
Plugging this scoring function in Equation 2 allows us to
instantiate the design problem for predictability.

Connection to Plan Recognition Design The predictabil-
ity problem corresponds to the plan recognition design
(PRD) problem (Mirsky et al. 2019). However, our proposed
framework in terms of possible observer models subsumes
the plan library based approaches in being able to support a
generative model of observer expectations.

4 Discussion and Future Work
We will now highlight limitations of the proposed frame-
work and discuss how they may be extended in the future.

Multiple decision making problems. The problem of en-
vironment design, as studied in this paper, is suitable for set-
tings where the actor performs a single repetitive task. How-
ever, our formulation can be easily extended to handle an
array of tasks that the agent performs in its environment by
considering a set of decision making problems for the actor
(Sreedharan, Chakraborti, and Kambhampati 2018), where
the worst-case score is decided by taking either minimum
(or average) over the wci(·) for the set of problems.

Interpretability Score. The three properties of inter-
pretable agent behavior are not mutually exclusive. A plan
can be explicable, legible and predictable at the same time.
In general, a plan can have any combination of the three



properties. In Equation 2, Int(·) uses one of these proper-
ties at a time. In order to handle more than one property at a
time, one could formulate Int(·) as a linear combination of
the three properties. In general, the design objective would
be to minimize the worst-case interpretability score such that
the scores for each property are maximized in the modified
environment, or at least allow the designer pathways to trade
off among potentially competing metrics.

Cost of the agent. In Section 1.3 we mentioned an advan-
tage of the design process in the context of interpretability –
the ability to offload the computational load on the actor, in
having to reason about the observer model, to the offline de-
sign stage. However, there is never any free lunch. The effect
of environment design is more permanent than operating on
the human mental model. That is to say, interpretable behav-
ior while targeted for a particular human in the loop or for a
particular interaction, does not (usually) affect the actor go-
ing forward. However, in case of design of environment, the
actor has to live with the design decisions for the rest of its
life. That means, for example, if the environment has been
designed to promote explicable behavior, the actor would
be incurring additional cost for its behaviors (than it would
have had in the original environment). This also affects not
only a particular decision making problem at hand, but also
everything that the actor does in the environment, and for all
the agents it interacts with. As such there is a “loss of auton-
omy” is some sense due to environment design, the cost of
which can and should be incorporated in the design process.
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