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ABSTRACT

Robust Policy Search is the problem of learning policies that do not degrade in
performance when subject to unseen environment model parameters . It is par-
ticularly relevant for transferring policies learned in a simulation environment to
the real world. Several existing approaches involve sampling large batches of tra-
jectories which reflect the differences in various possible environments, and then
selecting some subset of these to learn robust policies, such as the ones that re-
sult in the worst performance. We propose an active learning based framework,
EffAcTS, to selectively choose model parameters for this purpose so as to collect
only as much data as necessary to select such a subset. We apply this framework
to an existing method, namely EPOpt, and experimentally validate the gains in
sample efficiency and the performance of our approach on standard continuous
control tasks. We also present a Multi-Task Learning perspective to the problem
of Robust Policy Search, and draw connections from our proposed framework to
existing work on Multi-Task Learning.

1 INTRODUCTION

Recent advances in Deep Reinforcement Learning (DRL) algorithms have achieved remarkable per-
formance on continuous control tasks (Schulman et al. (2015); Lillicrap et al. (2016); Schulman et al.
(2017); Wang et al. (2017)). These model-free algorithms, however, require an abundance of data,
severely restricting their utility on non-simulated domains. Thus, when it comes to “real” domains
such as physical robots, model-based approaches such as (Levine & Koltun (2013); Deisenroth &
Rasmussen (2011)) have been favored for their significantly better sample complexity. One class of
model based approaches that has gained traction is to learn from multiple simulated domains that
approximate the real “target” domain. These usually correspond to an ensemble of models with
various parameters such as the mass of a part of a robot or the coefficient of friction between the
robot’s foot and the ground. The problem of robust policy search is to learn policies that perform
well across this ensemble.

One prominent class of approaches toward this goal involves sampling model parameters from the
ensemble and collecting batches of trajectories at these parameters (Wang et al. (2010); Rajeswaran
et al. (2017); Yu et al. (2017)). These approaches differ mainly in the way in which they choose sub-
sets of these trajectories to focus on for policy learning. Although robust policy search is inevitably
a harder learning problem than standard policy search, amount of data collected by these methods is
still quite large, up to almost 2 orders of magnitude more than is usually required by the usual policy
optimization algorithms, regardless of the method used to choose a subset of these trajectories for
learning (and thus possibly discarding a large portion of the data).

We introduce an active learning framework for intelligently selecting model parameters for which
to sample trajectories so as to directly acquire some desired subset of the trajectories (such as the
subset resulting in the worst performance), while collecting as little additional data as possible. We
then present an instantiation of the framework in the setting of an existing robust policy search
approach, EPOpt, and perform experimental validation on environments from standard continuous
control benchmarks to empirically demonstrate significant reductions in sample complexity while
still being able to learn robust policies. We also explore connections to Multi-Task Learning that
are revealed upon casting Robust Policy Search as a Multi-Task Learning problem and discuss its
relation to existing work in the area.
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2 RELATED WORK

Wang et al. (2010) learn controllers with a specific funtional form using trajectories sampled for
parameters drawn from an ensemble, and optimize for the average case performance. Rajeswaran
et al. (2017) propose EPOpt, which learns a Neural Network (NN) policy using a model-free DRL
algorithm, but on simulated domains sampled from an ensemble of models. An adversarial ap-
proach to training is taken that involves selectively exposing to the model-free learner only data
from those sampled models on which it learner exhibits the least performance. Even though this
is a more sophisticated approach than the former and is demonstrated to have greater performance
and robustness, the number of trajectories collected is still very large. Yu et al. (2017) also propose
an approach that optimizes the average case performance, but additionally performs explicit system
identification, and the estimated model parameters are fed to a NN policy as additional context in-
formation alongside the original observations. Again, the data requirements are quite large, both for
policy learning as well as system identification. Approaches related to learning from an ensemble
of models have also been studied under Domain Randomization (Tobin et al. (2017)).

A recent work that learns from an ensemble of models is (Kurutach et al. (2018)), but the ensemble
here consists of learned DNN models of the dynamics for use in Model Based RL, rather than
being induced by changing physical properties of the environment. A similar ensemble generated
by perturbing an already learned model is used for planning through in (Mordatch et al. (2015)).
This work also does not deal with model uncertainties with physical meaning.

Although EPOpt uses only an appropriate subset of models to train on, none of the above approaches
consider ways to sample trajectories only as necessary. Our proposed framework employs active
learning to decide with data from only a few model parameters the models for which the agent
requires more training. Active sampling approaches have also been explored for task selection in
Multi-Task learning by Sharma et al. (2018), a viewpoint we discuss in more detail in section 5.

3 BACKGROUND

3.1 RL ON AN ENSEMBLE OF MODELS

We work with the same setting described in (Rajeswaran et al. (2017)) where the model ensemble
is represented as a family of parametrized MDPs on a fixed state and action space. Following the
same notation, this is the set M (p) = 〈S,A, Tp,Rp, γ,S0,p〉 for each parameter p in the space
of parameters P, whose elements are respectively the state and action spaces, transition functions,
reward functions, discount factor and the initial state distribution. Those items that are subscripted
with p depend on p, i.e different parameters induce different dynamics and rewards. We note here
that we say “parameter” even if it is a vector rather than a real number. Further, there is a source
distribution P that indicates the likelihood of any particular p ∈ P in the model ensemble.

We denote the typical trajectory from any of these MDPs by τ = {st, at, rt}Tt=0, where T is the
time horizon, and the discounted return from the start state R (τ) =

∑T
t=0 γ

trt. These trajectories
are generated by following a policy which are parameterized by a vector θ, which we denote by πθ.
We define the performance at parameter p as the expected discounted return from the start state in
M (p)

η (θ, p) = Eτ

[
T∑
t=0

γtrt

∣∣∣∣∣ p
]

3.2 ROBUST POLICY SEARCH AND EPOPT

Robust Policy Search seeks policies that perform well across all parameters in P, and do so without
knowing the parameter for the MDP on which they are being tested. This translates to being able to
perform well on some unknown target domain, and also potentially handle variations not accounted
for in P. The intuitive objective for this is to consider the average performance of the policy over
the source distribution ηD (θ) = Ep∼P [η (θ, p)]. However, this objective could be close to the
maximum even if there are sharp dips in some regions of P, which is why EPOpt uses instead
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Algorithm 1 EPOpt: Trajectory generation and outer loop
1: function LEARN(Niters, N , ε, θ0)
2: for i = 0 . . . Niters − 1 do
3: τC ←GetTrajectories(N , ε, θi)
4: θi+1 ←BatchPolOpt(τC , θi)
5: end for
6: return θNiters

7: end function

1: function
GETTRAJECTORIES(N , ε, θ0)

2: P ←Sample ofN model parameters from
P

3: τ ←Trajectories collected for each p ∈ P
4: τC ←Subset of τ correspondig to the bot-

tom ε percentile of returns
5: Return τC
6: end function

the Conditional Value at Risk (CVaR) formulation from (Tamar et al. (2015)), which considers the
performance across only the subset of P that corresponds to the bottom ε percentile of returns from
P . This has the effect that policies which have such sharp dips (i.e bad worst case performance) are
no longer considered good solutions.

EPOpt approximately samples trajectories for parameters from this subset of P by first sampling
N trajectories from the entire source distribution, finding the discounted returns for these and then
taking the bottom ε percentile according to the evaluated returns. These trajectories are then sent to
a standard batch policy optimization algorithm (such as Trust Region Policy Optimization (TRPO)
(Schulman et al. (2015))) denoted as BatchPolOpt and processed as usual to update the policy pa-
rameters θ. EPOpt is summarized in Algorithm 1.

3.3 LINEAR STOCHASTIC BANDITS

Here, we provide a quick overview of Linear Stochastic Bandits (LSB) since they play an important
role as solutions to the Active Learning problem in section 4.

The LSB problem is one of finding the optimal arm from a given set of arms X similar to the
standard Multi-Armed Bandit (MAB) problem, but with the average reward from each arm being an
unknown linear function of the features associated with that arm. That is, if x ∈ X is an arm, and we
also denote its features by x, the reward is given by r (x) = xT θ∗ + ξ, where ξ is some zero-mean
noise, and θ∗ gives the parameters for said linear function. Thus, finding the optimal arm amounts
to estimating θ∗.

There have been several approaches to solving the LSB problem under various objectives. One
group of works (Abbasi-Yadkori et al. (2011); Li et al. (2010)) are based on the principles of the
Upper Confidence Bound Algorithm for MAB problems. The other popular class of approaches
(Abeille & Lazaric (2017); Agrawal & Goyal (2013)) is based on Thompson Sampling.

4 ACTIVE LEARNING FOR EFFICIENT TRAJECTORY SAMPLING

To motivate our developments to improve on the sample efficiency, we start with the observation that
there is some functional dependence of the performance of a given policy on the model parameter
corresponding to a task under consideration. The CVaR objective estimation process of EPOpt
disregards this functional dependence as it does not assume such a thing exists (in the sense that
even if the performance was completely independent of the model parameter, it would still be able
to come up with a sample from the bottom ε percentile of trajectories). Thus, an unavoidable side
effect of this process is that EPOpt discards many of the trajectories it collects (for ε = 0.1, 90% of
the collected trajectories are discarded). Here, we wish to devise a strategy to utilize this information
effectively so as to minimize such wastage.

Active Learning is a paradigm where the agent chooses data to learn from based on its previous
experience (see (Settles (2009)) for a comprehensive survey). It has been used to speedup learning
tasks, especially in situations with limited data. An active learner not only needs to work with as few
samples as possible, it also needs to account for the uncertainty in whatever data it has collected.
These are exactly the desiderata of the required strategy, as it must be able to fit the performance
function across P by collecting as few trajectories as possible, which come with noisy evaluations
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Algorithm 2 Trajectory generator for EffAcTS-EPOpt.
1: function GETTRAJECTORIES(NC , NB , ε, B)
2: for i = 1 . . . NB do
3: Sample parameter pi as an optimal arm estimate by B.
4: Collect a trajectory τi at parameter pi and find the return Ri.
5: Update B with (τi,−Ri)
6: end for
7: P← {}, R̂← {} . Buffers to store parameters and corresponding return estimates
8: for j = 1 . . .

⌈
NC

ε

⌉
do

9: Sample parameter pj from source distribution
10: R̂j ←Return estimate by B at pj
11: Add R̂j to R̂ and pj to P
12: end for
13: PC ←Subset of P giving rise to the bottom ε percentile of returns in R̂
14: τC ←Trajectories collected for each p ∈ PC
15: return τC
16: end function

of the performance. Thus, quite clearly, the problem of efficiently performing such sampling is
connected to active learning. The case of active learning that is of interest to us is when the agent is
allowed to sample output for arbitrary points in the input space (instead of having to choose points
from a finite dataset). The input here is some parameter p from P, and the output is the return from
one trajectory collected at p.

We now outline our active learning framework to selectively generate the trajectories. In this pro-
cedure, the active learner sequentially picks some parameters and trajectories are sampled for each
of them. After a particular number of trials, the learner in theory is expected to have a reasonably
good fit to the performance as a function of the parameters. This can then be used to decide which
parts of P trajectories need to be collected for according to some given objective. We call the re-
sulting framework EffAcTS (Efficient Active Trajectory Sampling). Any particular instantiation of
EffAcTS is defined by the choice of active learner and also the scheme used to select which parts of
P to sample from.

We analyze one such instantiation based on EPOpt. The trajectory selection scheme is the same as
in EPOpt, to generate samples of the bottom ε percentile of trajectories. The difference is that this
is done by sampling a batch of parameters from P , and collecting trajectories for only those that
are in the worst ε percentile according to the function fit by the active learner. Bandit algorithms
are natural choices for active learning as they directly satisfy the aforementioned requirements, and
are well studied in both Multi-Armed Bandit (Antos et al. (2008); Carpentier et al. (2011)) as well
as Linear Stochastic Bandit (Soare et al. (2013)) settings. Since the parameter space is invariably
continuous, we turn to LSBs as the active learner in our experiments. Feedback is given to it in
an adversarial manner, being proportional to the negative of the return obtained on that sampled
trajectory. This causes it to seek out regions with low performance, and in the process learn about
the performance across P . We note that although the bandit’s learning phase is inherently serial, it is
still possible to collect the trajectories for the estimated worst ε percentile of parameters in parallel.

We call this algorithm EffAcTS-EPOpt and the above trajectory generation routine is described in
Algorithm 2. This routine is given as (fixed) input the following quantities: NB , the number of
trajectories sampled by the bandit in the course of its learning, NC , the total number of trajectories
collected as a sample from the worst ε percentile of trajectories (this means that

⌈
NC

ε

⌉
parameter

values are drawn from the source distribution and their performance is estimated using the bandit,
but only the bottom NC of those are used to collect trajectories). The most critical component is the
LSB learner B which is sequentially fed parameter values and the negative of the return obtained
on one sampled trajectory at each parameter. It also incorporates internally a feature transformer f
that takes in a parameter from the source distribution’s support and applies some transformation on
it (including possibly standardization), and also scales the negative returns given to it appropriately.

Clearly, due to the fact that EffAcTS-EPOpt does not need to discard a 1 − ε fraction of the trajec-
tories it collects, it is much more sample efficient. If EPOpt collects N trajectories, and EffAcTS-
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EPOpt’s bandit learner is allowed NB “arm pulls”, with the same number of trajectories being
collected for the bottom ε percentile as EPOpt (i.e NC = εN ), the ratio of the total amount of data
collected is

(
NB+εN

N

)
. For a nominal setting of N = 240, ε = 0.1 and NB = 24, this results in a

dramatic 80% reduction in the amount of data collected.

5 CONNECTIONS TO MULTI-TASK LEARNING

The problem of robust policy search on an ensemble of models can also be viewed as a form of
transfer learning from simulated domains to an unseen real domain (possibly without any training
on the real domain, which is referred to as direct-transfer or jumpstart (Taylor & Stone (2009))).
Further, the process of learning from an ensemble of models can be viewed as a Multi-Task Learning
(MTL) problem with the set of tasks corresponding to the set of parameters that constitute the source
domain distribution. Learning a robust policy corresponds to maintaining performance across this
entire set of tasks, as is usually the goal in MTL settings. MTL, which is closely related to transfer
learning, has been studied in the DRL context in a number of recent works (Rusu et al. (2016a;b);
Parisotto et al. (2016); Sharma et al. (2018)). However, these works consider only discrete and
finite task sets, whereas model parameters form a (usually multi-dimensional) continuum. More
generally, we can think of MTL with the task set being generated by a set of parameters, and refer
to such problems as parameterized MTL problems, with Robust Policy Search being an instance of
this setting.

(Sharma et al. (2018)) has employed a bandit based active sampling approach similar to what we
have described here to intelligently sample tasks (from a discrete and finite task set) to train on for
each iteration. The feedback to the bandit is also given in an adversarial manner. However, we note
several differences when it comes to a parameterized MTL setting. The first is the functional depen-
dence of the task performance to an underlying parameter as discussed earlier. In the discrete MTL
settings usually studied (such as Atari Game playing tasks), there is no such visible dependency that
can be modeled. This means that any algorithms that are adapted to the parameterized setting need
to be reworked to utilize such dependencies as EffAcTS has done. The task selection procedure in
EffAcTS differs from the one in (Sharma et al. (2018)) in that the performance is sampled for several
tasks in between iterations of policy training. Additionally, one single task is not chosen in the end,
rather the bandit’s learning is used to inform the selection of a group of tasks as necessary for the
CVaR objective.

6 EXPERIMENTS

We conduct experiments to answer the following questions to analyze EffAcTS-EPOpt:

• Do the policies learned using EffAcTS-EPOpt suffer any degradation in performance from
that of EPOpt? Is robustness preserved across the same range of model parameters as in
EPOpt?

• Does the bandit active sampler identify with reasonable accuracy the region corresponding
to the worst ε percentile of performance, and does it achieve a reasonable fit to the perfor-
mance across the range of parameters (i.e has it explored enough to avoid errors due to the
noisy evaluations it receives)?

• How much can the sample efficiency be improved upon? This mainly boils down to asking
how few trajectories are sufficient for the bandit to learn well enough.

The experiments are performed on the standard Hopper and Half-Cheetah continuous control tasks
available in OpenAI Gym (Brockman et al. (2016)), simulated with the MuJoCo Physics simulator
(Todorov et al. (2012)). As in (Rajeswaran et al. (2017)), some subset of the following parameters
of the robot can be varied: Torso Mass, Friction with the ground, Foot Joint Damping and Joint
Inertias. We also use the same statistics for the source distributions of the parameters which are
described in Table 1.

For all our experiments, we implement the bandit learner using Thompson Sampling due to its
simplicity. In order to allow for some degree of expressiveness for the fit, we apply polynomial
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Parameter µ σ Low High
Mass 6.0 1.5 3.0 9.0

Friction 2.0 0.25 1.5 2.5
Damping 2.5 2.0 1.0 4.0
Inertias 1.0 0.25 0.5 1.5

Parameter µ σ Low High
Mass 6.0 1.5 3.0 9.0

Friction 0.5 0.1 0.3 0.7
Damping 1.5 0.5 0.5 2.5
Inertias 0.125 0.04 0.05 0.2

Table 1: Description of the source domain distribution for the Hopper (Left) and Half-Cheetah
(Right) tasks. The values given here specify the means (µ) and standard deviations (σ) for normal
distributions truncated at the low and high points mentioned here. This is equivalent to the proba-
bility density of a normal distribution with parameters (µ, σ) being zeroed outside the interval [Low,
High], and being normalized so that it integrates to 1.

Figure 1: Performance as a function of torso mass for ε = 0.1 for the Hopper (Left) and Half-
Cheetah (Right) tasks. The bands indicate the confidence intervals of the performance measured
across 5 runs of the entire training procedure.

transformations of some particular degree to the model parameters. Policies are parameterized with
NNs and have two hidden layers with 64 units each, and use tanh as the activation function.

We emphasize that because we are using the same environments in (Rajeswaran et al. (2017)) and
also the same policy parameterization, results reported there can be used directly to compare against
EffAcTS-EPOpt.

6.1 PERFORMANCE AND ROBUSTNESS

First, the torso mass is varied in both the Hopper and the Half-Cheetah domains keeping the rest of
the parameters fixed at their mean values. The performance of the EffAcTS-EPOpt learned policy
is then tested across this range, and the results are shown in Figure 1. We use Trust Region Policy
Optimization (TRPO) (Schulman et al. (2015)) for batch policy optimization and run it for 150
iterations. For this part, we use 4th degree polynomial transformations.

We see that the policy is indeed robust as it maintains its performance across the range of values of
the torso mass, and it achieves near or better than the best performance for both tasks as reported
in (Rajeswaran et al. (2017)) in all but one case, with NC = 15 and NB = 15 for Hopper. This
setting samples the least number of trajectories per iteration, 30, which is just one eighth of the 240
drawn in EPOpt. Although there is one region where it is unstable, it is still able to maintain its
performance everywhere else.

For the other settings which use more trajectories, this does not happen, and even at NC = 30 and
NB = 30 which samples the most trajectories, a 75% reduction in samples collected is achieved
over EPOpt (the total number of iterations is the same). The other two settings which perform
almost as well in both tasks collect 45 each, which amounts to an even larger reduction of 81.2%. In
the case of NC = 15 and NB = 15 with the Half-Cheetah Task, this number is pushed even further
to 87.5% while still retaining performance and robustness.
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Figure 2: Performance as a function of torso mass and ground friction on the Hopper (Top row) and
Half-Cheetah (Bottom row) tasks for ε = 0.1 for one run or EffAcTS-EPOpt. In each row, Left:
NC=30, NB=30. Right: NC=30, NB=50.

Next, in both the tasks, we vary the friction with the ground in addition to the torso mass,
thus creating a two dimensional ensemble of parameters. Here, we run TRPO for 200 iterations,
and again use 4th degree polynomial transformations. Figure 2 shows the results obtained.

Full performance is maintained over almost all of the parameter space in both domains, again being
comparable to or better than in (Rajeswaran et al. (2017)). Notably, with NC=30, NB=30, the same
75% reduction in collected trajectories is obtained even in a higher dimensional model ensemble.
This is also despite the added challenge of an increased number of parameters for the bandit to fit
(15 as opposed to 5 in the previous experiment).

6.2 ANALYSIS OF BANDIT ACTIVE LEARNER

Here we validate one of our key assumptions, that the active learner learns well enough about the
performance that it can produce a decent approximation of a sample batch of the bottom ε percentile
of trajectories. For this, we first evaluate the average return for a batch of samples from P by
collecting a large number of trajectories at each parameter. We note that these trajectories are solely
for the purpose of analysis and are not used to perform any learning. Then, the percentile of the
trajectory deemed to have the greatest return among those chosen based on the bandit learner is
computed using the returns in this batch by using a nearest-neighbor approximation. This is done
across several iterations during the training, and the median percentiles along with other statistics
are reported in Table 2 for the Hopper task.

Ideally, we would like this value to come out to around 100ε (when written as proper percentiles),
i.e the parameter with the greatest performance among the worst ε percentile should be at the εth
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Hyperparameters Median %tile Avg %tile Std. Dev. Max %tile
NC=15, NB=15 14.6 15.9 7.7 32.2
NC=15, NB=30 14.9 23.4 24.0 98.0
NC=30, NB=15 13.7 23.0 19.4 74.7
NC=30, NB=30 11.6 14.9 10.6 47.8

Table 2: Statistics for the percentiles described in section 6.2 for the Hopper task’s 1-D model en-
semble with ε = 0.1, which are measured every fifth iteration from the 100th to the 150th iterations.

percentile. In our estimates, there are some outliers that cause the average to become large, but as
the median value shows, it is indeed reasonably close to the desired value of 10 for ε = 0.1.

7 CONCLUSIONS AND FURTHER POSSIBILITIES

We developed the EffAcTS framework for using active learning to make an informed selection of
model parameters based on agent performance, which can subsequently be used to judiciously gen-
erate trajectories for robust RL. With an illustration of this framework based on EPOpt, we have
both demonstrated its applicability for robust policy search as well as established its effectiveness
in reducing sample complexity by way of empirical evaluations on standard continuous control do-
mains. We also discussed our work in the context of Multi-Task Learning along with the similarities
and differences between these settings.

Our work opens up requirements for active learning algorithms that can work well with even lesser
data than the ones tested here. Methods like Gaussian Process Regression are known to be efficient,
but not in high dimensional spaces. For robust policy search methods to be effective for transfer
from simulation to reality, they need to be able to handle the complexities of the real world, which
necessitates methods that work with high dimensional model ensembles, which in turn entail frame-
works such as EffAcTS to help reduce the sample complexity. Another possibility for robust policy
search itself is to develop objectives that can speedup learning as well as make use of the features of
EffAcTS to maintain sample efficiency.

With our interpretation of robust policy search as a parameterized version of Multi-Task Learning, a
natural next step would be to adapt developments in the usual discrete MTL setting to robust policy
search. It would also be worthwhile to similarly investigate the applicability of Meta Learning, as it
would prove useful for both dealing with large disparities between the source domains and the real
world, as well as coping with unmodeled dynamics (which are unavoidable since it is not feasible to
model the real world with complete accuracy).
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A APPENDIX

A.1 IMPLEMENTATION NOTES

We use the following hyperparameter settings for TRPO suggested in OpenAI Baselines Dhariwal
et al. (2017) on which our implementation is also based:

Hyperparameter Value
Timesteps per batch 1024

Max KL 0.01
CG Iters 10

CG Damping 0.1
γ 0.99
λ 0.98

VF Iterations 5
VF Stepsize 1e-3

Table 3: Hyperparameters for TRPO

An important difference from EPOpt’s implementation is that we use Generalized Advantage Esti-
mation Schulman et al. (2016) instead of subtracting a baseline from the value function. For value
function estimation using a critic, we use the same NN architecture as the policy, 2 hidden layers of
64 units each.

For our bandit learner, we used Thompson Sampling and followed the version described in Abeille
& Lazaric (2017). The hyperparameters introduced by this are as follows (they have the same names
as in the paper):

Hyperparameter Value
R 5.0
δ 0.1
λ 0.5

Table 4: Thompson Sampling Hyperparameters

The first two parameters control the amount of exploration performed during Thompson Sampling,
whileλ is a regularization parameter for the parameter estimates.

The arms of the bandit are model parameters taken uniformly across the domain and converted to
feature values. The features input to the bandit are 4th degree polynomial terms generated from the
model parameters. This amounts to 5 terms in the 1-D case and 15 in the 2-D case. These arm
“representations” are then standardized before being used by the bandit. The negative returns given
as feedback to the bandit are scaled by a factor of 10−3.

A.2 VISUALIZING THE BANDIT LEARNER IN EFFACTS-EPOPT

In Figure 3, we present the outcome from one particular iteration of training. The true performance
profile is estimated by collecting 100 trajectories to calculate the mean return at each parameter
(again, these trajectories are not used for learning). Along with this is shown the bandit’s fit, the
trajectories it collects while learning and the trajectories that are sampled based on its estimate of
the bottom ε = 0.1 percentile (output used for training the policy).

We see that the bandit takes exploratory actions (points to the left and in the middle) that don’t lead
to the worst returns. However, it quickly moves towards the region with low returns, and the final fit
is close to the true mean performance. From comparison with the output trajectories, the trajectories
in the learning phase are quite clearly not representative of the bottom ε = 0.1 percentile according
to the source distribution. Thus, we cannot reuse these to perform learning with the CVaR objective.

We also note that a perfectly learned performance profile is not necessary to sample from the worst
trajectories. As long as the fit is reasonably accurate in that region, the output trajectories will be of

11



Under review as a conference paper at ICLR 2019

Figure 3: The bandit’s operation in the 115th iteration of training in the Hopper task. Individual
trajectories are shown as dots or crosses, with the position indicating the parameter value and the
return obtained.

good quality. In practice, we expect LSB algorithms to be capable of doing this as they tend to focus
on these regions.

A.3 OTHER REMARKS

We note that we do not perform “pre-training” as in EPOpt where the entire batch of trajectories is
used for policy learning for some iterations at the beginning (corresponding to optimizing for the
average return over the ensemble). This has been reported to be necessary, possibly due to problems
with initial exploration if using the CVaR objective from the beginning. EffAcTS-EPOpt on the
other hand works without any such step. However, at the very beginning, we collect trajectories
for parameters sampled directly from P until 2048 time steps have elapsed in that iteration. This is
because algorithms like TRPO have been known to require at least that much data per iteration.

The bandit implementation we have is stationary, although it would still be possible to investigate
non-stationary versions, where data collected from previous iterations can also be used to estimate
parameters. These points would, of course be weighted down in the Linear Regression step of
Thompson Sampling.
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