2nd Symposium on Advances in Approximate Bayesian Inference, 2019 |-

Neural Tangents:

Fast and Easy Infinite Neural Networks in Python

Roman Novak
Lechao Xiao*

Jiri Hron'

Jaehoon Lee
Alexander A. Alemi
Jascha Sohl-Dickstein

ROMANN@GOOGLE.COM
XLCQGOOGLE.COM
JH2084@QCAM.AC.UK
JAEHLEEQGOOGLE.COM
ALEMIQGOOGLE.COM

JASCHASD@QGOOGLE.COM

Samuel S. Schoenholz* SCHSAM@QGOOGLE.COM
Google Brain, T University of Cambridge
Abstract
NEURAL TANGENTS is a library designed to enable research into infinite-width neural
networks. It provides a high-level API for specifying complex and hierarchical neural
network architectures. These networks can then be trained and evaluated either at finite-
width as usual or in their infinite-width limit. Infinite-width networks can be trained
analytically using exact Bayesian inference or using gradient descent via the Neural Tangent
Kernel. Additionally, NEURAL TANGENTS provides tools to study gradient descent training
dynamics of wide but finite networks in either function space or weight space.

The entire library runs out-of-the-box on CPU, GPU, or TPU. All computations can be
automatically distributed over multiple accelerators with near-linear scaling in the number
of devices. NEURAL TANGENTS is available at github.com/google/neural-tangents. We
also provide an interactive Colab notebook.

1. Motivation

Deep neural networks (DNNs) owe their success in part to the broad availability of high-level,
flexible, and efficient software libraries (Abadi et al., 2015; Chollet et al., 2015; Paszke et al.,
2017; Tokui et al., 2015; Akiba et al., 2017; Bradbury et al., 2018a), enabling researchers to
rapidly build complex models by constructing them out of smaller primitives.

Recently, a new class of machine learning models has attracted significant attention,
namely, deep infinitely wide neural networks. In the infinite-width limit, a large class of
Bayesian and continuous gradient descent trained networks become Gaussian Procesesses,
defined by architecture-specific kernels commonly referred to as NNGP and NTK respectively
(§). These discoveries established infinite-width networks as useful theoretical tools to
understand a wide range of phenomena in deep learning. Furthermore, the practical utility
of these models has been proven by achieving SOTA performance on image classification
benchmarks among GPs without trainable kernels (Garriga-Alonso et al., 2019; Novak et al.,
2019; Arora et al., 2019), and by their ability to match or exceed the performance of finite
networks in some situations, especially for fully- and locally-connected model families (Lee
et al., 2018; Novak et al., 2019).

However, despite their utility, using NNGPs and NTK-GPs is arduous and can require
weeks-to-months of work by seasoned practitioners. Kernels corresponding to neural networks
must be derived by hand on a per-architecture basis. This process is laborious and error
prone, and is reminiscent of the state of neural networks before high quality Automatic
Differentiation (AD) packages proliferated.

* Equal contribution. TWork done during an internship at Google Brain.

© R. Novak, L. Xiao, J. Hron, J. Lee, A.A. Alemi, J. Sohl-Dickstein & S.S. Schoenholz.

https://www.github.com/google/neural-tangents
https://colab.sandbox.google.com/github/google/neural-tangents/blob/master/notebooks/neural_tangents_cookbook.ipynb

NEURAL TANGENTS: FAST AND EASY INFINITE NEURAL NETWORKS IN PYTHON

In this note, we introduce a new open-source software library called NEURAL TANGENTS
targeting JAX (Bradbury et al., 2018a) to facilitate research on infinite limits of neural
networks. NEURAL TANGENTS provides a high-level neural network API for specifying and
doing inference with complex, hierarchical, models. In §2 we demonstrate the ease, efficiency,
and versatility of performing calculations with infinite networks using NEURAL TANGENTS on
a very short example, and refer the reader to §C and §1) for more details on functionality
and performance.

2. Example: training and inference with infinite networks

We begin by training an infinitely wide neural network with gradient descent and comparing
the result to training an ensemble of wide-but-finite networks on a toy task. Below we define
a 3-layer Erf' model:

from neural_tangents import stax

init_fn, apply_fn, kernel_fn = stax.serial(stax.Dense(2048, W_std=1.5, b_std=0.05), stax.Erf(),
stax.Dense(2048, W_std=1.5, b_std=0.05), stax.Erf(),
stax.Dense(1, W_std=1.5, b_std=0.05))

The above snippet simultaneously specifies the finite, 2048-wide network, as well as the
infinite one. The finite network is defined by the (init_fun, apply_fun) function pair
that initializes the trainable parameters and performs the forward pass respectively. The
infinite network, as a GP, is specified by its kernel function kernel_fn ,” and can be trained
with gradient descent (computation amounting to a simple linear algebra expression in the
infinite limit; see §\) as follows:

import neural_tangents as nt

predict_fn = nt.predict.gradient_descent_mse_gp(kernel_fn, x_train, y_train, x_test,
get="ntk', diag_reg=Te-4, compute_var=True)

y_mean, y_var = predict_fn(t=100) # Multivariate normal prediction at training time t = 100.

In Figure | we compare the result of infinite-width training with training an ensemble of
one hundred of these finite-width networks by looking at the training curves and output
predictions of both models. We see excellent agreement between exact inference using the
infinite-width model and the result of training an ensemble using gradient descent.

We now demonstrate the flexibility of our library by specifying and doing inference with
more complex infinite-width architectures, including a variant of a WideResNet (Zagoruyko
and Komodakis, 2016), which we define in Listing |. We present results in Figure 2, observing
a familiar (from the finite-width world) hierarchy of performance in terms of architecture
(FC < ConvOnly < WideResNet w/ pooling).

1. Error function, a nonlinearity similar to tanh; see §1° for implemented nonlinearities, including ReLL.U.
2. JAX users will recognize that we closely mimick their default NN specification package stax (Bradbury
et al., 2018b). In fact, our library module nt.stax is designed to serve as a drop-in replacement of

jax.experimental.stax .

NEURAL TANGENTS: FAST AND EASY INFINITE NEURAL NETWORKS IN PYTHON

10t 2 | Vo o 15-1 1 1 1 1 ' [
H == |nfinite Train H @ @® Train

0" e |nfinite Test - === Bayesian Inference
10 = —— Finite Ensemble = 1.0 - == Gradient Descent - -
g H — Finite Ensemble

Loss
=
o

10 -

10-51 ' [NN ' or g ' [N _1-5'| 1 1 1 I I [
10° 10! 102 103 -3 -2 -1 0 1 2 3

Step

Figure 1: Training dynamics of an infinite network and an ensemble of finite-
width networks. Left: Train and test MSE loss evolution throughout training. Right:
Trained model output predictions of the trained infinite network and the respective ensemble
of finite-width networks. The shaded region and the dashed lines denote (two, in the right
plot) standard deviations of uncertainty in the loss or predictions for the infinite network
and the ensemble respectively. Training data is drawn from the process y; = sin(x;) + ¢; with
z; ~ Uniform(—m,7) and ¢ ~ N (0,0?).

3. How it works

Neural networks are compositions of basic tensor operations such as: dense or convolutional
affine transformations, application of pointwise nonlinearities, pooling, or normalization. For
most networks without weight tying between layers, the kernel computation can be written
compositionally, with a direct correspondence between each tensor operation and a kernel
operation. The core logic of NEURAL TANGENTS is thus a set of translation rules, that
sends each function acting on a finite-width layer to a function acting on the kernel for an
infinite-width network. This is illustrated in Figure 3 for a simple convolutional architecture.
The function applied to the data tensor is given in the second column, and the corresponding
transformations of the NTK and NNGP kernel tensors are given in the third and fourth
column. See §I for a list of all tensor operations for which translation rules are currently
implemented, and §C and §1 for a more detailed API and implementation description.

4. Conclusion

We believe NEURAL TANGENTS will enable researchers to quickly and easily explore infinite-
width networks. By democratizing this previously challenging model family, we hope that
researchers will begin to use infinite neural networks, in addition to their finite counterparts,
when faced with a new problem domain (especially in cases that are data-limited). In
addition, we are excited to see novel uses of infinite networks as theoretical tools to gain
insight and clarity into many of the hard theoretical problems in deep learning. Going
forward, there are significant additions to NEURAL TANGENTS that we are exploring. There
are more layers we would like to add in the future (§F') that will enable an even larger range
of infinite network topologies. Additionally, there are further performance improvements we
would like to implement, to allow experimenting with larger models and datasets. We invite
the community to join our efforts by contributing new layers to the library, or by using it for
research and applications and providing feedback!

NEURAL TANGENTS: FAST AND EASY INFINITE NEURAL NETWORKS IN PYTHON

0.80~ [[[[I I [1 [N [N 3.5+ 1 1 [[I I [1 [N
- FC
0.75- _ 30 = CONV
§ 0.70- - o . . =+ WRESNET
& 0.65- - T 225 N -
c - DN
© 0.60- - - = VAN
E Z20- TS -
Sos55- - % S
= — = P
ﬁ 0.50- 77 [liwner -) o 1.5- SN -
= _ == CONV-NTK B © Se S
0 0.45- 70 owvawee Z40- SoNs .
0.40 - == WRESNET-NTK - .
=+ WRESNET-NNGP
035+« 4 a4l F 0060~ ' . v 4 4 41T 05+ o« a1
26 27 28 59 510511512513514515 26 27 28 59 510511512513514515 26 27 28 59 510511512513514515
Training Set Size Training Set Size Training Set Size

Figure 2: CIFAR-10 classification with varying neural network architectures. NEU-
RAL TANGENTS simplify experimentation with architectures. Here we use infinite time NTK
inference and full Bayesian NNGP inference for CIFAR-10 for Fully Connected (FC,
Listing 3), Convolutional network without pooling (CONV, Listing 2), and Wide
Residual Network (WRESNET, Listing 1) with pooling. As is common in prior work
(Lee et al., 2018; Novak et al., 2019), the classification task is treated as MSE regression on
zero-mean targets like (—0.1,...,—0.1,0.9,—0.1,...,—0.1). For each training set size, the
best model in the family is selected by minimizing the mean negative marginal log-likelihood
(NLL, right) on the training set.

from neural_tangents import stax

def WideResNetBlock(channels, strides=(1, 1), channel_mismatch=False):
Main = stax.serial(stax.Relu(), stax.Conv(channels, (3, 3), strides, padding='SAME'),
stax.Relu(), stax.Conv(channels, (3, 3), padding='SAME'))
Shortcut = (stax.Identity() if not channel_mismatch else
stax.Conv(channels, (3, 3), strides, padding='SAME'))

return stax.serial(stax.FanOut(2), stax.parallel(Main, Shortcut), stax.FanInSum())

def WideResNetGroup(n, channels, strides=(1, 1)):
blocks = [WideResNetBlock(channels, strides, channel_mismatch=True)]
for _ in range(n - 1):
blocks += [WideResNetBlock(channels, (1, 1))]
return stax.serial(*blocks)

def WideResNet(block_size, k, num_classes):
return stax.serial(stax.Conv(16, (3, 3), padding='SAME'),
WideResNetGroup(block_size, int(16 * k)),
WideResNetGroup(block_size, int(32 * k), (2, 2)),
WideResNetGroup(block_size, int(64 * k), (2, 2)),
stax.GlobalAvgPool(), stax.Dense(num_classes))

init_fn, apply_fn, kernel_fn = WideResNet(block_size=4, k=1, num_classes=10)

Listing 1: Definition of an infinitely WideResNet. This snippet simultaneously defines
a finite (init_fn, apply_fn) and an infinite (kernel_fn) model. This model is used in

Figures 2 and A

NEURAL TANGENTS: FAST AND EASY INFINITE NEURAL NETWORKS IN PYTHON

P T T . ;
=0 W= 8 o s 1 {HH X
‘Q_ 6 S g Al —1 ‘Q\L\i‘;:: 1 X 10 cl'asses
; E ﬁj convolution ::ﬁf i e matrix-multiply per input
5 "3 4 inputs, 3 features, Saam
® 10 pixels
’ ' ' '
. s KO =xx 5 K i K 5
(? g _ affine transform (' affine transform 4x4 covariance
§ § W A gilm per class
©38
4x4x10 input covariance
Layer Tensor Op NNGP Op NTK Op
0 (input) P =x KO =xat e’ =0
0 (pre-activations) 2" = Conv (y°) KO=A (K% '=K"+A4 (%)
1 (activations) y' =6 (2" Kt=T (I&O) ol =7 </€0> ®6°
1 (pre-activations) z' = Conv (yl) Kl=A (ICI) Ol=K'+4 (@1)
2 (activations) Y =¢ (') K2=T (~1> =T (l@) ® 6!
2 (readout) 2% = Dense o Flatten (y*) K? =Tr (/CQ) 02 =K%+ Tr (©2)

Figure 3: An example of the translation of a convolutional neural network into
a sequence of kernel operations. We demonstrate how the compositional nature of a
typical NN computation on its inputs induces a corresponding compositional computation
on the NNGP and NT kernels. Presented is a 2-hidden-layer 1D CNN with nonlinearity ¢,
performing regression on the 10-dimensional outputs z? for each of the 4 (1, 2, 3, 4) inputs =
from the dataset X'. To declutter notation, unit weight and zero bias variances are assumed
in all layers. Top: recursive output (22) computation in the CNN (top) induces a respective
recursive NNGP kernel (K2 ® I19) computation (NTK computation being similar, not shown).
Bottom: explicit listing of tensor and corresponding kernel ops in each layer. See Table
for operation definitions. Illustration and description adapted from Figure 3 in (Novak et al.,
2019).

ACKNOWLEDGMENTS

We thank Yasaman Bahri for significant code contributions, frequent discussion and useful
feedback on the manuscript, Sergey loffe for feedback on the text, as well as Greg Yang,
Ravid Ziv, and Jeffrey Pennington for discussion and feedback on early versions of the library.

NEURAL TANGENTS: FAST AND EASY INFINITE NEURAL NETWORKS IN PYTHON

References

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, lan
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqgiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. URL http://tensorflow.org/. Software available from tensorflow.org.

Takuya Akiba, Keisuke Fukuda, and Shuji Suzuki. ChainerMN: Scalable Distributed Deep
Learning Framework. In Proceedings of Workshop on ML Systems in The Thirty-first
Annual Conference on Neural Information Processing Systems (NIPS), 2017. URL http:
//learningsys.org/nips17/assets/papers/paper_25.pdf.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via
over-parameterization. In International Conference on Machine Learning, 2018.

Anonymous. Infinite attention: Nngp and ntk for deep attention networks. In International
Conference on Machine Learning (ICML), 2020. submission under review.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong
Wang. On exact computation with an infinitely wide neural net. In Advances In Neural
Information Processing Systems, 2019.

Anastasia Borovykh. A gaussian process perspective on convolutional neural networks. arXiv
preprint arXiw:1810.10798, 2018.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,
Dougal Maclaurin, and Skye Wanderman-Milne. JAX: composable transformations of
Python+NumPy programs, 2018a. URL http://github.com/google/jax.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, and Skye Wanderman-Milne. Stax, a flexible neural net specification library
in jax, 2018b. URL https://github.com/google/jax/blob/master/jax/experimental/
stax.py.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable
programming. arXiwv preprint arXiv:1812.07956, 2019.

Youngmin Cho and Lawrence K Saul. Kernel methods for deep learning. In Advances In
Neural Information Processing Systems, 2009.

Frangois Chollet et al. Keras. https://keras.io, 2015.

Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural
networks: The power of initialization and a dual view on expressivity. In Advances In
Neural Information Processing Systems, pages 2253-2261, 2016.

http://tensorflow.org/
http://learningsys.org/nips17/assets/papers/paper_25.pdf
http://learningsys.org/nips17/assets/papers/paper_25.pdf
http://github.com/google/jax
https://github.com/google/jax/blob/master/jax/experimental/stax.py
https://github.com/google/jax/blob/master/jax/experimental/stax.py
https://keras.io

NEURAL TANGENTS: FAST AND EASY INFINITE NEURAL NETWORKS IN PYTHON

Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds
global minima of deep neural networks. arXiv preprint arXiv:1811.03804, 2018a.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably
optimizes over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018b.

Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and Andrew Gordon
Wilson. Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration.
In Advances in Neural Information Processing Systems, 2018.

Adria Garriga-Alonso, Carl Edward Rasmussen, and Laurence Aitchison. Deep convolu-
tional networks as shallow gaussian processes. In International Conference on Learning
Representations, 2019.

GPy. GPy: A gaussian process framework in python. http://github.com/SheffieldML/GPy,
2012.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in neural information processing systems,
2018.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
2009.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Sam Schoenholz, Jeffrey Pennington, and
Jascha Sohl-dickstein. Deep neural networks as gaussian processes. In International
Conference on Learning Representations, 2018.

Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri, Roman Novak, Jascha
Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear
models under gradient descent. In Advances in neural information processing systems,
2019.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic
gradient descent on structured data. In Advances in Neural Information Processing Systems,
pages 8157-8166, 2018.

Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson, Keisuke. Fujii, Alexis
Boukouvalas, Pablo Le‘on-Villagr‘a, Zoubin Ghahramani, and James Hensman. GPflow:
A Gaussian process library using TensorFlow. Journal of Machine Learning Research, 18
(40):1-6, apr 2017. URL http://jmlr.org/papers/v18/16-537.html.

Alexander G de G Matthews, Mark Rowland, Jiri Hron, Richard E Turner, and Zoubin
Ghahramani. Gaussian process behaviour in wide deep neural networks. arXiv preprint
arXiv:1804.11271, 2018a.

Alexander G. de G. Matthews, Jiri Hron, Mark Rowland, Richard E. Turner, and Zoubin
Ghahramani. Gaussian process behaviour in wide deep neural networks. In International
Conference on Learning Representations, 2018b.

http://github.com/SheffieldML/GPy
http://jmlr.org/papers/v18/16-537.html

NEURAL TANGENTS: FAST AND EASY INFINITE NEURAL NETWORKS IN PYTHON

Radford M. Neal. Priors for infinite networks (tech. rep. no. crg-tr-94-1). University of
Toronto, 1994.

Roman Novak, Lechao Xiao, Jachoon Lee, Yasaman Bahri, Greg Yang, Jiri Hron, Daniel A.
Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein. Bayesian deep convolutional
networks with many channels are gaussian processes. In International Conference on
Learning Representations, 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation
in pytorch. In NIPS-W, 2017.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli.
Exponential expressivity in deep neural networks through transient chaos. In Advances In
Neural Information Processing Systems, 2016.

Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep
information propagation. arXiv preprint arXiw:1611.01232, 2016.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a next-generation open
source framework for deep learning. In Proceedings of Workshop on Machine Learning
Systems (LearningSys) in The Twenty-ninth Annual Conference on Neural Information
Processing Systems (NIPS), 2015. URL http://learningsys.org/papers/LearningSys_
2015_paper_33.pdf.

Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Pen-
nington. Dynamical isometry and a mean field theory of CNNs: How to train 10,000-layer
vanilla convolutional neural networks. In International Conference on Machine Learning,
2018.

Lechao Xiao, Jeffrey Pennington, and Samuel S Schoenholz. Disentangling trainability and
generalization in deep learning. arXiv preprint arXiv:1912.13053, 2019.

Ge Yang and Samuel Schoenholz. Mean field residual networks: On the edge of chaos. In
Advances In Neural Information Processing Systems, 2017.

Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process
behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint
arXww:1902.04760, 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proceedings of the
British Machine Vision Conference (BMVC), 2016.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes
over-parameterized deep relu networks. Machine Learning, Oct 2019. ISSN 1573-0565. doi:
10.1007/s10994-019-05839-6. URL https://doi.org/10.1007/s10994-019-05839-6.

http://learningsys.org/papers/LearningSys_2015_paper_33.pdf
http://learningsys.org/papers/LearningSys_2015_paper_33.pdf
https://doi.org/10.1007/s10994-019-05839-6

NEURAL TANGENTS: FAST AND EASY INFINITE NEURAL NETWORKS IN PYTHON

Appendix

A. 5-minute background

We briefly describe the NNGP (§A.1) and NTK (§.2). NNGP. Neural networks are often
structured as affine transformations followed by pointwise applications of nonlinearities. Let
2!(z) describe the pre-activations following a linear transformation in I*'" layer of a neural net-
work. At initialization, the parameters of the network are randomly distributed and so central-
limit theorem style arguments can be used to show that the pre-activations become Gaussian
distributed with mean zero and are therefore described entirely by their covariance matrix
K(z,2') = E[z!(x)z!(2')]. One can therefore use the NNGP to make Bayesian posterior pre-
dictions which are Gaussian distributed with mean u (z) = K(z, X)K(X, X)~1Y and variance
o2 (z) = K(z,z) — K(x, X)K(X, X)"1K(X, x), where (X,)) is the training set of inputs and
targets. NTK. When neural networks are optimized using continuous gradient descent with
learning rate 1 on mean squared error (MSE) loss, the function evaluated on training points
evolves as Oy f;(X) = —nJy(X) J(X)T (f1(X) — V) where J;(X) is the Jacobian of f evaluated
at X and ©4(X,X) = Jy(X)J;(X)T is the NTK. In the infinite-width limit, the NTK remains
constant (0; = ©) throughout training and the time-evolution of the outputs can be solved in
closed form as a Gaussian with mean p(7) = O(z, X)O(X, X))~ (I — exp [-nO(X, X)t])),
which further simplifies to pioo () = O(x, X)O(X, X)LV at convergence (infinite training
time).

A.1. INFINITE BAYESIAN NEURAL NETWORKS REFERENCES (NNGP)

The NNGP correspondence was first established for shallow fully-connected networks by Neal
(1994) and was extended to multi-layer setting in (Lee et al., 2018; Matthews et al., 2018b).
Since then, this correspondence has been expanded to a wide range of nonlinearities (Matthews
et al., 2018a; Novak et al., 2019) and architectures including those with convolutional layers
(Borovykh, 2018; Garriga-Alonso et al., 2019; Novak et al., 2019), residual connections
(Garriga-Alonso et al., 2019), and pooling (Novak et al., 2019). The results for individual
architectures have subsequently been generalized, and it was shown that a GP correspondence
holds for a general class of networks that can be mapped to so-called tensor programs in
(Yang, 2019). The recurrence relationship defining the NNGP kernel has additionally been
studied separately from the GP correspondence in (Cho and Saul, 2009; Daniely et al., 2016;
Poole et al., 2016; Schoenholz et al., 2016; Yang and Schoenholz, 2017; Xiao et al., 2018).

A.2. INFINITE GRADIENT DESCENT TRAINED NEURAL NETWORKS REFERENCES (NTK)

In addition to enabling a closed form description of Bayesian neural networks, the infinite-
width limit has also very recently provided insights into neural networks trained by gradient
descent. In the last year, several papers have shown that randomly initialized neural networks
trained with gradient descent are characterized by a distribution that is related to the NNGP,
and is described by the so-called Neural Tangent Kernel (NTK) (Jacot et al., 2018; Lee
et al., 2019; Chizat et al., 2019), a kernel which was implicit in some earlier papers (Li and
Liang, 2018; Allen-Zhu et al., 2018; Du et al., 2018a,b; Zou et al., 2019). In addition to
this “function space” perspective, a dual, “weight space” view on the wide network limit

NEURAL TANGENTS: FAST AND EASY INFINITE NEURAL NETWORKS IN PYTHON

was proposed in Lee et al. (2019) which showed that networks under gradient descent were
well-described by the first-order Taylor series about their initial parameters.

B. NEURAL TANGENTS and prior work

We briefly discuss the differences between NEURAL TANGENTS and the relevant prior work.

1. Prior benchmarks in the domain of infinitely wide neural networks. Various
prior works have evaluated convolutional and fully-connected models on certain datasets
(Lee et al., 2018; Matthews et al., 2018b,a; Novak et al., 2019; Garriga-Alonso et al.,
2019; Arora et al., 2019). While these efforts must have required implementing certain
parts of our library, to our knowledge such prior efforts were either not open-sourced or
not comprehensive / user-friendly / scalable enough to be used as a user-facing library.
In addition, all of the works above used their own separate implementation, which
further highlights a need for a more general approach.

2. Code released by Lee et al. (2019). Lee et al. (2019) have released code along
with their paper submission, which is a strict and minor subset of our library. More
specifically, at the time of the submission, Lee et al. (2019) have released code equiva-
lent to nt.linearize, nt.empirical_ntk_fn, nt.predict.gradient_descent_mse ,
nt.predict.gradient_descent , and nt.predict.momentum . Every other part of the
library (most notably, nt.stax) is new in this submission and was not used by Lee

et al. (2019) or any other prior work. At the time of writing, NEURAL TANGENTS differs
from the code released by Lee et al. (2019) by about 49,500/ — 2,500 lines of code.

3. GPy (2012), GPFlow (Matthews et al., 2017), GPytorch (Gardner et al.,
2018), and other GP packages. While various packages allowing for kernel construc-
tion, optimization, and inference with Gaussian Processes exist, none of them allow easy
construction of the very specific kernels corresponding to infinite neural networks (NNG-
P/NTK; nt.stax), nor do they provide the tools and convenience for studying wide
but finite networks and their training dynamics (nt.taylor_expand, nt.predict,

nt.monte_carlo_kernel_fn). On the other hand, NEURAL TANGENTS does not
provide any tools for approximate inference with these kernels.

C. Library description

NEURAL TANGENTS provides a high-level interface for specifying analytic, infinite-width,
Bayesian and gradient descent trained neural networks as Gaussian Processes. This interface
closely follows the stax API (Bradbury et al., 2018b) in JAX.

C.1. NEURAL NETWORKS WITH JAX

stax represents each component of a network as two functions: init_fn and apply_fn.

These components can be composed in serial or in parallel to produce new network com-
ponents with their own init_fn and apply_fn . In this way, complicated neural network
architectures can be specified hierarchically.

10

NEURAL TANGENTS: FAST AND EASY INFINITE NEURAL NETWORKS IN PYTHON

Calling init_fn on a random seed and an input shape generates a random draw of

trainable parameters for a neural network. Calling apply_fn on these parameters and a
batch of inputs returns the outputs of the given finite neural network.

from jax.experimental import stax

init_fn, apply_fn = stax.serial(stax.Dense(512), stax.Relu, stax.Dense(10))
_, params = init_fn(key, (-1, 32 * 32 % 3))

fx_train, fx_test = apply_fn(params, x_train), apply_fn(params, x_test)

C.2. INFINITE NEURAL NETWORKS WITH NEURAL TANGENTS

We extend stax layers to return a third function kernel_fn , which represents the covariance
functions of the infinite NNGP and NTK networks of the given architecture (recall that since
infinite networks are GPs, they are fully defined by their covariance functions, assuming 0
mean as is common in the literature).

from neural_tangents import stax
init_fn, apply_fn, kernel_fn = stax.serial(stax.Dense(512), stax.Relu(), stax.Dense(10))

We demonstrate a specification of a more complicated architecture (WideResNet) in
Listing

kernel_fn accepts two batches of inputs x1 and x2 and returns their NNGP covariance
and NTK matrices as kernel_fn(x1, x2).nngp and kernel_fn(x1, x2).ntk respectively,
which can then be used to make posterior test set predictions as the mean of a conditional
multivariate normal:

from jax.numpy.linalg import inv

y_test = kernel_fn(x_test, x_train).ntk @ inv(kernel_fn(x_train, x_train).ntk) @ y_train

Note that the above code does not do Cholesky decomposition and is presented merely
to show the mathematical expression. We provide efficient GP inference method in the
predict submodule:

import neural_tangents as nt
y_test = nt.predict.gp_inference(kernel_fn, x_train, y_train, x_test,
get="ntk', diag_reg=1e-4, compute_cov=False)

C.3. COMPUTING INFINITE NETWORK KERNELS IN BATCHES AND IN PARALLEL

Naively, the kernel_fn will compute the whole kernel in a single call on one device.
However, for large datasets or complicated architectures, it is often necessary to distribute
the calculation in some way. To do this, we introduce a batch decorator that takes a
kernel_fn and returns a new kernel_fn with the exact same signature. The new function
computes the kernel in batches and automatically parallelizes the calculation over however
many devices are available, with near-perfect speedup scaling with the number of devices
(Figure 0, right).

11

NEURAL TANGENTS: FAST AND EASY INFINITE NEURAL NETWORKS IN PYTHON

import neural_tangents as nt
kernel_fn = nt.batch(kernel_fn, batch_size=32)

Note that batching is often used to compute large covariance matrices that may not even
fit on a GPU/TPU device, and require to be stored and used for inference using CPU RAM.
This is easy to achieve by simply specifying nt.batch(..., store_on_device=False) . Once

the matrix is stored in RAM, inference will be performed with a CPU when nt.predict
methods are called. As mentioned in §1), for many (notably, convolutional, and especially
pooling) architectures, inference cost can be small relative to kernel construction, even when
running on CPU (for example, jax.scipy.linalg.solve(..., sym_pos=True) takes less
than 3 minutes to execute on a 45,000 x 45, 000 training covariance matrix and a 45,000 x 10
training target matrix).

C.4. TRAINING DYNAMICS OF INFINITE NETWORKS

In addition to closed form multivariate Gaussian posterior prediction, it is also interesting
to consider network predictions following continuous gradient descent. To facilitate this we
provide several functions to compute predictions following gradient descent with an MSE
loss, for gradient descent with arbitrary loss, or for momentum with arbitrary loss. The first
case is handled analytically, while the latter two are computed by numerically integrating the
differential equation. For example, the following code will compute the function evaluation
on train and test points following gradient descent for some time training_time .

import neural_tangents as nt
predictor = nt.predict.gradient_descent_mse(kernel_fn(x_train, x_train), y_train,
fx_train, fx_test = predictor(training_time, fx_train, fx_test)

C.5. INFINITE NETWORKS OF ANY ARCHITECTURE THROUGH SAMPLING

There are cases where the analytic kernel cannot be computed. To support these situations,
we provide utility functions to efficiently compute Monte Carlo estimates of the NNGP
covariance and NTK. These functions work with neural networks constructed using any
neural network library.

from jax import random
from jax.experimental import stax
import neural_tangents as nt

init_fn, apply_fn = stax.serial(stax.Dense(64), stax.BatchNorm(), stax.Sigmoid, stax.Dense(1))
kernel_fn = nt.monte_carlo_kernel_fn(init_fn, apply_fn, key=random.PRNGKey(1), n_samples=128)

kernel = kernel_fn(x_train, x_train)

We demonstrate convergence of the Monte Carlo kernel estimates to the closed-form
analytic kernels in the case of a WideResNet in Figure

12

NEURAL TANGENTS: FAST AND EASY INFINITE NEURAL NETWORKS IN PYTHON

NNGP NTK
5 5-
) ! H 1
5 o 3)
& = &]
) <) <
£ z g ki
g S G s
< =t e =t
z E. z E
N =] N =
20 0
2)
i o -5 0 -5
I I I I
0 log2(#Samples) 10 0 log2(#Samples) 10

Figure 4: Convergence of the Monte Carlo (MC) estimates of the WideResNet
WRN-28-k (where k is the widening factor) NNGP and NTK kernels (computed with
monte_carlo_kernel_fn) to their analytic values (WRN-28-00, computed with kernel_fn),
as the network gets wider by increasing the widening factor (vertical axis) and as more
random networks are averaged over (horizontal axis). Experimental detail. The kernel is
computed in 32-bit precision on a 100 x 50 batch of 8 x 8-downsampled CIFAR10 (Krizhevsky,
2009) images. For sampling efficiency, for NNGP the output of the penultimate layer was
used, and for NTK the output layer was assumed to be of dimension 1 (all logits are i.i.d.
conditioned on a given input). The displayed distance is the relative Frobenius norm squared,
fe. [|[K— IC/.MH%/ ||IC||12; , where k is the widening factor and n is the number of samples.

—— 0Oth order (constant)

- 1st order (linear)

—— 2nd order (quadratic)

-2
10 —— Original function

Batch Mean Squared Error

0 2 4 6 8 10
Training Epoch

Figure 5: Training a neural network and its various approximations using
nt.taylor_expand . Presented is a 5-layer Erf-neural network of width 512 trained
on MNIST using SGD with momentum, along with its constant (0" order), linear (1°
order), and quadratic (2"¢ order) Taylor expansions about the initial parameters. As
training progresses (left to right), lower-order expansions deviate from the original function
faster than higher-order ones.

13

NEURAL TANGENTS: FAST AND EASY INFINITE NEURAL NETWORKS IN PYTHON

C.6. WEIGHTS OF WIDE BUT FINITE NETWORKS

While most of NEURAL TANGENTS is devoted to a function-space perspective—describing
the distribution of function values on finite collections of training and testing points—we
also provide tools to investigate a dual weight space perspective described in Lee et al.
(2019). Convergence of dynamics to NTK dynamics coincide with networks being described
by a linear approximation about their initial set of parameters. We provide decorators
linearize and taylor_expand to approximate functions to linear order and to arbitrary

order respectively. Both functions take an apply_fn and returns a new apply_fn that
computes the series approximation.

import neural_tangents as nt
taylor_apply_fn = nt.taylor_expand(apply_fn, params, order)
fx_train_approx = taylor_apply_fn(new_params, x_train)

These act exactly like normal JAX functions and, in particular, can be plugged into
gradient descent, which we demonstrate in Figure

C.7. EXTENDING NEURAL TANGENTS

Many neural network layers admit a sensible infinite-width limit behavior in the Bayesian and
continuous gradient descent regimes as long as the multivariate central limit theorem applies
to their outputs conditioned on their inputs. To add such layer to NEURAL TANGENTS, one
only has to implement it as a method in nt.stax with the following signature:

@_layer # an internal decorator taking care of certain boilerplate.

NewLayer (layer_params: Any) -> (init_fn: function, apply_fn: function, kernel_fn: function)

Here init_fn and apply_fn are initialization and the forward pass methods of the
finite-width layer implementation (see §C'.1). If the layer of interest already exists in JAX,
there is no need to implement these methods and the user can simply return the respective
methods from jax.experimental.stax (see nt.stax.Flatten for an example; in fact the

majority of nt.stax layers call the original jax.experimental.stax layers for finite-width

layer methods). In this case what remains is to implement the kernel_fn method with
signature

kernel_fn(input_kernel: nt.utils.Kernel) -> output_kernel: nt.utils.Kernel

Here both input_kernel and output_kernel are namedtuple s containing the NNGP
and NTK covariance matrices, as well as additional metadata useful for computing the kernel
propagation operation. The specific operation to be performed should be derived by the
user in the context of the particular operation that the finite-width layer performs. This
transformation could be as simple as an affine map on the kernel matrices, but could also be
analytically intractable.

Once implemented, the correctness of the implementation can be very easily tested
by extending the nt.tests.stax_test with the new layer, to test the agreement with
large-widths empirical NNGP and NTK kernels.

14

NEURAL TANGENTS: FAST AND EASY INFINITE NEURAL NETWORKS IN PYTHON

D. Performance

Our library performs a number of automatic performance optimizations without sacrificing
flexibility.

Leveraging block-diagonal covariance structure. A common computational chal-
lenge with GPs is inverting the training set covariance matrix. Naively, for a classification
task with C' classes and training set X', NNGP and NTK covariances have the shape of
|X| C x |X|C. For CIFAR-10, this would be 500, 000 x 500, 000. However, if a fully-connected
readout layer is used (which is an extremely common design in classification architectures),
the C logits are i.i.d. conditioned on the input z. This results in outputs that are normally
distributed with a block-diagonal covariance matrix of the form ¥ ® I, where 3 has shape
|X| x |X| and I¢ is the C' x C identity matrix. This reduces the computational complexity
and storage in many common cases by an order of magnitude, which makes closed-form exact
inference feasible in these cases.

Automatically tracking only the smallest necessary subset of intermediary co-
variance entries. For most architectures, especially convolutional, the main computational
burden lies in constructing the covariance matrix (as opposed to inverting it). Specifically
for a convolutional network of depth [, constructing the |X'| X |X| output covariance matrix,
¥, involves computing I intermediate layer covariance matrices, ¥, of size |X|d x |X|d (see
Listing | for a model requiring this computation) where d is the total number of pixels in
the intermediate layer outputs (e.g. d = 1024 in the case of CIFAR-10 with SAME padding).
However, as Xiao et al. (2018); Novak et al. (2019); Garriga-Alonso et al. (2019) remarked, if
no pooling is used in the network the output covariance ¥ can be computed by only using the
stack of d |X| x |X|-blocks of X, bringing the time and memory cost from O(|X|? d2) down
to O(|X|* d) per layer (see Figure 3 and Listing 2 for models admitting this optimization).
Finally, if the network has no convolutional layers, the cost further reduces to O(|X[?) (see
Listing 3 for an example). These choices are performed automatically by NEURAL TANGENTS
to achieve efficient computation and minimal memory footprint.

Expressing covariance computations as 2D convolutions with optimal layout.
A key insight to high performance in convolutional models is that the covariance propagation
operator for convolutional layers A can be expressed in terms of 2D convolutions when it
operates on both the full |X|d x |X|d covariance matrix X, and on the d diagonal |X| x |X|-
blocks. This allows utilization of modern hardware accelerators, many of which target 2D
convolutions as their primary machine learning application.

Simultaneous NNGP and NT kernel computations. As NTK computation requires
the NNGP covariance as an intermediary computation, the NNGP covariance is computed
together with the NTK at no extra cost. This is especially convenient for researchers looking
to investigate similarities and differences between these two infinite-width NN limits.

Automatic batching and parallelism across multiple devices. In most cases as
the dataset or model becomes large, it is impossible to perform the entire kernel computation
at once. Additionally, in many cases it is desirable to parallelize the kernel computation across
devices (CPUs, GPUs, or TPUs). NEURAL TANGENTS provides an easy way to perform both
of these common tasks using a single batch decorator shown below:

15

NEURAL TANGENTS: FAST AND EASY INFINITE NEURAL NETWORKS IN PYTHON

2'4_l 1 1 1 1 [2'5_I 1 1 1 1 -
=== GPU Count = 1 e
7 25- GPUCount=2 _ Ty 26_. “Sa_ -
~ —— GPU Count = 4 — R
QL s GPU Count = 8 QL Sso
g 2 - 5?2 *.* -
E 7 E 8 ~§
o 2'- - © 2°- S0 -
0 n o,
~ 58 R Seo _
(0] (0] ~
‘e
€ € .
= 29 - © 210 _
210_\ 1 1 1 1 ~ 211_\ 1 1 1 1 -
20 2! 22 23 24 2° 2t 20 2! 2?2 23
Batch Size GPU Count

Figure 6: Performance scaling with batch size (left) and number of GPUs (right).
Shows time per entry needed to compute the analytic NNGP and NTK covariance matrices
(using kernel_fn) in a 21-layer ReLU network with global average pooling. Left: Increasing
the batch size when computing the covariance matrix in blocks allows for a significant
performance increase until a certain threshold when all cores in a single GPU are saturated.
Simpler models are expected to have better scaling with batch size. Right: Time-per-sample
scales linearly with the number of GPUs, demonstrating near-perfect hardware utilization.

batched_kernel_fn = nt.batch(kernel_fn, batch_size)
batched_kernel_fn(x, x) == kernel_fn(x, x) # True!

This code works with either analytic kernels or empirical kernels. By default, it auto-
matically shares the computation over all available devices. We plot the performance as a
function of batch size and number of accelerators when computing the theoretical NTK of a
21-layer convolutional network in Figure 0, observing near-perfect scaling with the number
of accelerators.

Op fusion. JAX and XLA allow end-to-end compilation of the whole kernel computation
and/or inference. This enables the XLA compiler to fuse low-level ops into custom model-
specific accelerator kernels, as well as eliminating overhead from op-by-op dispatch to an
accelerator. In similar vein, we allow the covariance tensor to change its order of dimensions
from layer to layer, with the order tracked and parsed as additional metadata under the
hood. This eliminates redundant transpositions” by adjusting the computation performed by
each layer based on the input metadata.

E. A taste of Tensor-to-Kernel Ops Translation

To get some intuition behind the translation rules, we consider the case of a nonlinearity
followed by a dense layer. Let z = z (X,0) € R?" be the preactivations resulting from d
distinct inputs at a node in some hidden layer of a neural network. Suppose z has NNGP

3. These transpositions could not be automatically fused by the XLA compliler.

16

https://www.tensorflow.org/xla

NEURAL TANGENTS: FAST AND EASY INFINITE NEURAL NETWORKS IN PYTHON

kernel and NTK given by

K.=Eg[2z]], ©.=E

8zi Gzz T (1)
a0 \ 00

where z; € R? is the i*® neuron and @ are the parameters in the network up until z. Here d
is the cardinality of the network inputs & and n is the number of neurons in the z node. We
assume z is a mean zero multivariate Gaussian. We wish to compute the kernel corresponding

to h = Dense (0, 0p) (¢(2)) by computing the kernels of y = ¢(z) and h = Dense (0y,, 0p) ()
separately. Here,

h = Dense(ow, 0b)(y) = (1/vn) 0,Wy + 03, (2)

and the variables Wj; and §; are i.i.d. Gaussian N(0,1). We will compute kernel operations -
denoted ¢* and Dense(oy,, 0p)* - induced by the tensor operations ¢ and Dense(o,,,03) . Fi-
nally, we will compute the kernel operation associated with the composition (Dense(oy,, 03) 0 ¢)* =
Dense(o,,, 0p)* 0 ¢*.

First we compute the NNGP and NT kernels for y. To compute K, note that from its
definition,

Ky =Ky =Eo [0(2)i 0(2)] | =Eo[o(2:) d(2:)"] = T(K>). (3)

Since ¢ does not introduce any new variables ©, can be computed as,

0¢(z) (0p(z)\" 0z (9T L, .
0, = E %(;) < %(; >> _E, [dlag(qb(zi))aze <;9) dlag(qb(zi))] = T(K.) & O..
Taken together these equations imply that,
Ky, ©y) = 6" (K=, ©2) = (T(K2), T(K) 0 ©.) (4)

will be the translation rule for a pointwise nonlinearity. Note that Equation Equation 4 only
has an analytic expression for a small set of activation functions ¢.

Next we consider the case of a dense operation. Using the independence between the
weights, the biases, and h it follows that,

Kn = Ew,gplhihl] = 02Eolyiyl] + 0f = 02Ky + 0p. (5)

Finally, the NTK of h can be computed as a sum of two terms:

Oh; oh; * E oh; [Oh;\ 7
oW, B) <B(Wﬁ)> T Ewa ae(fw)

This gives the translation rule for the dense layer in terms of Ky and ©, as,

= 02K, +of +020,. (6)

O =Ewge

(Kh,©4) = Dense(ow,0p)" (Ky,0y) = (aile + 02, 02K, + of + Ui@y) . (7)

[
\‘l
M
I
=
B
£
=
&
3
\]
Ly
I

E [¢/'(w)¢'(w)"] ,u ~ N (0,%), as in (Lee et al., 2019).

17

F.

NEURAL TANGENTS: FAST AND EASY INFINITE NEURAL NETWORKS IN PYTHON

Implemented and coming soon functionality

The following layers’ are currently implemented, with translation rules given in Table

e serial

parallel

e FanOut

e FanInSum

e FanlInConcat

e Dense

e Conv " with arbitrary filter shapes, strides, and padding

e Relu, LeakyRelu, Abs, ABRelu ", Erf, Identity

e Flatten

e AvgPool , GlobalAvgPool

e SumPool , GlobalSumPool

e Dropout

e GlobalSelfAttention (Anonymous, 2020)
e [ayerNorm

The following is in our near-term plans:

e Exp, Elu, Selu, Gelu

e Apache Beam support.

The following layers do not have a known closed-form solution for infinite network

covariances, and networks with them have to be estimated empirically (provided with
out implementation via nt.monte_carlo_kernel_fn) or using other approximations (not
currently implemented):

e Sigmoid, Tanh,” Swish, "’ Softmax, LogSoftMax , Softplus, MaxPool .

Abs , ABRelu, GlobalAvgPool , GlobalSelfAttention are only available in our library nt.stax and

not in jax.experimental.stax .

. Only NHWC data format is currently supported, but extension to other formats is trivial and will be done

shortly.

. Note that in addition to SAME and VALID , we support CIRCULAR padding, which is especially handy

for theoretical analysis and was used by Xiao et al. (2018) and Novak et al. (2019).

. amin (z,0) + bmax (z,0).
. Note that these nonlinearities are similar to Erf which does have a solution and is implemented.
10.

Note that this nonlinearity is similar to Gelu .

18

https://beam.apache.org/

NEURAL TANGENTS: FAST AND EASY INFINITE NEURAL NETWORKS IN PYTHON

G. Architecture specifications

from neural_tangents import stax

def ConvolutionalNetwork(depth, W_std=1.0, b_std=0.0):
layers = []
for _ in range(depth):
layers += [stax.Conv(1, (3, 3), W_std, b_std, padding='SAME'), stax.Relu()]
layers += [stax.Flatten(), stax.Dense(1, W_std, b_std)]
return stax.serial(*layers)

Listing 2: All-convolutional model (ConvOnly) definition used in Figure

from neural_tangents import stax

def FullyConnectedNetwork(depth, W_std=1.0, b_std=0.0):
layers = [stax.Flatten()]
for _ in range(depth):
layers += [stax.Dense(1, W_std, b_std), stax.Relu()]
layers += [stax.Dense(1, W_std, b_std)]
return stax.serial(*layers)

Listing 3: Fully-connected (FC) model definition used in Figure

19

NEURAL TANGENTS: FAST AND EASY INFINITE NEURAL NETWORKS IN PYTHON

302 Independent | | 302 Full Test Coyvarigange |,
e FC-NTK
=+ FC-NNGP
=== CONV-NTK
= + CONV-NNGP
2.5- - 2.5- -
@ @
© @©
£ £
= 2.0- - 320- -
= =
i 0
e e
1.5- - 1.5- -
1.0-| 1 1 1 1 1 1 1 1 r 1-0-I 1 1 1 1 1 1 1 1 [
26 27 28 9 510 511 512 513 514 515 26 27 28 59 510511 512 513 514 515
Training Set Size Training Set Size
109 _E‘ I I |NTK| I I _ 109 _E‘ I I NNGE I I |§
10° . 10%,
g 107+ g 107
'g : 'g : :
6’ 6 '
c H c - -
S 10° E 2 10° E £
© : kS : :
S 104+ S 104+ - K -
O % H O % =« FC-Test-Cov %
z N z === Conv -
103 = = 103 = =+ Conv-Test-Cov =
: H H === \WResNet H
5 z z 2 z = = WResNet-Test-Cov -
10 ! 1 1 1 1 1 1 r 10 i 1 1 1 1 1 1 [
26 57 58 59 510 51l 512 513 26 27 58 59 510 5ll 512 513
Training Set Size Training Set Size

Figure 7: Predictive negative log-likelihoods and condition numbers. Top. Test
negative log-likelihoods for NNGP posterior and Gaussian predictive distribution for NTK
at infinite training time for CIFAR-10 (test set of 2000 points). Fully Connected (FC,
Listing 3) and Convolutional network without pooling (CONYV, Listing 2) models
are selected based on train marginal negative log-likelihoods in Figure 2. Bottom. Condition
numbers for covariance matrices corresponding to NTK/NNGP as well as respective predictive
covaraince on the test set. Ill-conditioning of Wide Residual Network kernels due to
pooling layers (Xiao et al., 2019) could be the cause of numerical issues when evaluating
predictive NLL for this kernels.

20

NEURAL TANGENTS: FAST AND EASY INFINITE NEURAL NETWORKS IN PYTHON

Tensor Op NNGP Op NTK Op

X K O

Dense (o, 0p) 02K + of (02K +0?) + 020
¢ T(K) T(K)o©

Dropout(p)

Conv(oy, 0p)
Flatten
AvgPool(s, g, 7)

GlobalAvgPool

Attn(O'QK, Uov)

AvgPool(s, ¢, p)(K)

GlobalAvgPool(K)

Attn(O'QK, Uov) (/C)

o+ (% - 1) Diag(O)
02 A(K)+ o2 +02A(O)
Tr(K + ©)

AvgPool(s, q,p)(K + ©)

GlobalAvgPool(K + ©)

2Attn(UQK, Uov) (IC)-I—

(Anonymous, 2020) Attn(ogk,o0v)(O)

Z?:l ©;

O] * n

FanInSum(&y,...,&,) >0, K;

FanOut(n) K] % n

Table 1: Translation rules (§3) converting tensor operations into operations on
NNGP and NTK kernels. Here the input tensor X' is assumed to have shape |X| x
H x W x C (dataset size, height, width, number of channels), and the full NNGP and
NT kernels K and T are considered to be of shape (|X| x H x W)*? (in practice shapes of
|X)*% x H x W and |X|*? are also possible, depending on which optimizations in §1) are
applicable). Notation details. The Tr and GlobalAvgPool ops are assumed to act on all
spatial axes (with sizes H and W in this example), producing a |X]XQ—kernel. Similarly, the
AvgPool op is assumed to act on all spatial axes as well, applying the specified strides s,
pooling window sizes p and padding strategy p to the respective axes pairs in K and T (acting
as 4D pooling with replicated parameters of the 2D version). 7 and T are defined identically
to Lee et al. (2019) as 7 (X) = E [¢(w)¢(w)T], T (2) = E [¢'(u)¢' (u)"] ,u ~ N (0,%). These
expressions can be evaluated in closed form for many nonlinearities, and preserve the shape

of the kernel. The A op is defined similarly to Novak et al. (2019); Xiao et al. (2018)
as [AX)], o (#,2") = 2 g g [E]Z’:ﬁ‘jiﬂiﬁw (x,2') /¢*, where the summation is performed
over the convolutional filter receptive field with g pixels (we assume unit strides and circular
padding in this expression, but generalization to other settings is trivial and supported by
the library). [X]xn = [%,...,X] (n-fold replication). See Figure 3 for an example of applying

the translation rules to a specific model, and §I© for deriving a sample translation rule.

21

	Motivation
	Example: training and inference with infinite networks
	How it works
	Conclusion
	5-minute background
	Infinite Bayesian neural networks references (NNGP)
	Infinite gradient descent trained neural networks references (NTK)

	Neural Tangents and prior work
	Library description
	Neural networks with JAX
	Infinite neural networks with Neural Tangents
	Computing infinite network kernels in batches and in parallel
	Training dynamics of infinite networks
	Infinite networks of any architecture through sampling
	Weights of wide but finite networks
	Extending Neural Tangents

	Performance
	A taste of Tensor-to-Kernel Ops Translation
	Implemented and coming soon functionality
	Architecture specifications

