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ABSTRACT

Characterizing the underlying mechanism of graph topological evolution from a
source graph to a target graph has attracted fast increasing attention in the deep
graph learning domain. However, there lacks expressive and efficient that can han-
dle global and local evolution patterns between source and target graphs. On the
other hand, graph topological evolution has been investigated in the graph signal
processing domain historically, but it involves intensive labors to manually de-
termine suitable prescribed spectral models and prohibitive difficulty to fit their
potential combinations and compositions. To address these challenges, this paper
proposes the deep Graph Spectral Evolution Network (GSEN) for modeling the
graph topology evolution problem by the composition of newly-developed gen-
eralized graph kernels. GSEN can effectively fit a wide range of existing graph
kernels and their combinations and compositions with the theoretical guarantee
and experimental verification. GSEN has outstanding efficiency in terms of time
complexity (O(n)) and parameter complexity (O(1)), where n is the number of
nodes of the graph. Extensive experiments on multiple synthetic and real-world
datasets have demonstrated outstanding performance.

1 INTRODUCTION

Understanding the mechanism of graph generation and evolution has significant importance in many
applications, such as brain simulation, mobility network simulation, and social network modeling
and intervention. Beyond the traditional methods from network science domain, graph generation
and evolution have been attracting fast increase attention by deep graph generative models due to
their great potential of learning the underlying known generation and evolution mechanism in an
end-to-end fashion Simonovsky & Komodakis (2018). Based on deep graph generative models, the
graph generation problem is considered as decoding a graph based on latent variables following
some underlying distribution while graph evolution can be modeled as a mapping to a target graph
topology given a source graph topology. Graph evolution based on deep graph learning is a very
challenging problem and is still in its nascent stage because of the extremely high-dimension of the
data. An ideal model should be able to capture both the local and global characteristics of source
graph and be able to determine the existence or weight of potential edges for each pair of nodes.
Models that are both expressive and efficient are in urgent demand.

The domain which has investigated graph evolution for a long time is graph signal processing, where
well-defined mathematical framework and various techniques such as graph wavelets and kernels
that abstract the graph process in frequency domain have been hypothesized and verified in many
applications. For example, Kunegis et al. have demonstrated that triangle-closing kernels fit very
well to the evolution of graph spectrum during the “befriending process” in some social networks
(Leskovec et al. (2008)). Most recently, neuroscience researchers found that the functional connec-
tivity shares the same graph Fourier basis with structural connectivity in several special situations.

Although graph signal processing allows powerful and concise models to characterize many graph
evolution processes, they require to first determine the potentially suitable type of graph kernel and
then fit the parameters of it. However, this raises up serious challenges: First, it is difficult to
discover or select suitable kernel types for various applications. Graph kernels are proposed based
on the analyses and abstraction of the prior knowledge on various graph phenomena. But until now,
quite a lot of phenomena have not yet been analyzed or interpreted by human. For example, it is
unclear whether and how the spectrum of resting-state functional connectivity transforms into task-
specific functional connectivity in human brain Hermundstad et al. (2013). Moreover, for many
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sophisticated phenomena, the graph process typically involves the combination and composition of
multiple graph processes corresponding to multiple kernels. For example, the evolution of social
networks might involve not only the triangle closing process (i.e., two friends of a person tend
to be friends) by triangle-closing kernels, but also could include the behavior diffusion process
which can be characterized by diffusion kernels. Also, the involvement of different kernel process
might be simultaneous or sequential, and hence prohibitively difficult to manually determine or
combinatorially optimize.

To address these challenges, this paper proposes a novel end-to-end model named Deep Graph
Spectral Evolution Network (GSEN) to optimally fit the graph evolution process by the composition
of newly-developed generalized graph kernels. The generalized graph kernels widely cover existing
graph kernels as well as their combination and composition as special cases, and hence are able to fit
them with outstanding expressiveness. In addition to this high expressiveness, GSEN is also highly
concise in terms of small parameter complexity and time complexity for training. Specifically, the
number of parameters and memory complexity of GSEN are independent of the graph size while the
time complexity for the training of GSEN is linear to the graph size. This largely outperforms the
state-of-the-art, which typically requiresO(n2) time complexity and memory complexity. Extensive
experiments on several synthetic datasets and multiple real-world datasets in two domains have been
conducted. The results demonstrate the superior accuracy of our GSEN over existing deep generative
models for graph transformation and models based on graph signal processing. The higher efficiency
of GSEN compared to existing deep generative models has also been verified.

2 RELATED WORK

2.1 SPECTRAL GRAPH TRANSLATION PROBLEMS

Spectral based approaches in graph translation have been the focus in many researches over the past
decades. To model how networks are translated, the spectral evolution model was introduced by
Kunegis et al. (2010). The growth of large networks is analyzed by studying the changes in the
spectral characteristics of the graph. These changes are explained using the eigendecomposition of
the graph adjacency matrix or its laplacian. The new link prediction approach shows how eigen-
vectors stay constant while the eigenvalues are evolved over the transition. This model can also
generalize several graph kernels which are expressed as spectral transformations. Li et al. (2011)
proposes the MERW (maximum entropy random walk) approach to the link prediction problem.
MERW based approaches are introduced as various algorithms that could use four separate graph
kernels, in addition to a class of similarity measures, to capture the proximity between two nodes.
The resulting methods perform the prediction, while maintaining the centrality of the nodes. In
Symeonidis et al. (2013), the link prediction problem for protein-protein interaction networks and
online social networks is considered. The SpectralLink algorithm is proposed to compute the sim-
ilarity between every two nodes, by exploiting the top few eigenvectors of the laplacian matrix,
which eliminates the redundant and noisy information. The link prediction is then performed faster
and more accurate. Variants of the aforementioned method are also derived for signed and directed
graphs. Spectral Graph analysis has been useful in a behavior related link prediction problem Spiegel
et al. (2011), where there’s a need to predict whether and how much a user is likely to rate an item.
Multiple network snapshots with temporal trends are captured and tensor factorization is used to
extract hidden trends within a multi-dimension array. The higher-order data is then factorized into
a lower dimension, using Parafac model. The spectral evolution model is finally applied, where the
spectrum of decompositions change, while the eigenvectors stay constant.

2.2 DEEP LEARNING METHODS IN GRAPH SPECTRAL DOMAIN

There is a large body of research on deep graph learning, for tasks such as the embedding and clas-
sification of nodes and graphs. Kipf & Welling (2016) proposed a localized graph convolutional
neural networks (CNNs) based on semi-supervised learning for graph-structured data, where labels
are only available for a small subset of nodes. A neural network model is designed based on a layer-
wise propagation rule. The model is then trained on the supervised target which includes all nodes
with labels. A novel spectral graph CNN approach is proposed in Li et al. (2018) to graph data that
varies in both size and connectivity. To capture the variation in the input graph topology, the training
process includes applying a customized graph laplacian to each sample input. The laplacian then
becomes trainable by parameterizing the distance metrics that measure vertex similarity. Deep con-
volutional approaches have been applied to data domains with irregularities which lack fundamental
statistical properties in Henaff et al. (2015), to solve for large scale classification problems. In Def-
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Table 1: Existing kernels for graph spectral translation problem
Kernel Name Matrix Function Spectral Function
Laplacian Commute-time Kernel KCom(L) = L+ UΛ−1Uᵀ, define Λ−1

i,i = 0 if Λi,i = 0

Normalized Laplacian Commute-time Kernel KCom(Z) = Z+ UΛ−1Uᵀ, define Λ−1
i,i = 0 if Λi,i = 0

Normalized Adjacent Exponential Kernel KExp(N) = eαN UeαΛUᵀ

Generalized Laplacian Kernel KGen(L) = (
∑∞
k=0 αkL

k)+ U(
∑∞
k=0 αkΛk)−1Uᵀ

Generalized Normalized Laplacian Kernel KGen(Z) =
∑∞
k=0 αk(I − Z)k U(

∑∞
k=0 αk(I − Λ)k)Uᵀ

Heat Diffusion Kernel KHeat(L) = e−αL Ue−αΛUᵀ

Normalized Heat Diffusion Kernel KHeat(Z) = e−αZ Ue−αΛUᵀ

Normalized Adjacent Neumann Kernel KNeu(N) = (I − αN)−1 U(I − αN)−1Uᵀ

Normalized Adjacent Path Count Kernel KPath(N) =
∑∞
k=0 αkN

k ∑∞
k=0 αk(UD−

1
2ΛD−

1
2 Uᵀ)k

Regularized Laplacian Kernel KReg(N)(I + αN)−1 U(I + αΛ)−1Uᵀ

Normalized Regularized Laplacian Kernel KReg(Z)(I + αZ)−1 U(I + αΛ)−1Uᵀ

ferrard et al. (2016), CNNs are presented in the context of spectral graph theory, and fast localized
convolutional filters are designed.

2.3 DEEP LEARNING METHODS FOR GRAPH TRANSFORMATION PROBLEMS

Graph Transformation modeling based on deep neural networks has attracted fast-increasing atten-
tion recently, where existing methods are based on spatial domain by operating the explicit connec-
tivity among the nodes (Guo et al. (2019), Guo et al. (2018), Do et al. (2019)). The prediction in
most cases is performed either on the node attributes of the graph or its topology while the other is
fixed. Guo et al. (2019) proposes the NEC-DGT (Node-Edge Co-evolving Deep Graph Translator)
framework as a novel technique to approach the simultaneous prediction challenge. A portion of
these research is only tailored for specific applications and domains (Do et al. (2019)). For exam-
ple, Do et al. (2019) and Jin et al. (2018) proposed methods only for transferring molecule graphs.
Spatio-temporal dependencies in traffic flow are modeled as a diffusion process in a directed graph
through a DCRNN (Diffusion Convolutional Recurrent Neural Network) model Li et al. (2017).
Using bidirectional random walks and encoder-decoder architecture the spatial and temporal depen-
dencies are captured respectively. However, until now there is no work in this domain that models
the graph topological transformation in spectral domain.

3 GRAPH TOPOLOGY TRANSFORMATION VIA SPECTRAL EVOLUTION

This paper focuses on a problem of predicting the topology of a target graph based on that of a
source graph by characterizing spectral graph evolution.

3.1 PROBLEM FORMULATION

Define a source graph as an undirected weighted graph G = (V,E,A) where V is the set of nodes
with size of |V |, E ⊆ V ×V is the set of edges, andA ∈ R|V |×|V | is the adjacent matrix that defines
the weights of the edges. The adjacent matrix A can be normalized by defining the normalized
adjacent matrix N = D−

1
2AD−

1
2 , where D ∈ R|V |×|V | is the diagonal matrix where each diagonal

element is the degree of corresponding node. Besides, the Laplacian matrix of the source graph G is
defined as L = D−A, and the normalized Laplacian matrix is defined as Z = D−

1
2LD−

1
2 = I−N

where I is the identity matrix. Define graph spectrum as Λ ∈ R|V |×|V | and graph Fourier basis as
U , which are obtained from the eigendecomposition of Laplacian matrix L = UΛUᵀ. A target
graph is defined as G′ = (V ′, E′, A′), where the set of nodes V ′ = V , edges E′, adjacent matrix
A′, normalized adjacent matrix N ′, the Laplacian matrix L′, the normalized Laplacian matrix Z ′,
graph spectrum Λ′ and Fourier basis U ′ are defined the same way as that of source graph.

Graph Transformation via Spectral Evolution: The spectral graph translation problem states
that the graph topological transformation G′ ← F (G) from a source graph G to target graph G′ can
be modeled by a change in the graph’s spectrum, while the graph basis remains the same.

To determine the function F , various graph kernels based on the existing research on graph wavelets
can be utilized, including heat kernels KHEAT(L) = exp(−αL) and many others such as those listed
in Table 1. Several such graph kernels have been empirically demonstrated to model some specific
graph process effectively. For example, Kunegis et al. has verified that path count kernels fit very
well to the link prediction problem in some email networks (Kunegis et al. (2010)). The evolutions
of social networks typically involve triangle closing process (i.e., two friends of a person tend to
be friends), which has been verified to be effectively modeled by triangle-closing kernels Leskovec
et al. (2008).

Existing techniques basically first determine the potentially suitable type of kernels and then fit the
parameters of the kernels. However, this raises up several challenges: First, it is difficult to discover
or select suitable kernel types for various applications. Graph kernels are proposed based on the
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analyses and abstraction of the prior knowledge on various graph phenomena. But until now, quite
a lot of phenomena have not yet been analyzed or interpreted by human, let alone formulated kernel
functions. For example, it is unclear whether and how the spectrum of resting-state functional con-
nectivity transforms into task-specific functional connectivity in human brain Hermundstad et al.
(2013). Moreover, for many sophisticated phenomena, the graph process typically involves addi-
tive and/or sequential compositions of multiple graph processes described by multiple kernels. For
example, the evolution of social network might involve not only triangle closing process (i.e., two
friends of a person tend to be friends) by triangle-closing kernels, but also could include behavior
diffusion process which can be characterized by diffusion kernels. Also, the involvement of differ-
ent kernel process might be simultaneous or sequential, and hence prohibitively difficult to manually
determine or combinatorially optimize.

3.2 GENERALIZED GRAPH KERNELS

In order to address the above mentioned challenges, we propose a new generalized graph kernel that
is highly expressive to cover various graph kernels as well as their compositions. We first formulate
the learning of such expressive kernel as an optimization problem as follows.
Lemma 3.1. Without loss of generalizability, using graph LaplacianL andL′ to represent the graph
topology of G and G′, the spectral graph translation can be explicitly formulated as F (L)→ L′ by
an analytic function F , which is learned by the following equation given [F (Λ)]kk = f(Λkk):

min
f

∑
k

(f(Λk,k)− Uᵀ
·,kL

′U·,k)2 (1)

Proof. The training purpose of F (·) is to minimize the squared loss against the real target graph:
min
F
‖F (L)− L′‖22 = ‖F (UΛUᵀ)− L′‖22

= ‖
∑∞

k=0

F (k)(γ)

k!
(UΛUᵀ)k − L′‖22 (power expansion)

= ‖U
(∑∞

k=0

F (k)(γ)

k!
(Λ)k

)
Uᵀ − L′‖22

= ‖UF (Λ)Uᵀ − L′‖22
= ‖U · diag([F (Λ1,1), · · · , F (Λ|V |,|V |)])U

ᵀ − L′‖22
= ‖diag([F (Λ1,1), · · · , F (Λ|V |,|V |)])− UᵀL′U‖22

Hence, this problem is equivalent to the problem of minf
∑
k(f(Λk,k) − Uᵀ

·,kL
′U·,k)2 given

F (Λ)kk = f(Λkk). The proof is completed.
We propose the following new generalized graph kernel:

F (Λ) =
∑∞

k=1
αkΛk + γkD

−kΛk + βI (2)

Here we introduce some important properties of the proposed generalized graph kernel.
Lemma 3.2. The generalized graph kernel in Equation 2 has the following properties:

1. Existing graph kernels based on L,A,N , and Z such as those in Table 1 are its special
cases.

2. The additive combinations and compositions of the existing graph kernels are special cases
of our operation.

Proof. Now we prove Property 1. Graph kernels are typically functions of four types of variables,
namely Laplacian L, adjacency matrix A = D − L, normalized Laplacian Z = D−1/2LD−1/2,
and normalized adjacency matrix N = I − D−1/2LD−1/2. For those kernels based on L and A,
they can be transformed to [F (Λ)]i,i =

∑∞
k=0

mk,i
k! Λki,i, where mk,i = f (k)(0) for Laplacian while

mk,i = f (k)(Di,i) for adjacency matrix. Therefore, both of them can be fit by our generalized graph
kernel by setting γk := 0 for all k = 0, 1, · · · . For those kernels based on N and Z, they can be
transformed to [F (Λ)]i,i =

∑∞
k=0

m
k! (D

−k
i,i Λi,i)

k, where m = 0 for Z while m = 1 for N . Hence,
both of them can be fit by setting αk := 0 for all k = 0, 1, · · · .
Here we prove Property 2. Assume there are two generalized graph kernels Fa(Λ) and Fb(Λ), then
it is easy to see that both their sumation and composition can still be fit by another generalized graph
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Figure 1: The architecture of Deep Graph Spectral Evolution Networks.
kernel. By leveraging Property 1, the additive and composition of all the various graph kernels such
as those in Table 1 can be fit by our generalized graph kernels.

4 DEEP GRAPH SPECTRAL EVOLUTION NETWORKS

In this section, a new neural network named GSEN, which is based on the proposed generalized
graph kernel, is proposed. To achieve this, we reduce the order of the polynomials from infinity to
K that is independent of and typically far less than the graph size. Moreover, our GSEN is composed
by stacking multiple such generalized graph kernel as a special type of multi-order 1-D convolution
operation, as illustrated in Figure 1 and described as follows.

Specifically, each layer can be expressed as follows:

Fl(Λ) = Hl

(∑∞

k=1
(αkI + γkD

−k)Fl−1(Λ)k + βI
)

(3)

where the function Hl(·) is an activation function which performs element-wise activation based
on commonly used ones such as ReLU, sigmoid, or linear. An equivalent scalar form of the above
equation is expressed as fl(Λi,i) = hl

(∑∞
k=1(αk + γkD

−k
i,i )fl−1(Λi,i)

k + β
)
, where hl(·) is a

scalar version of Hl(·).

As shown in Figure 1, we implement GSEN through an L-layer convolution operations from
the source graph to target graph. Specifically, the input, namely F0(Λ), is Λ that is the
spectrum of the source graph. For the l − 1th layer, the diagonal vectors of the matri-
ces I, Fl−1(Λ), Fl−1(Λ)2, · · · , Fl−1(Λ)K are calculated and concatenated as shown in the or-
ange region in Figure 1. Similarly, the diagonal vectors of the matrices I,D · Fl−1(Λ), D2 ·
Fl−1(Λ)2, · · · , DK · Fl−1(Λ)K are calculated and concatenated as shown in the yellow region in
Figure 1. Then these two regions are convoluted by the kernels α(l) and γ(l), respectively, to ob-
tain Fl(Λ) after performing activation function. Such convolution operation is repeatedly performed
until L-th layer, which outputs the predicted graph spectrum FL(Λ) for the target graph.

Complexity and Efficiency: Training neural network amounts to solve the optimization problem in
Equation 1, which can be handled by backpropagation. Our method largely and effectively reduces
the number of parameters, to 2 ·K · L, which is small and independent of the size of the graph and
hence is highly memory-efficient and scalable. In terms of the time complexity, the calculation of
the powers of graph spectrum has a time complexity ofO(K ·N ·L) while the convolution operations
involves another O(K ·N · L) so the total time complexity of the neural network is O(K ·N · L).
Also, notice the generation of the input data involves eigendecomposition of L which could be time-
consuming for large graph. To address this issue, we can leverage reduced eigendecomposition to
only involve the calculation of lower-rank matrix and hence can largely speed up and scalable to
large graph.

5 EXPERIMENT

In this section, the experimental settings are first introduced, then the performance of the proposed
method is presented through a set of comprehensive experiments. All the experiments are conducted
on a 64-bit machine with 40 GB memory, a 4-core Intel R© CPU and an Nvidia R© RTX-2080 Ti GPU.
The proposed method is implemented with Pytorch deep learning framework.

5.1 EXPERIMENTAL SETUP

We evaluate the effectiveness on 11 synthetic datasets, and 4 real-world datasets on brain network
prediction and malware confinement in the Internet of Things (IoT) task. The datasets, evaluation
methods, and comparison methods are elaborated in turn.

5.1.1 DATASETS

• Synthetic Datasets: In each of the 11 synthetic datasets, we generate 1000 source-target graph
pairs. Specifically, first, 1000 unweighted and undirected random graphs with 50 nodes and 200
edges are generated as the source graphs, then each edge in the source graphs is assigned with a
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random weight between 0 and 1. Finally, 1000 target graphs are generated by applying one of the
kernels depicted in Table 1.
• Real-world HCP Dataset: In these datasets, the source and the target graphs respectively reflect
the structural connectivity (SC) and the functional connectivity (FC) of the same subject’s brain net-
work. In particular, both types of connectivity are processed from the Magnetic Resonance Imaging
(MRI) data obtained from the human connectome project (HCP) Van Essen et al. (2013). By fol-
lowing the preprocessing procedure in Wang et al. (2019), the SC data is constructed by applying
probabilistic tracking on the diffusion MRI data using the Probtrackx tool from FMRIB Software
Library Jenkinson et al. (2012) with 68 predefined regions of interests (ROIs). Then, the FC is de-
fined as the Pearson’s correlation between two ROIs’ blood oxygen level-dependent time obtained
from the resting-state functional MRI data. Finally, all the 823 pairs of SC and FC adjacent matrices
are normalized as defined in Section 3.

• Real-world IoT Datasets: In these datasets, the nodes represent the Internet of Things (IoT)
devices and the edges denote the communication links between two devices. Each source graph
reflects the communication status of the network, and some of the nodes in the network are infected
by some types of malware. To limit the devices that are infected by the malware propagating to other
devices, the malware confinement is conducted by cutting some of the links while maximizing the
functionality of the network. The confined network is considered as the target graph that corresponds
to the source graph. The IoT datasets contain three datasets, namely IoT-20, IoT-40, and IoT-60,
which include 20, 40, and 60 devices. There are 343 source-target graph pairs in each of IoT
datasets.

5.1.2 COMPARISON METHODS

The comparison methods include: Graph spectral transformation kernels: We compared our
GSEN method with all single kernel methods defined in Table 1 on synthetic datasets. The pa-
rameters α or {αk}Kk=1 in Table 1 is learned from the training data. Baseline method: For this
method, the eigenvalue transformation function F : Λ → Λ′ is learned by a fully connected four-
layer perceptron activated by tanh function. Each hidden layer contains 4n neurons, where n is the
number of nodes in the graph. Brain network prediction methods: We consider four classic brain
network prediction methods that use SC to FC Galán (2008); Abdelnour et al. (2014); Meier et al.
(2016); Abdelnour et al. (2018). Abdelnour et al. (2014) and Abdelnour et al. (2018) considered the
graph spectral transformation kernels by assuming that SC and FC share the identical eigenvectors
on their Laplacians. The remaining two methods directly consider the graph translation between SC
and FC. GT-GAN: Graph Translation-Generative Adversarial Networks (GT-GAN) by Guo et al.
(2018) is a newly proposed general-purpose graph topology translation method based on the graph
generative adversarial network. C-DGT : node-edge Co-evolving Deep Graph Translator (C-DGT)
by Guo et al. (2019) is the state-of-the-art deep graph translation network, which considers both and
edge attributes that are regularized in the spectral domain. For the datasets without node and edge
attributes in our experiments, we simply assign the attributes as all-ones.

5.1.3 EVALUATION METRIC

For the effectiveness experiments, the Pearson correlation is computed between the upper triangular
values of the normalized adjacent matrix of the real target graph and that of the predicted target
graph. For all the comparison and our methods, 5-fold cross-validation is performed.

For the efficiency experiments, as the training time depends on the data and the max number of
epochs for the gradient-based optimization algorithms (e.g. SGD, ADAM). We use the per-epoch
training time on CPU as the evaluation metric for efficiency study.

5.2 PERFORMANCE

In this section, the performance of the proposed method, namely GSEN, as well as other methods
on effectiveness and efficiency on both 11 synthetic and 4 real-world datasets are elaborated. In
addition, the case studies and the sensitivity tests on the real-world datasets are also presented.

5.2.1 PERFORMANCE ON SYNTHETIC DATASETS

For synthetic datasets, we compare the Pearson correlation between the target graph generated by
various kernels and the graphs predicted by various methods. Table 2 summarizes the effectiveness
comparison for 11 synthetic datasets. Our GSEN method achieves 0.90 Pearson correlation on aver-
age among all 11 synthetic datasets. In contrast, the second-best method, namely the C-DGT, only
can achieve 0.61 Pearson correlation. The traditional graph spectral kernel functions can achieve
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Dataset
Method KCom(L) KCom(Z) KExp(N) KGen(L) KGen(Z) KHeat(L) KHeat(Z) KNeu(N) KPath(N) KReg(L) KReg(Z) Avg.
KCom(L) 1.00 (GS) 1.00 (GS) 0.28 -0.04 -0.15 -0.26 -0.26 0.23 0.26 -0.02 -0.23 0.16
KCom(Z) 1.00 (GS) 1.00 (GS) 0.28 -0.04 -0.15 -0.26 -0.26 0.23 0.26 -0.02 -0.23 0.16
KExp(N) 0.23 0.23 1.00 (GS) 0.25 0.69 1.00 1.00 -0.88 -0.91 0.13 -0.88 0.17
KGen(L) -0.11 -0.28 -1.00 0.93 (GS) 0.83 0.06 0.99 -0.94 -0.99 0.80 0.95 0.11
KGen(Z) -0.02 -0.18 -0.96 -0.05 1.00 (GS) 0.21 0.84 -0.84 -0.92 -0.02 0.98 0.00
KHeat(L) 0.23 0.23 1.00 0.25 0.69 1.00 (GS) 1.00 (GS) -0.88 -0.91 0.13 -0.88 0.17
KHeat(Z) 0.23 0.23 1.00 0.25 0.69 1.00 (GS) 1.00 (GS) -0.88 -0.91 0.13 -0.88 0.17
KNeu(N) 0.25 0.29 0.93 -0.08 -0.76 -0.87 -0.99 1.00 (GS) 0.98 0.02 -0.91 -0.01
KPath(N) 0.01 0.29 0.95 0.03 -0.77 -0.18 -0.99 1.00 1.00 (GS) 0.01 -0.91 0.04
KReg(L) -0.02 -0.23 -0.99 0.36 0.96 -0.11 0.91 -0.91 -0.97 0.97 (GS) 1.00 0.09
KReg(Z) -0.02 -0.23 -0.99 0.31 0.97 -0.10 0.91 -0.91 -0.97 0.65 1.00 (GS) 0.06
GT-GAN 0.12 0.18 0.26 0.00 0.93 0.48 0.25 0.53 0.69 0.18 0.53 0.38
C-DGT -0.05 0.16 1.00 -0.02 0.80 1.00 1.00 0.92 0.98 -0.02 0.92 0.61
Baseline -0.14 -0.28 -0.99 -0.05 0.27 0.07 0.17 0.76 0.99 -0.03 0.63 0.13
GSEN 0.97 0.72 0.99 0.80 1.00 0.89 0.99 1.00 1.00 0.71 0.85 0.90

Table 2: Pearson correlation between the predicted graph and empirical graph 11 synthetic datasets. Each
column denotes the Pearson correlation of the synthetic dataset generated by the kernel function of the second
row. Each row denotes the Pearson correlation of the prediction method of the first column. Some results are
“gold standard” ones because the predictor and synthetic data generator use the same graph kernel, and hence
are marked as “GS” for those results. The right-most column denotes the average Pearson correlation among
all 11 synthetic datasets. The highest Pearson correlation in each column/dataset is highlighted in bold font
while the second-highest Pearson correlation is marked with an underline.

near-perfect results on the synthetic datasets generated from the same kernel, so all the diagonal
Pearson correlation coefficients from the top left corner in Table 2 are close to 1. But none of
these kernels perform well on all 11 synthetic datasets, which means they are not generic methods.
Their average performance is thus worse than the deep learning-based methods. The deep learning-
based graph translation method C-DGT performs much better than the other deep learning-based
GT-GAN and fully-connected baseline methods. This because the C-DGT methods partially con-
sider the spectral property as a regularization term such that it can have relatively good performance
(e.g. > 0.7) on 7 out of 11 synthetic datasets, but not as good as our generic spectral method. GSEN
typically performs better on normalized Laplacian matrix Z than original Laplacian matrix L, be-
cause the eigenvalues of the normalized Laplacian matrix are between 0 and 2, which can have a
good estimation when using Taylor expansion to estimate F(Λ).

5.2.2 PERFORMANCE ON REAL-WORLD DATASETS

Dataset
Method IoT-20 IoT-40 IoT-60 SC-FC Avg.
Galan2008 0.74 0.79 0.81 0.23 0.64
Abdelnour2014 0.73 0.76 0.81 0.23 0.63
Meier2016 0.74 0.78 0.81 0.26 0.65
Abdelnour2018 0.73 0.76 0.81 0.23 0.63
GT-GAN 0.80 0.74 0.64 0.45 0.66
C-DGT 0.81 0.82 0.84 0.14 0.65
Baseline 0.70 0.72 0.74 0.33 0.62
GSEN 0.82 0.84 0.84 0.35 0.71

Table 3: Pearson correlation between the pre-
dicted graph and empirical graph on real-world
datasets

• Metric-based evaluation: Table 3 shows
the Pearson coefficient by comparing the pre-
dicted graphs with the empirical target graphs.
Our method achieves the highest Pearson co-
efficient on 3 out of 4 datasets, and the high-
est average Pearson correlation among the four
real-world datasets. For the malware confine-
ment datasets, namely the IoT datasets, GSEN
slightly outperforms the C-DGT method, which
is the state-of-the-art method on these datasets.
But as we will show in the next section, our
method is at least 40 times faster than the C-
DGT method. In addition, the C-DGT method
receives the lowest Pearson correlation coeffi-
cient on the brain network SC-FC translation
dataset whose nodes attributes are not available.
The GT-GAN method achieves the highest SC-FC dataset, but performs worse than C-DGT and
GSEN on other three datasets. The GT-GAN method is also the slowest method in terms of the
per epoch training time. None of the methods can achieve the Pearson correlation higher than 0.5
including the top four methods that are exclusively designed for the SC-FC mapping problem in the
neural science domain. This might be caused by the noise in the resting-state fMRI data. We will
show some insightful reasons through multiple case studies below.

• Case study on the brain network SC-FC prediction dataset:

Figure 2 plots two subject’s 1) structural connectivity (i.e., the adjacent matrix of
the source graph shown on the left column), 2) empirical functional connectivity (i.e.,
the adjacent matrix of target graph shown on the middle column), 3) predicted func-
tional connectivity (i.e., the adjacent matrix of target graph shown on the right column.
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Figure 2: Case studies of the source, real, and predicted target graph topologies on SC-FC dataset.

Figure 3: Case studies of the source, real, and pre-
dicted target graph topologies on IoT dataset.

As shown in Figure 2, the predicted FC us-
ing Subject 121’s SC is very close to the same
subject’s empirical FC. On the other hand, the
predicted FC using Subject 88’s SC is differ-
ent from Subject 88’s empirical FC, although
Subject 88’s SC is very similar to Subject 121’s
SC. This is because SC reflects human brain’s
anatomical neural network, which has rela-
tively less individual differences among human
beings. Unlike SC, the FC used in this datasets
reflects the Pearson correlations between two time series (i.e., Blood Oxygen Level Dependent
(BOLD) signal) of different brain Regions Of Interests (ROIs), when the subject is instructed under
the resting-state. In practice, it is difficult to control these subjects’ brain activities, which causes
the empirical FC very noisy such that may affect the performance of all prediction methods. The
additional cases are provided in our supplementary material due to the space limitation.

• Case study on the malware confinement (IoT) dataset: Figure 3 demonstrates the cases of
the source graphs, empirical target graph and the predicted target graphs by our method from all
three malware confinement datasets. The leftmost source graph in each dataset denotes the original
network connections. To prevent the network ceased by malware, some of the links in the network
are cut while maintaining the optimal functionality of the entire network, which formulates the
empirical target graph that is sparser than the source graph. The rightmost graph is the target network
predicted by GSEN using the source graph. When comparing the empirical target graph with the
predicted target graph, it is obvious that our method can mostly predict which link should be cut to
prevent malware propagation.

5.2.3 EFFICIENCY EVALUATION

To validate the efficiency as well as the scalability of the proposed method, we use three real-world

GSEN GT-GAN C-DGT
Dataset time speed up time speed up time speed up
IoT-20 0.06s × 1 31s × 517 2.44s × 41
IoT-40 0.09s × 1 66s × 733 5.86s × 65
IoT-60 0.13s × 1 108s × 831 12.10s × 93
IoT-200 0.21s × 1 174s × 829 40s × 190
IoT-400 0.72s × 1 692s × 961 - -
IoT-600 1.60s × 1 1611s ×1007 - -
IoT-800 2.89s × 1 2964s ×1026 - -
IoT-1000 4.75s × 1 4112s ×866 - -

Table 4: Training time per epoch. (-) indicates
out-of-memory error.

IoT datasets whose number of nodes is from 20
to 60. We further enlarge the IoT-20 dataset
from 200 to 1000 nodes, which generates four
larger datasets, namely the IoT-200, · · · , IoT-
1000 datasets. We report the results in Table
4 for the mean training time per epoch using
CPU for 100 epochs on the aforementioned 7
datasets. We compare the results with the two
deep learning-based graph translation methods.
For our network, we set both the degree of
power K and the number of layers to 5. For
the other two comparison methods, the default
settings are applied. As shown in Table 4, our method is on average 967 times faster than the GT-
GAN method and 72 times faster than the C-DGT method. Notice that the C-DGT is unable to
handle the graphs with more than 400 nodes due to the out-of-memory error. The scalability of our
GSEN is remarkable, which can be trained in 4.75 seconds per epoch on the graphs with 1000 nodes.

6 CONCLUSIONS

This paper focuses on the problem of spectral graph topological evolution, by proposing a novel deep
Graph Spectral Evolution Networks (GSEN) which achieves a compelling trade-off between model
expressiveness and efficiency. The proposed GSEN solves crucial drawbacks of the existing models
in the graph topological evolution domain, which typically suffer from superlinear time and mem-
ory complexity. Experimental results on multiple synthetic and real-world datasets demonstrated
the outstanding expressiveness and efficiency accuracy in terms of the graph topology prediction
accuracy and runtime, as well as qualitative analyses on the predicted graph topologies.
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A SUPPLEMENTARY MATERIAL

This is the supplementary material for deep graph spectral evolution networks for graph topological
evolution. In this supplementary material we provide additional case study results on the brain
network structural connectivity (SC) and functional connectivity (FC) datasets.

A.1 HYPER-PARAMETER SENSITIVITY TEST
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(a) Sensitivity test to the power degree K
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(b) Sensitivity test to the number of layers

Figure 4: Sensitivity analysis

We use two real-world datasets, namely the IoT-60 dataset and the SC-FC dataset to test the sensi-
tivity of the proposed method to its hyper-parameters. The proposed method includes three hyper-
parameters: 1) the number of layers, 2) the degree of power K, and 3). the activation function. For
the choice of activation function, we exclusively select the sigmoid(·) and tanh(·) function because
they can easily constrain the eigenvalues to a valid range (e.g. [0,2) for the normalized Laplacian
matrix). The results of the sensitivity test to the power degree K are plotted in Figure 4a, which fix
the number of layers to 3. Our method is quite robust for K > 1 on both datasets using both activa-
tion functions. When K = 1, the Pearson correlations are dropped on the SC-FC datasets because
of the inaccurate estimation of the Taylor expansion. On the other hand, the sensitivity tests for the
number of layers are plotted in Figure 4b. The propose method is also insensitive to the number
of layers as long as the number of layers is greater than one. Recall when there is only one layer,
our method is reduced to a single graph spectral kernel that may not be able to handle sophisticated
graph translation problem (e.g. the SC-FC prediction problem). Therefore, this result has validated
the necessity of the “deep” proposed in this paper.

A.2 ADDITIONAL CASE STUDY RESULTS ON SC-FC DATASETS

The additional case study results for SC-FC datasets are shown in Figure 5, and the case study results
for IoT datasets are shown in Figure 6.

A.3 ADDITIONAL PERFORMANCE ON REAL-WORLD DATASETS

Table 5 shows the R2 coefficient by comparing the predicted graphs with the empirical target graphs.
R2 is a metric positively related to the proportion of the variance in the dependent variable that is
predictable from the independent variable(s). Thus, the higher R2 is, the better the performance
will be. Similar to the results in Pearson correlation in Table 3, our method achieves the highest R2
coefficient on 3 out of 4 datasets, and the highest average R2 correlation among the four real-world
datasets. For the malware confinement datasets, namely the IoT datasets, our method outperforms
the C-DGT method in two out of three datasets. Also note that our method is at least 40 times faster
than the C-DGT method. Our method also achieves highest R2 score on brain network dataset (i.e.,
the column of “SC-FC” in Table 5. In all, our method GSEN achieves the highest performance in
general among all four datasets with large margin comparing to the second-best one which is the
baseline method.
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(a) Case study on Subject 6.
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(b) Case study on Subject 66.
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(c) Case study on Subject 72.
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(d) Case study on Subject 123.

Figure 5: Case study of brain functional connectivity predicted by our method.

Dataset
Method IoT-20 IoT-40 IoT-60 SC-FC Avg.
Galan2008 0.5433 0.6044 0.6527 -5.7832 -0.9957
Abdelnour2014 -1.8336 -0.0002 -0.6364 -0.8801 -0.8376
Meier2016 0.5386 0.5991 0.6525 -3.5465 -0.4391
Abdelnour2018 -0.0011 -0.0005 -0.0002 -0.8805 -0.2206
GT-GAN 0.6552 0.4809 0.1795 -1.0315 0.0710
C-DGT 0.6400 0.6716 0.7050 -4.1410 -0.5311
Baseline 0.4051 0.4601 0.5137 -0.7548 0.1560
GSEN 0.6275 0.7050 0.7062 -0.5847 0.3635

Table 5: R2 score between the predicted graph and empirical graph on real-world datasets
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(a) Case study on IoT-20 dataset.
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(b) Case study on IoT-40 dataset.

Figure 6: Case study of malware confinement datasets with our method.
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