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Abstract

Instrumental variable (IV) regression is a strategy for learning causal relationships
in observational data. If measurements of input X and output Y are confounded,
the causal relationship can nonetheless be identified if an instrumental variable
Z is available that influences X directly, but is conditionally independent of Y
given X and the unmeasured confounder. The classic two-stage least squares
algorithm (2SLS) simplifies the estimation problem by modeling all relationships
as linear functions. We propose kernel instrumental variable regression (KIV), a
nonparametric generalization of 2SLS, modeling relations among X , Y , and Z as
nonlinear functions in reproducing kernel Hilbert spaces (RKHSs). We prove the
consistency of KIV under mild assumptions, and derive conditions under which
convergence occurs at the minimax optimal rate for unconfounded, single-stage
RKHS regression. In doing so, we obtain an efficient ratio between training
sample sizes used in the algorithm’s first and second stages. In experiments, KIV
outperforms state of the art alternatives for nonparametric IV regression.

1 Introduction

Instrumental variable regression is a method in causal statistics for estimating the counterfactual effect
of input X on output Y using observational data [59]. If measurements of (X,Y ) are confounded,
the causal relationship–also called the structural relationship–can nonetheless be identified if an
instrumental variable Z is available, which is independent of Y conditional on X and the unmeasured
confounder. Intuitively, Z only influences Y via X , identifying the counterfactual relationship of
interest.

Economists and epidemiologists use instrumental variables to overcome issues of strategic interaction,
imperfect compliance, and selection bias. The original application is demand estimation: supply cost
shifters (Z) only influence sales (Y ) via price (X), thereby identifying counterfactual demand even
though prices reflect both supply and demand market forces [67, 11]. Randomized assignment of a
drug (Z) only influences patient health (Y ) via actual consumption of the drug (X), identifying the
counterfactual effect of the drug even in the scenario of imperfect compliance [3]. Draft lottery number
(Z) only influences lifetime earnings (Y ) via military service (X), identifying the counterfactual
effect of military service on earnings despite selection bias in enlistment [2].

The two-stage least squares algorithm (2SLS), widely used in economics, simplifies the IV estima-
tion problem by assuming linear relationships: in stage 1, perform linear regression to obtain the
conditional means x̄(z) := EX|Z=z(X); in stage 2, linearly regress outputs Y on these conditional
means. 2SLS works well when the underlying assumptions hold. In practice, the relation between Y
and X may not be linear, nor may be the relation between X and Z.

In the present work, we introduce kernel instrumental variable regression (KIV), an easily imple-
mented nonlinear generalization of 2SLS (Sections 3 and 4). In stage 1 we learn a conditional
mean embedding, which is the conditional expectation µ(z) := EX|Z=z (X) of features  which
map X to a reproducing kernel Hilbert space (RKHS) [55]. For a sufficiently rich RKHS, called a

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



characteristic RKHS, the mean embedding of a random variable is injective [56]. It follows that the
conditional mean embedding characterizes the full distribution of X conditioned on Z, and not just
the conditional mean. We then implement stage 2 via kernel ridge regression of outputs Y on these
conditional mean embeddings, following the two-stage distribution regression approach described by
[63, 64]. As in our work, the inputs for [63, 64] are distribution embeddings. Unlike our case, the
earlier work uses unconditional embeddings computed from independent samples.

As a key contribution of our work, we provide consistency guarantees for the KIV algorithm for an
increasing number of training samples in stages 1 and 2 (Section 5). To establish stage 1 convergence,
we note that the conditional mean embedding [55] is the solution to a regression problem [33, 34, 32],
and thus equivalent to kernel dependency estimation [20, 21]. We prove that the kernel estimator of
the conditional mean embedding (equivalently, the conditional expectation operator) converges in
RKHS-norm, generalizing classic results by [52, 53]. We allow the conditional mean embedding
RKHS to be infinite-dimensional, which presents specific challenges that we carefully address in our
analysis. We also discuss previous approaches to establishing consistency in both finite-dimensional
[34] and infinite-dimensional [55, 54, 30, 36, 20] settings.

We embed the stage 1 rates into stage 2 to get end-to-end guarantees for the two-stage procedure,
adapting [14, 63, 64]. In particular, we provide a ratio of stage 1 to stage 2 samples required for
minimax optimal rates in the second stage, where the ratio depends on the difficulty of each stage.
We anticipate that these proof strategies will apply generally in two-stage regression settings.

2 Related work

Several approaches have been proposed to generalize 2SLS to the nonlinear setting, which we will
compare in our experiments (Section 6). A first generalization is via basis function approximation
[47], an approach called sieve IV, with uniform convergence rates in [17]. The challenge in [17]
is how to define an appropriate finite dictionary of basis functions. In a second approach, [16, 22]
implement stage 1 by computing the conditional distribution of the input X given the instrument Z
using a ratio of Nadaraya-Watson density estimates. Stage 2 is then ridge regression in the space
of square integrable functions. The overall algorithm has a finite sample consistency guarantee,
assuming smoothness of the (X,Z) joint density in stage 1 and the regression in stage 2 [22]. Unlike
our bound, [22] make no claim about the optimality of the result. Importantly, stage 1 requires the
solution of a statistically challenging problem: conditional density estimation. Moreover, analysis
assumes the same number of training samples used in both stages. We will discuss this bound in
more detail in Appendix A.2.1 (we suggest that the reader first cover Section 5).

Our work also relates to kernel and IV approaches to learning dynamical systems, known in machine
learning as predictive state representation models (PSRs) [12, 36, 25] and in econometrics as panel
data models [1, 6]. In this setting, predictive states (expected future features given history) are
updated in light of new observations. The calculation of the predictive states corresponds to stage 1
regression, and the states are updated via stage 2 regression. In the kernel case, the predictive states
are expressed as conditional mean embeddings [12], as in our setting. Performance of the kernel PSR
method is guaranteed by a finite sample bound [36, Theorem 2], however this bound is not minimax
optimal. Whereas [36] assume an equal number of training samples in stages 1 and 2, we find that
unequal numbers of training samples matter for minimax optimality. More importantly, the bound
makes strong smoothness assumptions on the inputs to the stage 1 and stage 2 regression functions,
rather than assuming smoothness of the regression functions as we do. We show that the smoothness
assumptions on the inputs made in [36] do not hold in our setting, and we obtain stronger end-to-end
bounds under more realistic conditions. We discuss the PSR bound in more detail in Appendix A.2.2.

Yet another recent approach is deep IV, which uses neural networks in both stages and permits learning
even for complex high-dimensional data such as images [35]. Like [22], [35] implement stage 1 by
estimating a conditional density. Unlike [22], [35] use a mixture density network [9, Section 5.6], i.e.
a mixture model parametrized by a neural network on the instrument Z. Stage 2 is neural network
regression, trained using stochastic gradient descent (SGD). This presents a challenge: each step of
SGD requires expectations using the stage 1 model, which are computed by drawing samples and
averaging. An unbiased gradient estimate requires two independent sets of samples from the stage
1 model [35, eq. 10], though a single set of samples may be used if an upper bound on the loss is
optimized [35, eq. 11]. By contrast, our stage 1 outputs–conditional mean embeddings–have a closed
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form solution and exhibit lower variance than sample averaging from a conditional density model.
No theoretical guarantee on the consistency of the neural network approach has been provided.

In the econometrics literature, a few key assumptions make learning a nonparametric IV model
tractable. These include the completeness condition [47]: the structural relationship between X and
Y can be identified only if the stage 1 conditional expectation is injective. Subsequent works impose
additional stability and link assumptions [10, 19, 17]: the conditional expectation of a function of
X given Z is a smooth function of Z. We adapt these assumptions to our setting, replacing the
completeness condition with the characteristic property [56], and replacing the stability and link
assumptions with the concept of prior [53, 14]. We describe the characteristic and prior assumptions
in more detail below.

Extensive use of IV estimation in applied economic research has revealed a common pitfall: weak
instrumental variables. A weak instrument satisfies Hypothesis 1 below, but the relationship between
a weak instrument Z and input X is negligible; Z is essentially irrelevant. In this case, IV estimation
becomes highly erratic [13]. In [57], the authors formalize this phenomenon with local analysis. See
[43, 60] for practical and theoretical overviews, respectively. We recommend that practitioners resist
the temptation to use many weak instruments, and instead use few strong instruments such as those
described in the introduction.

Finally, our analysis connects early work on the RKHS with recent developments in the RKHS
literature. In [45], the authors introduce the RKHS to solve known, ill-posed functional equations. In
the present work, we introduce the RKHS to estimate the solution to an uncertain, ill-posed functional
equation. In this sense, casting the IV problem in an RKHS framework is not only natural; it is in the
original spirit of RKHS methods. For a comprehensive review of existing work and recent advances
in kernel mean embedding research, we recommend [42, 31].

3 Problem setting and definitions

Instrumental variable: We begin by introducing our causal assumption about the instrument. This
prior knowledge, described informally in the introduction, allows us to recover the counterfactual
effect of X on Y . Let (X ,BX ), (Y,BY), and (Z,BZ) be measurable spaces. Let (X,Y, Z) be a
random variable on X ⇥ Y ⇥ Z with distribution ⇢.
Hypothesis 1. Assume

1. Y = h(X) + e and E[e|Z] = 0

2. ⇢(x|z) is not constant in z

We call h the structural function of interest. The error term e is unmeasured, confounding noise.
Hypothesis 1.1, known as the exclusion restriction, was introduced by [47] to the nonparametric IV
literature for its tractability. Other hypotheses are possible, although a very different approach is then
needed [39]. Hypothesis 1.2, known as the relevance condition, ensures that Z is actually informative.
In Appendix A.1.1, we compare Hypothesis 1 with alternative formulations of the IV assumption.

We make three observations. First, if X = Z then Hypothesis 1 reduces to the standard regression
assumption of unconfounded inputs, and h(X) = E[Y |X]; if X = Z then prediction and counter-
factual prediction coincide. The IV model is a framework that allows for causal inference in a more
general variety of contexts, namely when h(X) 6= E[Y |X] so that prediction and counterfactual
prediction are different learning problems. Second, Hypothesis 1 will permit identification of h even
if inputs are confounded, i.e. X��|= e. Third, this model includes the scenario in which the analyst
has a combination of confounded and unconfounded inputs. For example, in demand estimation
there may be confounded price P , unconfounded characteristics W , and supply cost shifter C that
instruments for price. Then X = (P,W ), Z = (C,W ), and the analysis remains the same.

Hypothesis 1 provides the operator equation E[Y |Z] = EX|Zh(X) [47]. In the language of 2SLS,
the LHS is the reduced form, while the RHS is a composition of stage 1 linear compact operator
EX|Z and stage 2 structural function h. In the language of functional analysis, the operator equation
is a Fredholm integral equation of the first kind [45, 40, 47, 28]. Solving this operator equation for
h involves inverting a linear compact operator with infinite-dimensional domain; it is an ill-posed
problem [40]. To recover a well-posed problem, we impose smoothness and Tikhonov regularization.
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Figure 1: The RKHSs

RKHS model: We next introduce our RKHS model. Let kX : X ⇥

X ! R and kZ : Z ⇥ Z ! R be measurable positive definite kernels
corresponding to scalar-valued RKHSs HX and HZ . Denote the feature
maps

 : X ! HX , x 7! kX (x, ·) � : Z ! HZ , z 7! kZ(z, ·)

Define the conditional expectation operator E : HX ! HZ such that
[Eh](z) = EX|Z=zh(X). E is the natural object of interest for stage
1. We define and analyze an estimator for E directly. The conditional
expectation operator E conveys exactly the same information as another
object popular in the kernel methods literature, the conditional mean
embedding µ : Z ! HX defined by µ(z) = EX|Z=z (X) [55]. Indeed,
µ(z) = E⇤�(z) where E⇤ : HZ ! HX is the adjoint of E. Analogously,
in 2SLS x̄(z) = ⇡0z for stage 1 linear regression parameter ⇡.

The structural function h : X ! Y in Hypothesis 1 is the natural object of interest for stage 2. For
theoretical purposes, it is convenient to estimate h indirectly. The structural function h conveys
exactly the same information as an object we call the structural operator H : HX ! Y . Indeed,
h(x) = H (x). Analogously, in 2SLS h(x) = �0x for structural parameter �. We define and analyze
an estimator for H , which in turn implies an estimator for h. Figure 1 summarizes the relationships
among equivalent stage 1 objects (E, µ) and equivalent stage 2 objects (H,h).

Our RKHS model for the IV problem is of the same form as the model in [44, 45, 46] for general
operator equations. We begin by choosing RKHSs for the structural function h and the reduced
form E[Y |Z], then construct a tensor-product RKHS for the conditional expectation operator E. Our
model differs from the RKHS model proposed by [16, 22], which directly learns the conditional
expectation operator E via Nadaraya-Watson density estimation. The RKHSs of [27, 16, 22] for
the structural function h and the reduced form E[Y |Z] are defined from the right and left singular
functions of E, respectively. They appear in the consistency argument, but not in the ridge penalty.

4 Learning problem and algorithm

2SLS consists of two stages that can be estimated separately. Sample splitting in this context means
estimating stage 1 with n randomly chosen observations and estimating stage 2 with the remaining m
observations. Sample splitting alleviates the finite sample bias of 2SLS when instrument Z weakly
influences input X [4]. It is the natural approach when an analyst does not have access to a single
data set with n +m observations of (X,Y, Z) but rather two data sets: n observations of (X,Z),
and m observations of (Y, Z). We employ sample splitting in KIV, with an efficient ratio of (n,m)
given in Theorem 4. In our presentation of the general two-stage learning problem, we denote stage 1
observations by (xi, zi) and stage 2 observations by (ỹi, z̃i).

4.1 Stage 1

We transform the problem of learning E into a vector-valued kernel ridge regression following
[33, 32, 20], where the hypothesis space is the vector-valued RKHS H� of operators mapping HX to
HZ . In Appendix A.3, we review the theory of vector-valued RKHSs as it relates to scalar-valued
RKHSs and tensor product spaces. The key result is that the tensor product space of HX and HZ is
isomorphic to L2(HX ,HZ), the space of Hilbert-Schmidt operators from HX to HZ . If we choose
the vector-valued kernel � with feature map (x, z) 7! [�(z) ⌦  (x)](·) = �(z)h (x), ·iHX , then
H� = L2(HX ,HZ) and it shares the same norm.

We now state the objective for optimizing E 2 H�. The optimal E minimizes the expected
discrepancy

E⇢ = argmin E1(E), E1(E) = E(X,Z)k (X)� E⇤�(Z)k2
HX

Both [32] and [20] refer to E1 as the surrogate risk. As shown in [33, Section 3.1] and [32], the
surrogate risk upper bounds the natural risk for the conditional expectation, where the bound becomes
tight when EX|Z=(·)f(X) 2 HZ , 8f 2 HX . Formally, the target operator is the constrained solution
EH� = argmin

E2H�
E1(E). We will assume E⇢ 2 H� so that E⇢ = EH� .
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Next we impose Tikhonov regularization. The regularized target operator and its empirical analogue
are given by

E� = argmin
E2H�

E�(E), E�(E) = E1(E) + �kEk
2
L2(HX ,HZ)

En

�
= argmin

E2H�

E
n

�
(E), E

n

�
(E) =

1

n

nX

i=1

k (xi)� E⇤�(zi)k
2
HX + �kEk

2
L2(HX ,HZ)

Our construction of a vector-valued RKHS H� for the conditional expectation operator E permits
us to estimate stage 1 by kernel ridge regression. The stage 1 estimator of KIV is at once novel in
the nonparametric IV literature and fundamentally similar to 2SLS. Basis function approximation
[47, 17] is perhaps the closest prior IV approach, but we use infinite dictionaries of basis functions  
and �. Compared to density estimation [16, 22, 35], kernel ridge regression is an easier problem.

Alternative stage 1 estimators in the literature estimate the singular system of E to ensure that the
adjoint of the estimator equals the estimator of the adjoint. These estimators differ in how they
estimate the singular system: empirical distribution [22], Nadaraya-Watson density [23], or B-spline
wavelets [18]. The KIV stage 1 estimator has the desired property by construction; (En

�
)⇤ = (E⇤)n

�
.

See Appendix A.3 for details.

4.2 Stage 2

Next, we transform the problem of learning h into a scalar-valued kernel ridge regression that respects
the IV problem structure. In Proposition 12 of Appendix A.3, we show that under Hypothesis 3
below,

EX|Z=zh(X) = [Eh](z) = hh, µ(z)iHX = Hµ(z)

where h 2 HX , a scalar-valued RKHS; E 2 H�, the vector-valued RKHS described above; µ 2 H⌅,
a vector-valued RKHS isometrically isomorphic to H�; and H 2 H⌦, a scalar-valued RKHS isomet-
rically isomorphic to HX . It is helpful to think of µ(z) as the embedding into HX of a distribution
on X indexed by the conditioned value z. When kX is characteristic, µ(z) uniquely embeds the
conditional distribution, and H is identified. The kernel ⌦ satisfies kX (x, x0) = ⌦( (x), (x0)).
This expression establishes the formal connection between our model and [63, 64]. The choice of ⌦
may be more general; for nonlinear examples see [64, Table 1].

We now state the objective for optimizing H 2 H⌦. Hypothesis 1 provides the operator equation,
which may be rewritten as the regression equation

Y = EX|Zh(X) + eZ = Hµ(Z) + eZ , E[eZ |Z] = 0

The unconstrained solution is

H⇢ = argmin E(H), E(H) = E(Y,Z)kY �Hµ(Z)k2
Y

The target operator is the constrained solution HH⌦ = argmin
H2H⌦

E(H). We will assume
H⇢ 2 H⌦ so that H⇢ = HH⌦ . With regularization,

H⇠ = argmin
H2H⌦

E⇠(H), E⇠(H) = E(H) + ⇠kHk
2
H⌦

Hm

⇠
= argmin

H2H⌦

E
m

⇠
(H), E

m

⇠
(H) =

1

m

mX

i=1

kỹi �Hµ(z̃i)k
2
Y
+ ⇠kHk

2
H⌦

The essence of the IV problem is this: we do not directly observe the conditional expectation operator
E (or equivalently the conditional mean embedding µ) that appears in the stage 2 objective. Rather,
we approximate it using the estimate from stage 1. Thus our KIV estimator is ĥm

⇠
= Ĥm

⇠
 where

Ĥm

⇠
= argmin

H2H⌦

Ê
m

⇠
(H), Ê

m

⇠
(H) =

1

m

mX

i=1

kỹi �Hµn

�
(z̃i)k

2
Y
+ ⇠kHk

2
H⌦

and µn

�
= (En

�
)⇤�. The transition from H⇢ to Hm

⇠
represents the fact that we only have m samples.

The transition from Hm

⇠
to Ĥm

⇠
represents the fact that we must learn not only the structural operator

H but also the conditional expectation operator E. In this sense, the IV problem is more complex
than the estimation problem considered by [44, 46] in which E is known.
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4.3 Algorithm

We obtain a closed form expression for the KIV estimator. The apparatus introduced above is required
for analysis of consistency and convergence rate. More subtly, our RKHS construction allows us to
write kernel ridge regression estimators for both stage 1 and stage 2, unlike previous work. Because
KIV consists of repeated kernel ridge regressions, it benefits from repeated applications of the
representer theorem [65, 50]. Consequently, we have a shortcut for obtaining KIV’s closed form; see
Appendix A.5.1 for the full derivation.

Algorithm 1. Let X and Z be matrices of n observations. Let ỹ and Z̃ be a vector and matrix of m
observations.

W = KXX(KZZ + n�I)�1K
ZZ̃

, ↵̂ = (WW 0 +m⇠KXX)�1Wỹ, ĥm

⇠
(x) = (↵̂)0KXx

where KXX and KZZ are the empirical kernel matrices.

Theorems 2 and 4 below theoretically determine efficient rates for the stage 1 regularization parameter
� and stage 2 regularization parameter ⇠, respectively. In Appendix A.5.2, we provide a validation
procedure to empirically determine values for (�, ⇠).

5 Consistency

5.1 Stage 1

Integral operators: We use integral operator notation from the kernel methods literature, adapted to
the conditional expectation operator learning problem. We denote by L2(Z, ⇢Z) the space of square
integrable functions from Z to Y with respect to measure ⇢Z , where ⇢Z is the restriction of ⇢ to Z .
Definition 1. The stage 1 (population) operators are

S⇤

1 : HZ ,! L2(Z, ⇢Z), ` 7! h`,�(·)iHZ S1 : L2(Z, ⇢Z) ! HZ , g 7!

Z
�(z)g(z)d⇢Z(z)

T1 = S1 �S⇤

1 is the uncentered covariance operator of [29, Theorem 1]. In Appendix A.4.2, we prove
that T1 exists and has finite trace even when HX and HZ are infinite-dimensional. In Appendix A.4.4,
we compare T1 with other covariance operators in the kernel methods literature.

Assumptions: We place assumptions on the original spaces X and Z , the scalar-valued RKHSs HX

and HZ , and the probability distribution ⇢(x, z). We maintain these assumptions throughout the
paper. Importantly, we assume that the vector-valued RKHS regression is correctly specified: the true
conditional expectation operator E⇢ lives in the vector-valued RKHS H�. In further research, we
will relax this assumption.
Hypothesis 2. Suppose that X and Z are Polish spaces, i.e. separable and completely metrizable
topological spaces
Hypothesis 3. Suppose that

1. kX and kZ are continuous and bounded: sup
x2X

k (x)kHX  Q, sup
z2Z

k�(z)kHZ  

2.  and � are measurable

3. kX is characteristic [56]
Hypothesis 4. Suppose that E⇢ 2 H�. Then E1(E⇢) = infE2H� E1(E)

Hypothesis 3.3 specializes the completeness condition of [47]. Hypotheses 2-4 are sufficient to bound
the sampling error of the regularized estimator En

�
. Bounding the approximation error requires a

further assumption on the smoothness of the distribution ⇢(x, z). We assume ⇢(x, z) belongs to a
class of distributions parametrized by (⇣1, c1), as generalized from [53, Theorem 2] to the space H�.
Hypothesis 5. Fix ⇣1 < 1. For given c1 2 (1, 2], define the prior P(⇣1, c1) as the set of probability
distributions ⇢ on X ⇥ Z such that a range space assumption is satisfied: 9g1 2 H� s.t. E⇢ =

T
c1�1

2
1 � g1 and kg1k2H�

 ⇣1
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We use composition symbol � to emphasize that g1 : HX ! HZ and T1 : HZ ! HZ . We define
the power of operator T1 with respect to its eigendecomposition; see Appendix A.4.2 for formal
justification. Larger c1 corresponds to a smoother conditional expectation operator E⇢. Proposition 24
in Appendix A.6.2 shows E⇤

⇢
�(z) = µ(z), so Hypothesis 5 is an indirect smoothness condition on

the conditional mean embedding µ.

Estimation and convergence: The estimator has a closed form solution, as noted in [33, Section
3.1] and [34, Appendix D]; [20] use it in the first stage of the structured prediction problem. We
present the closed form solution in notation similar to [14] in order to elucidate how the estimator
simply generalizes linear regression. This connection foreshadows our proof technique.
Theorem 1. 8� > 0, the solution En

�
of the regularized empirical objective En

�
exists, is unique, and

En

�
= (T1 + �)�1

� g1, T1 =
1

n

nX

i=1

�(zi)⌦ �(zi), g1 =
1

n

nX

i=1

�(zi)⌦  (xi)

We prove an original, finite sample bound on the RKHS-norm distance of the estimator En

�
from its

target E⇢. The proof is in Appendix A.7.
Theorem 2. Assume Hypotheses 2-5. 8� 2 (0, 1), the following holds w.p. 1� �:

kEn

�
� E⇢kH�  rE(�, n, c1) :=

p
⇣1(c1 + 1)

4
1

c1+1

✓
4(Q+ kE⇢kH�) ln(2/�)

p
n⇣1(c1 � 1)

◆ c1�1
c1+1

� =

✓
8(Q+ kE⇢kH�) ln(2/�)

p
n⇣1(c1 � 1)

◆ 2
c1+1

The efficient rate of � is n
�1

c1+1 . Note that the convergence rate of En

�
is calibrated by c1, which

measures the smoothness of the conditional expectation operator E⇢.

5.2 Stage 2

Integral operators: We use integral operator notation from the kernel methods literature, adapted to
the structural operator learning problem. We denote by L2(HX , ⇢HX ) the space of square integrable
functions from HX to Y with respect to measure ⇢HX , where ⇢HX is the extension of ⇢ to HX [58,
Lemma A.3.16]. Note that we present stage 2 analysis for general output space Y as in [63, 64],
though in practice we only consider Y ⇢ R to simplify our two-stage RKHS model.
Definition 2. The stage 2 (population) operators are

S⇤ : H⌦ ,! L2(HX , ⇢HX ), H 7! ⌦⇤

(·)H

S : L2(HX , ⇢HX ) ! H⌦, g 7!

Z
⌦µ(z)g(µ(z))d⇢HX (µ(z))

where ⌦µ(z) : Y ! H⌦ defined by y 7! ⌦(·, µ(z))y is the point evaluator of [41, 15]. Finally define
Tµ(z) = ⌦µ(z) � ⌦

⇤

µ(z) and covariance operator T = S � S⇤.

Assumptions: We place assumptions on the original space Y , the scalar-valued RKHS H⌦, and
the probability distribution ⇢. Importantly, we assume that the scalar-valued RKHS regression is
correctly specified: the true structural operator H⇢ lives in the scalar-valued RKHS H⌦.
Hypothesis 6. Suppose that Y is a Polish space
Hypothesis 7. Suppose that

1. The {⌦µ(z)} operator family is uniformly bounded in Hilbert-Schmidt norm: 9B s.t. 8µ(z),
k⌦µ(z)k

2
L2(Y,H⌦) = Tr(⌦⇤

µ(z) � ⌦µ(z))  B

2. The {⌦µ(z)} operator family is Hölder continuous in operator norm: 9L > 0, ◆ 2 (0, 1] s.t.
8µ(z), µ(z0), k⌦µ(z) � ⌦µ(z0)kL(Y,H⌦)  Lkµ(z)� µ(z0)k◆

HX

Larger ◆ is interpretable as smoother kernel ⌦.
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Hypothesis 8. Suppose that

1. H⇢ 2 H⌦. Then E(H⇢) = infH2H⌦ E(H)

2. Y is bounded, i.e. 9C < 1 s.t. kY kY  C almost surely

The convergence rate from stage 1 together with Hypotheses 6-8 are sufficient to bound the excess
error of the regularized estimator Ĥm

⇠
in terms of familiar objects in the kernel methods literature,

namely the residual, reconstruction error, and effective dimension. We further assume ⇢ belongs to a
stage 2 prior to simplify these bounds. In particular, we assume ⇢ belongs to a class of distributions
parametrized by (⇣, b, c) as defined originally in [14, Definition 1], restated below.
Hypothesis 9. Fix ⇣ < 1. For given b 2 (1,1] and c 2 (1, 2], define the prior P(⇣, b, c) as the set
of probability distributions ⇢ on HX ⇥ Y such that

1. A range space assumption is satisfied: 9g 2 H⌦ s.t. H⇢ = T
c�1
2 g and kgk2

H⌦
 ⇣

2. In the spectral decomposition T =
P

1

k=1 �kekh·, ekiH⌦ , where {ek}1k=1 is a basis of
Ker(T )?, the eigenvalues satisfy ↵  kb�k  � for some ↵,� > 0

We define the power of operator T with respect to its eigendecomposition; see Appendix A.4.2
for formal justification. The latter condition is interpretable as polynomial decay of eigenvalues:
�k = ⇥(k�b). Larger b means faster decay of eigenvalues of the covariance operator T and hence
smaller effective input dimension. Larger c corresponds to a smoother structural operator H⇢ [64].

Estimation and convergence: The estimator has a closed form solution, as shown by [63, 64] in the
second stage of the distribution regression problem. We present the solution in notation similar to
[14] to elucidate how the stage 1 and stage 2 estimators have the same structure.

Theorem 3. 8⇠ > 0, the solution Hm

⇠
to E

m

⇠
and the solution Ĥm

⇠
to Ê

m

⇠
exist, are unique, and

Hm

⇠
= (T+ ⇠)�1g, T =

1

m

mX

i=1

Tµ(z̃i), g =
1

m

mX

i=1

⌦µ(z̃i)ỹi

Ĥm

⇠
= (T̂+ ⇠)�1ĝ, T̂ =

1

m

mX

i=1

Tµ
n
�(z̃i)

, ĝ =
1

m

mX

i=1

⌦µ
n
�(z̃i)

ỹi

We now present this paper’s main theorem. In Appendix A.10, we provide a finite sample bound
on the excess error of the estimator Ĥm

⇠
with respect to its target H⇢. Adapting arguments by [64],

we demonstrate that KIV is able to achieve the minimax optimal single-stage rate derived by [14].
In other words, our two-stage estimator is able to learn the causal relationship with confounded
data equally well as single-stage RKHS regression is able to learn the causal relationship with
unconfounded data.

Theorem 4. Assume Hypotheses 1-9. Choose � = n�
1

c1+1 and n = m
a(c1+1)
◆(c1�1) where a > 0.

1. If a 
b(c+1)
bc+1 then E(Ĥm

⇠
)� E(H⇢) = Op(m

�
ac
c+1 ) with ⇠ = m�

a
c+1

2. If a �
b(c+1)
bc+1 then E(Ĥm

⇠
)� E(H⇢) = Op(m

�
bc

bc+1 ) with ⇠ = m�
b

bc+1

At a = b(c+1)
bc+1 < 2, the convergence rate m�

bc
bc+1 is minimax optimal while requiring the fewest

observations [64]. This statistically efficient rate is calibrated by b, the effective input dimension, as
well as c, the smoothness of structural operator H⇢ [14]. The efficient ratio between stage 1 and stage

2 samples is n = m
b(c+1)
bc+1 ·

(c1+1)
◆(c1�1) , implying n > m. As far as we know, asymmetric sample splitting

is a novel prescription in the IV literature; previous analyses assume n = m [4, 36].

6 Experiments

We compare the empirical performance of KIV (KernelIV) to four leading competitors: standard
kernel ridge regression (KernelReg) [49], Nadaraya-Watson IV (SmoothIV) [16, 22], sieve IV

8



(SieveIV) [47, 17], and deep IV (DeepIV) [35]. To improve the performance of sieve IV, we impose
Tikhonov regularization in both stages with KIV’s tuning procedure. This adaptation exceeds the
theoretical justification provided by [17]. However, it is justified by our analysis insofar as sieve IV is
a special case of KIV: set feature maps  ,� equal to the sieve bases.

0 1 2 3 4 5 6 7 8 9 10

t

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

(t
)

Figure 2: Demand non-
linearity  (t)

We implement each estimator on three designs. The linear design of
[17] involves learning counterfactual function h(x) = 4x � 2, given
confounded observations of continuous variables (X,Y ) as well as con-
tinuous instrument Z. The sigmoid design of [17] involves learning
counterfactual function h(x) = ln(|16x� 8|+ 1) · sgn(x� 0.5) under
the same regime. The demand design of [35] involves learning demand
function h(p, t, s) = 100 + (10 + p) · s ·  (t) � 2p where  (t) is the
complex nonlinear function in Figure 2. An observation consists of
(Y, P, T, S, C) where Y is sales, P is price, T is time of year, S is cus-
tomer sentiment (a discrete variable), and C is a supply cost shifter. The
parameter ⇢ 2 {0.9, 0.75, 0.5, 0.25, 0.1} calibrates the extent to which
price P is confounded by supply-side market forces. In KIV notation,
inputs are X = (P, T, S) and instruments are Z = (C, T, S).

For each algorithm, design, and sample size, we implement 40 simulations and calculate MSE with
respect to the true structural function h. Figures 3 and 9 visualize results: KernelIV performs best
in the sigmoid and demand designs across sample sizes. KernelReg ignores the instrument Z, and
it is biased away from the structural function due to confounding noise e. This phenomenon can
have counterintuitive consequences. Figure 3 shows that in the highly nonlinear demand design,
KernelReg deviates further from the structural function as sample size increases because the algo-
rithm is further misled by confounded data. Figure 2 of [35] documents the same effect when a
feedforward neural network is applied to the same data. The remaining algorithms make use of the
instrument Z to overcome this issue.

KernelIV improves on SieveIV in the same way that kernel ridge regression improves on ridge
regression: by using an infinite dictionary of implicit basis functions rather than a finite dictionary
of explicit basis functions. KernelIV improves on SmoothIV by using kernel ridge regression in
not only stage 2 but also stage 1, avoiding costly density estimation. Finally, it improves on DeepIV
by directly learning stage 1 mean embeddings, rather than performing costly density estimation and
sampling from the estimated density. Remarkably, with training sample size of only n+m = 1000,
KernelIV has essentially learned as much as it can learn from the demand design. See Appendix A.11
for representative plots, implementation details, and a robustness study.
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KernelIV

Figure 3: Demand design

7 Conclusion

We introduce KIV, an algorithm for learning a nonlinear, causal relationship from confounded
observational data. KIV is easily implemented and minimax optimal. As a contribution to the IV
literature, we show how to estimate the stage 1 conditional expectation operator–an infinite by infinite
dimensional object–by kernel ridge regression. As a contribution to the kernel methods literature, we
show how the RKHS is well-suited to causal inference and ill-posed inverse problems. In simulations,
KIV outperforms state of the art algorithms for nonparametric IV regression. The success of KIV
suggests RKHS methods may be an effective bridge between econometrics and machine learning.
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