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ABSTRACT

Modern generative models are usually designed to match target distributions di-
rectly in the data space, where the intrinsic dimensionality of data can be much
lower than the ambient dimensionality. We argue that this discrepancy may con-
tribute to the difficulties in training generative models. We therefore propose to
map both the generated and target distributions to the latent space using the en-
coder of a standard autoencoder, and train the generator (or decoder) to match the
target distribution in the latent space. The resulting method, perceptual generative
autoencoder (PGA), is then incorporated with maximum likelihood or variational
autoencoder (VAE) objective to train the generative model. With maximum like-
lihood, PGA generalizes the idea of reversible generative models to unrestricted
neural network architectures and arbitrary latent dimensionalities. When com-
bined with VAE, PGA can generate sharper samples than vanilla VAE.

1 INTRODUCTION

Recent years have witnessed great interest in generative models, mainly due to the success of gen-
erative adversarial networks (GANs) (Goodfellow et al., 2014; Radford et al., 2016; Karras et al.,
2018; Brock et al., 2019). Despite the prevalence, the adversarial nature of GANs can lead to a num-
ber of challenges, such as unstable training dynamics and mode collapse. Since the advent of GANs,
substantial efforts have been devoted to addressing these challenges (Salimans et al., 2016; Arjovsky
et al., 2017; Gulrajani et al., 2017; Miyato et al., 2018), while non-adversarial approaches that are
free of these issues have also gained attention. Examples include variational autoencoders (VAEs)
(Kingma & Welling, 2014), reversible generative models (Dinh et al., 2017; Kingma & Dhariwal,
2018), and Wasserstein autoencoders (WAEs) (Tolstikhin et al., 2018).

However, non-adversarial approaches often have significant limitations. For instance, VAEs tend to
generate blurry samples, while reversible generative models require restricted neural network archi-
tectures or solving neural differential equations (Grathwohl et al., 2019). Furthermore, to use the
change of variable formula, the latent space of a reversible model must have the same dimensionality
as the data space, which is unreasonable considering that real-world, high-dimensional data (e.g.,
images) tends to lie on low-dimensional manifolds, and thus results in redundant latent dimensions
and variability. Intriguingly, recent research (Arjovsky et al., 2017; Dai & Wipf, 2019) suggests that
the discrepancy between the intrinsic and ambient dimensionalities of data also contributes to the
difficulties in training GANs and VAEs.

In this work, we present a novel framework for training autoencoder-based generative models, with
non-adversarial losses and unrestricted neural network architectures. Given a standard autoencoder
and a target data distribution, instead of matching the target distribution in the data space, we map
both the generated and target distributions to the latent space using the encoder, and train the gen-
erator (or decoder) to minimize the divergence between the mapped distributions. We prove, under
mild assumptions, that by minimizing a form of latent reconstruction error, matching the target dis-
tribution in the latent space implies matching it in the data space. We call this framework perceptual
generative autoencoder (PGA). We show that PGA enables training generative autoencoders with
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maximum likelihood, without restrictions on architectures or latent dimensionalities. In addition,
when combined with VAE, PGA can generate sharper samples than vanilla VAE.1

2 METHODS

2.1 PERCEPTUAL GENERATIVE MODEL

Let f : RD → RH be the encoder parameterized by φ, and g : RH → RD be the decoder
parameterized by θ. Our goal is to obtain a generative model, which maps a simple prior distribution
to the data distribution, D. Throughout this paper, we use N (0, I) as the prior distribution.

For z ∈ RH , the output of the decoder, g (z), lies in a manifold that is at most H-dimensional.
Therefore, if we train the autoencoder to minimize

Lr =
1

2
Ex∼D

[
‖x̂− x‖22

]
, (1)

where x̂ = g (f (x)), then x̂ can be seen as a projection of the input data, x, onto the manifold
of g (z). Let D̂ denote the distribution of x̂. Given enough capacity of the encoder, D̂ is the best
approximation to D (in terms of L2 distance), that we can obtain from the decoder, and thus can
serve as a surrogate target for training the generator.

Due to the difficulty of directly training the generator to match D̂, we seek to map D̂ to the latent
space, and train the generator to match the mapped distribution, Ĥ, in the latent space. To this end,
we reuse the encoder for mapping D̂ to Ĥ, and train the generator such that h (·) = f (g (·)) maps
N (0, I) to Ĥ. In addition, to ensure that g maps N (0, I) to D̂, we minimize the following latent
reconstruction loss with respect to (w.r.t.) φ:

Lφlr,N =
1

2
Ez∼N (0,I)

[
‖h (z)− z‖22

]
. (2)

Formally, let Z (x) be the set of all z’s that are mapped to the same x by the decoder, we have the
following theorem:
Theorem 1. Assuming the convexity of Z (x) for all x ∈ RD, and sufficient capacity of the encoder;
for z ∼ N (0, I), if Eq. (2) is minimized and h (z) ∼ Ĥ, then g (z) ∼ D̂.

Proof. We first show that any different x’s generated by the decoder are mapped to different z’s
by the encoder. Let x1 = g (z1), x2 = g (z2), and x1 6= x2. Since the encoder has sufficient
capacity and Eq. (2) is minimized, we have f (x1) = E [z1] and f (x2) = E [z2]. By definition,
z1 ∈ Z (x1), z2 ∈ Z (x2). Therefore, given the convexity of Z (x1) and Z (x2), f (x1) ∈ Z (x1)
and f (x2) ∈ Z (x2). Since Z (x1) ∩ Z (x2) = Ø, we have f (x1) 6= f (x2).

For z ∼ N (0, I), denote the distributions of g (z) and h (z), respectively, by D̃ and H̃. We then
consider the case where D̃ and D̂ are discrete distributions. If g (z) � D̂, then there exists an x,
such that pH̃ (f (x)) = pD̃ (x) 6= pD̂ (x) = pĤ (f (x)), contradicting that h (z) ∼ Ĥ. The result
still holds when D̃ and D̂ approach continuous distributions.

Note that the two distributions compared in Theorem 1, D̃ and D̂, are mapped respectively from
N (0, I) andH. While N (0, I) is supported on the whole RH , there can be z’s with low probabili-
ties in N (0, I), but with high probabilities in H, which are not well covered by Eq. (2). Therefore,
it is sometimes helpful to minimize another latent reconstruction loss onH:

Lφlr,H =
1

2
Ez∼H

[
‖h (z)− z‖22

]
. (3)

By Theorem 1, the problem of training the generative model reduces to training h to mapN (0, I) to
Ĥ, which we refer to as the perceptual generative model. In the subsequent subsections, we present a
maximum likelihood approach, as well as a VAE-based approach, to train the perceptual generative
model.

1Code is available at https://github.com/zj10/PGA.
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2.2 A MAXIMUM LIKELIHOOD APPROACH

We first assume the invertibility of h. For x̂ ∼ D̂, let Ĥ be the distribution of f (x̂). We can train h
directly with maximum likelihood using the change of variable formula as

Eẑ∼Ĥ [log p (ẑ)] = Ez∼H

[
log p (z)− log

∣∣∣∣det

(
∂h (z)

∂z

)∣∣∣∣] . (4)

Ideally, we would like to maximize Eq. (4) w.r.t. the parameters of the generator (or decoder), θ.
However, directly optimizing the first term in Eq. (4) requires computing z = h−1 (ẑ), which is
usually unknown. Nevertheless, for ẑ ∼ Ĥ, we have h−1 (ẑ) = f (x) and x ∼ D, and thus we can
minimize the following loss function w.r.t. φ instead:

Lφnll = −Ez∼H [log p (z)] =
1

2
Ex∼D

[
‖f (x)‖22

]
. (5)

To avoid computing the Jacobian for the second term in Eq. (4), which is slow for unrestricted
architectures, we approximate the Jacobian determinant and derive a loss function for the decoder
as

Lθnll =
H

2
Ez∼H,δ∼S(ε)

[
log
‖h (z + δ)− h (z)‖22

‖δ‖22

]
≈ Ez∼H

[
log

∣∣∣∣det

(
∂h (z)

∂z

)∣∣∣∣] , (6)

where S (ε) is a uniform distribution on a small hypersphere of radius ε. When ε → 0, the approx-
imation forms an upper bound on the right-hand side (r.h.s.) of Eq. (6), and becomes tight if h is
close to the identity function. Intuitively, Eq. (5) attracts the latent representations of data samples
to the origin, while Eq. (6) expands the volume occupied by each sample in the latent space.

The above discussion relies on the assumption that h is invertible, which is not necessarily true
for unrestricted architectures. If h (z) is not invertible for some z, the logarithm of the Jacobian
determinant at z becomes infinite, in which case Eq. (4) cannot be optimized. Nevertheless, since
‖h (z + δ)− h (z)‖22 is unlikely to be zero if the model is properly initialized, the approximation in
Eq. (6) remains finite, and thus can be optimized regardless.

To summarize, we train the autoencoder to obtain a generative model by minimizing the following
loss function:

L = Lr + αLφlr,N + βLφlr,H + γ
(
Lφnll + Lθnll

)
, (7)

where α, β, and γ are hyperparameters to be tuned. We refer to this approach as maximum likelihood
PGA (LPGA).

2.3 A VAE-BASED APPROACH

The original VAE is trained by maximizing the evidence lower bound on log p (x) as

log p (x) ≥ log p (x)−KL(q (z | x) || p (z | x))

= Ez∼q(z | x) [log p (x | z)]−KL(q (z | x) || p (z)),
(8)

where p (x | z) is modeled with the decoder, and q (z | x) is modeled with the encoder. In our case,
we would like to modify Eq. (8) in a way that helps maximize log p (ẑ). Therefore, we replace
p (x | z) on the r.h.s. of Eq. (8) with p (ẑ | z), and derive a lower bound on log p (ẑ) as

log p (ẑ) ≥ log p (ẑ)−KL(q (z | x) || p (z | ẑ))

= Ez∼q(z | x) [log p (ẑ | z)]−KL(q (z | x) || p (z)).
(9)

Similar to the original VAE, we make the assumption that q (z | x) and p (ẑ | z) are Gaussian; i.e.,
q (z | x) = N

(
z
∣∣∣ µφ (x) ,diag

(
σ2
φ (x)

))
, and p (ẑ | z) = N

(
ẑ
∣∣ µθ,φ (z) , σ2I

)
. Here, µφ (·) =

f (·), µθ,φ (·) = h (·), and σ > 0 is a tunable scalar. The VAE variant is trained by minimizing

Lvae = −Ex∼D
[
Ez∼q(z | x) [log p (ẑ | z)]−KL(q (z | x) || p (z))

]
. (10)
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Note that we slightly abuse the notation, since z is deterministic for the losses in Eqs. (2) and (3),
but is stochastic (with additive Gaussian noise) in Eq. (10). Accordingly, the overall loss function is
given by

L = Lr + αLφlr,N + βLφlr,H + γLvae. (11)

We refer to this approach as variational PGA (VPGA).

3 EXPERIMENTS

In this section, we evaluate the performance of LPGA and VPGA on three image datasets, MNIST
(LeCun et al., 1998), CIFAR-10 (Krizhevsky & Hinton, 2009), and CelebA (Liu et al., 2015). For
CelebA, we employ the discriminator and generator architecture of DCGAN (Radford et al., 2016)
for the encoder and decoder of PGA. We half the number of filters (i.e., 64 filters for the first
convolutional layer) for faster experiments, while more filters are observed to improve performance.
Due to smaller input sizes, we reduce the number of convolutional layers accordingly for MNIST
and CIFAR-10, and add a fully-connected layer of 1024 units for MNIST, as done in (Chen et al.,
2016). SGD with a momentum of 0.9 is used to train all models.

The training process of PGA is stable in general, given the non-adversarial losses. However, sta-
bility issues can occur when batch normalization (Ioffe & Szegedy, 2015) is introduced, since both
the encoder and decoder are fed with multiple batches drawn from different distributions. In our
experiments, we only use batch normalization when it does not cause stability issues, in which case
it is observed to substantially accelerate convergence.

As shown in Fig. 1, the visual quality of the PGA-generated samples is significantly improved
over that of VAE. In particular, VPGA generates much sharper samples on CIFAR-10 and CelebA
compared to vanilla VAE. For CelebA, we further show latent space interpolations in Fig. 2. In
addition, we use the Fréchet Inception Distance (FID) (Heusel et al., 2017) to evaluate LPGA,
VPGA, and VAE. For each model and each dataset, we take 5,000 generated samples to compute the
FID score. The results are summarized in Table. 1. Compared to other non-adversarial generative
models (Tolstikhin et al., 2018; Kolouri et al., 2019; Ghosh et al., 2019), where similar but larger
architectures are used, we obtain substantially better FID scores on CIFAR-10 and CelebA.

Table 1: FID scores of LPGA, VPGA, and VAE.

Model MNIST CIFAR-10 CelebA

LPGA 12.06± 0.12 55.87± 0.25 14.53± 0.52
VPGA 11.67± 0.21 51.51± 1.16 24.73± 1.25
VAE 15.55± 0.18 115.74± 0.63 43.60± 0.33

4 CONCLUSION

We proposed a framework, PGA, for training autoencoder-based generative models, with non-
adversarial losses and unrestricted neural network architectures. By matching target distributions
in the latent space, PGA trained with maximum likelihood generalizes the idea of reversible gen-
erative models to unrestricted neural network architectures and arbitrary latent dimensionalities. In
addition, it improves the performance of VAE when combined together.

In principle, PGA can be combined with any method that can train the perceptual generative model.
While we have only considered two non-adversarial approaches, an interesting future work would
be to combine PGA with an adversarial discriminator trained on latent representations. Moreover,
the compatibility issue with batch normalization deserves further investigation.
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(a) MNIST by LPGA. (b) MNIST by VPGA. (c) MNIST by VAE.

(d) CIFAR-10 by LPGA. (e) CIFAR-10 by VPGA. (f) CIFAR-10 by VAE.

(g) CelebA by LPGA. (h) CelebA by VPGA. (i) CelebA by VAE.

Figure 1: Random samples generated by LPGA, VPGA, and VAE.
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