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ABSTRACT

Machine learning classifiers are often trained to recognize a set of pre-defined
classes. However, in many real applications, it is often desirable to have the
flexibility of learning additional concepts, without re-training on the full training
set. This paper addresses this problem, incremental few-shot learning, where a
regular classification network has already been trained to recognize a set of base
classes; and several extra novel classes are being considered, each with only a few
labeled examples. After learning the novel classes, the model is then evaluated on
the overall performance of both base and novel classes. To this end, we propose
a meta-learning model, the Attention Attractor Network, which regularizes the
learning of novel classes. In each episode, we train a set of new weights to
recognize novel classes until they converge, and we show that the technique of
recurrent back-propagation can back-propagate through the optimization process
and facilitate the learning of the attractor network regularizer. We demonstrate
that the learned attractor network can recognize novel classes while remembering
old classes without the need to review the original training set, outperforming
baselines that do not rely on an iterative optimization process.

1 INTRODUCTION

The success of deep learning stems from the availability of large scale datasets with detailed
annotation, such as ImageNet (Russakovsky et al., 2015). The need for such a large dataset is
however a limitation, since its collection requires intensive human labor. This is also strikingly
different from human learning, where new concepts can be learned from very few examples. One
line of work that attempts to bridge this gap is few-shot learning (Koch et al., 2015; Vinyals et al.,
2016; Snell et al., 2017), where a model learns to output a classifier given only a few labeled
examples of the unseen classes. While this is a very promising line of work, its usability in practice
can be a concern, because few-shot models only focus on learning novel classes, ignoring the fact
that many common classes are readily available in large datasets.

An approach that aims to enjoy the best of both worlds, the ability to learn from large datasets for
common classes with the flexibility of few-shot learning for others, is incremental few-shot learning
(Gidaris & Komodakis, 2018). This combines incremental learning where we want to add new
classes without catastrophic forgetting (McCloskey & Cohen, 1989), with few-shot learning when
the new classes, unlike the base classes, only have a small amount of examples. One use case
to illustrate the problem is a visual aid system. Most objects of interest are common to all users,
e.g., cars, pedestrian signals; however, users would also like to augment the system with additional
personalized items or important landmarks in their area. Such a system needs to be able to learn new
classes from few examples, without harming the performance of the original classes and without
access to the original dataset used to train these classes.

In this work we present a novel method for incremental few-shot learning where during meta-
learning we optimize a regularizer that reduces catastrophic forgetting from the incremental few-shot
learning. Our proposed “attention attractor network” regularizer is inspired by attractor networks
(Zemel & Mozer, 2001) and can be thought of as a learned memory of the base classes. We also
show how this regularizer can be optimized, using recurrent back-propagation (Liao et al., 2018;
Almeida, 1987; Pineda, 1987) to back-propagate through the few-shot optimization stage. Finally,
we show empirically that our proposed method can produce state-of-the-art results in incremental
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Figure 1: Our proposed attention attractor network for incremental few-shot learning. A: In stage 1,
we learn Wa and the feature extractor CNN backbone through supervised pretraining. B: In stage
2 we learn Wb on a few-shot episode through an iterative solver, to minimize cross entropy plus an
additional energy term predicted by attending to the base class representation Wa. C: The attention
attractor network is learned end-to-end to minimize the expected query loss.

few-shot learning on the challenging mini-ImageNet (Vinyals et al., 2016) and tiered-ImageNet (Ren
et al., 2018) tasks.

2 RELATED WORK

Recently, there has been a surge in interest in few-shot learning (Koch et al., 2015; Vinyals et al.,
2016; Snell et al., 2017; Lake et al., 2011), where a model for novel classes is learned with
only a few labeled examples. One family of approaches for few-shot learning, including Deep
Siamese Networks (Koch et al., 2015), Matching Networks (Vinyals et al., 2016) and Prototypical
Networks (Snell et al., 2017), follows the line of metric learning. In particular, these approaches
use deep neural networks to learn a function that maps the input space to the embedding space
where examples belonging to the same category are close and those belonging to different categories
are far apart. Recently, Garcia & Bruna (2018) propose a graph neural networks based method
which captures the information propagation from the labeled support set to the query set. Ren
et al. (2018) extends Prototypical Networks to leverage unlabeled examples while doing few-shot
learning. Despite the simplicity, these methods are very effective and often competitive with the
state-of-the-art.

Another class of approaches try to learn models which can, unlike metric methods, adapt to the
episodic tasks. In particular, Ravi & Larochelle (2017) treat the long short-term memory (LSTM)
as a meta learner such that it can learn to predict the parameter update of a base learner, e.g., a
convolutional neural network (CNN). MAML (Finn et al., 2017) instead learns the hyperparameters
or the initial parameters of the base learner by back-propagating through the gradient descent steps.
Santoro et al. (2016) use a read/write augmented memory, and Mishra et al. (2018) combine soft
attention with temporal convolutions which enables retrieval of information from past episodes.

Methods described above belong to the general class of meta-learning models. First proposed in
Schmidhuber (1987); Naik & Mammone (1992); Thrun (1998), meta-learning is a machine learning
paradigm where the meta-learner tries to improve the base learner using the learning experiences
from multiple tasks. Meta-learning methods typically learn the update policy yet lack an overall
learning objective in the few-shot episodes. Furthermore, they could potentially suffer from short-
horizon bias (Wu et al., 2018), if at test time the computation graph is unrolled for longer steps. To
address this problem, Bertinetto et al. (2018) propose to use fast convergent models like logistic
regression (LR), which can be back-propagated via a closed form update rule. Compared to
Bertinetto et al. (2018), our proposed method using recurrent back-propagation (Liao et al., 2018;
Almeida, 1987; Pineda, 1987) is more general as it does not require a closed-form update rule, and
the inner loop solver can employ any existing continuous optimizers.

2



Under review as a conference paper at ICLR 2019

Our work is also related to incremental learning or continual learning, a setting where information
is arriving continuously while prior knowledge needs to be transferred. A key challenge here is
catastrophic forgetting (McCloskey & Cohen, 1989; McClelland et al., 1995), i.e., the model forgets
the learned knowledge. Various forms of memory-based models have since been proposed, which
either store training examples explicitly (Rebuffi et al., 2017; Sprechmann et al., 2018; Castro et al.,
2018), regularize the parameter updates (Kirkpatrick et al., 2017), or learn a generative model
(Kemker & Kanan, 2018). However, in these studies, incremental learning typically starts from
scratch, and usually perform worse than a regular model that is trained with all available classes
together since the network has not learned a good representation yet while dealing with catastophic
forgetting.

To make incremental learning more useful, Hariharan & Girshick (2017); Wang et al. (2018); Gidaris
& Komodakis (2018) combine few-shot learning and incremental learning, where they start off with
a pre-trained network on a set of base classes, and try to augment the classifier with a batch of
new classes that has not been seen during training. This is also the setting we adopt in this paper.
Hariharan & Girshick (2017) propose the squared gradient magnitude loss, which makes the learned
classifier from the few-shot examples have a smaller gradient value when learning on all examples.
Wang et al. (2018) propose the prototypical matching networks, a combination of prototypical
network and matching network. The paper also adds hallucination, which generates new examples.
Both papers assume that the few-shot learning stage has access to the base classes data, which can
be inflexible and inefficient due to the large size of the original training set. Gidaris & Komodakis
(2018) remove this assumption and propose an attention based model which generates weights for
novel categories. They also promote the use of cosine similarity between feature representations and
weight vectors to classify images.

In contrast, during each few-shot episode, we directly learn a linear classifier that is solved till
convergence, unlike Gidaris & Komodakis (2018) which directly output the prediction. Since in
our settings the model cannot see base class data in each few-shot learning episode, different from
Hariharan & Girshick (2017); Wang et al. (2018), it is challenging to jointly classify both base and
novel categories using a vanilla logistic regression. Towards this end, we propose to add a learned
regularizer, which is learned by differentiating through few-shot learning iterations. We found that,
despite the simplicity, using an iterative solver with the learned regularizer significantly improves
the linear classifier model on the task of incremental few-shot learning.

3 ATTENTION ATTRACTOR NETWORK FOR INCREMENTAL FEW-SHOT
LEARNING

In this section, we first define the setup of incremental few-shot learning, and then we introduce our
new model, the Attention Attractor Network, which attends to the set of base classes according to
the few-shot training data, and learns the attractor energy function as an additional regularizing term
for the few-shot episode. Figure 1 illustrates the high-level model diagram of our method.

3.1 INCREMENTAL FEW-SHOT LEARNING

We first define the task of incremental few-shot learning in this section. In this paper, we consider
the two stage learning model proposed by Gidaris & Komodakis (2018).

Stage 1: We learn a base model for the regular supervised classification task on dataset Da =
{(xa,i, ya,i)}Na

i=1 where xa,i is the i-th example from dataset a and its labeled class ya,i ∈
{1, 2, ...,K}. The purpose of this stage is to learn both a good base classifier and a good
representation. We denote parameters of the top fully connected layer as Wa ∈ RD×K where
D is the dimension of our learned representation.

Stage 2: A few-shot datasetDb is presented, from which we can sample few-shot learning episodes
E . For each N -shot K ′-way episode, there are K ′ novel classes disjoint from the base classes.
Each novel class has N and M images from the support set Sb and the query set Qb respectively.
Therefore, we have E = (Sb, Qb), Sb = (xSb,i, y

S
b,i)

N×K′
i=1 , Qb = (xQb,i, y

Q
b,i)

M×K′
i=1 where yb,i ∈

{K + 1, ...,K + K ′}. Sb and Qb can be regarded as the training set and the validation set in a
regular supervised learning setting. To evaluate the performance on a joint prediction of both base
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and novel classes, i.e., a (K + K ′)-way classification, a mini-batch Qa = {(xa,i, ya,i)}M×Ki=1 from
Da is also added to Qb to form Qa+b = Qa ∪ Qb. During this stage, the learning algorithm has
only access to samples from Sb, i.e., few-shot examples from the new classes. But its performance
is evaluated on the joint query set Qa+b. For simplicity, the base model including Wa is fixed so
that only Wb ∈ RD×K′ is learned.

In meta-training, we iteratively sample few-shot episodes E and try to optimize the few-shot learning
algorithm, i.e., stage 2, in order to produce good results onQa+b. In this work, we learn a regularizer
R(·; θE) such that W ∗b = arg minWb

Loss(Wb, Sb) +R(Wb; θE), and the meta-learner tries to learn
θE such that the resulting W ∗b performs well on Qa+b.

3.1.1 JOINT PREDICTION ON OLD AND NEW CLASSES

When solving a few-shot episode, we consider learning a linear classifier on the novel classes in the
support set Sb. For notational convenience, we augment the hidden representation h as below such
that the 0-th dimension of the weights is the original bias.

h = [1, h̃], W>h = W>1: h̃+W0. (1)

We use the concatenation of Wa and Wb as the fully-connected layer for classification,

ŷb,i = softmax([Wa,Wb]
>h(xb,i)). (2)

Here we emphasize that learnable parameters of ŷb,i is Wb. During the learning stage of each few-
shot episode, we treat it as a classification problem and aim to minimize the following regularized
cross-entropy objective on the support set S,

W ∗b = arg minLS(Wb) =
1

NK ′

NK′∑
i=1

K+K′∑
c=1

ySb,i,c log ŷSb,i,c(Wb) +R(Wb; θE) (3)

3.2 ATTENTION ATTRACTOR NETWORKS

Directly learning the few-shot episode, e.g., by settingR(Wb; θE) to be zero or simple weight decay,
can cause catastrophic forgetting on the old classes. This is because Wb is trying to minimize the
probability of all the old classes, as it is trained only on new classes. In this section, we introduce
Attention Attractor Networks to address this problem.

The attractor network adds an energy term E to the few-shot learning objective, R(Wb; θE) =
1
2λ‖Wb‖22 + E(Wb; θE).

W ∗b (θE , Sb) = arg minLS(Wb; θE) (4)

= arg min
1

NK ′

NK′∑
i=1

K+K′∑
c=1

yb,i,c log ŷb,i,c +
1

2
λ‖Wb‖22 + E(Wb; θE), (5)

where the optimized parameters W ∗b are functions of energy function parameters θE and few-shot
samples Sb. During meta-learning, θE are updated to minimize an expected loss of the query set
Qa+b which contains both old and new classes, averaging over all few-shot learning episodes.

ŷj(θE , Sb) = softmax
(
[Wa,W

∗
b (θE , Sb)]

>h(xj)
)
, (6)

θ∗E = arg min
θE

E
E

[LQ(θE , Sb)] = arg min
θE

E
E

M(K+K′)∑
j=1

K+K′∑
c=1

yj,c log ŷj,c(θE , Sb)

 . (7)

Conceptually, the energy function regularizes the learning of Wb so that it is compatible with Wa

during the joint prediction. In our proposed model each base class in Wa has a learned attractor Uk
stored in the knowledge base matrix U = [U1, ..., UK ]. When a novel class k′ is seen, its classifier
is regularized towards its attractor uk′ which is a weighted sum of Uk. The weighting can be seen
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as an attention mechanism where each new class attends to the old classes according to the level of
interference. Specifically, the attention mechanism is implemented by the cosine similarity function:

A(x, y) =
x>y

‖x‖2‖y‖2
. (8)

For each image in the support set, we compare it with the set of base weights Wa, average over each
support class and apply a softmax function,

ak′,k =
exp

(
1
N

∑
j τA(hj ,Wa,k)1[yb,j = k′]

)
∑
k exp

(
1
N

∑
j τA(hj ,Wa,k)1[yb,j = k′]

) , (9)

where hj are the representations of the inputs in the support set Sb and τ is a learnable temperature
scalar. ak′,k encodes a normalized pairwise attention matrix between the novel classes and the
base classes. The attention vector is then used to compute a linear weighted sum of entries in the
knowledge base matrix U ,

uk′ =
∑
k

ak′,kUk + U0. (10)

The final energy function is defined as a sum of squared L2 distance from the attractors,
E(Wb; θE) =

1

2

∑
k′

(Wb,k′ − uk′)>diag(exp(γ))(Wb,k′ − uk′), (11)

where γ is a learnable vector, which defines a diagonal distance metric over the hidden dimensions.
Our proposed attention attractor network takes inspiration from attractor networks (Mozer, 2009;
Zemel & Mozer, 2001), where for each base class we learn an “attractor” that stores the relevant
memory regrading that class.

In summary, θE is a tuple of (U,U0, γ, τ). The number of parameters is on the same order as a
fully connected layer Wa. It is important to note that E(Wb; θE) is convex in Wb, so the optimum
W ∗b (θE , Sb) is guaranteed to be unique and achievable.

3.3 LEARNING AN ENERGY FUNCTION USING RECURRENT BACKPROPAGATION

As there is no closed-form solution to the regularized linear classification problem shown above,
in each training step, we need to solve for LS to obtain W ∗b through an iterative optimizer. The
question is how to efficiently compute ∂W∗b

∂θE
, back-propagating through the optimization. For simple

energy functions, we can unroll the iterative optimization process in the computation graph and
use the backpropagation through time (BPTT) algorithm (Werbos, 1990). However, the number of
iterations for a gradient-based optimizer to converge can be on the order of thousands, and BPTT
can be computationally prohibitive. Another way is to use the truncated BPTT (Williams & Peng,
1990) (T-BPTT) algorithm that optimizes for the initial T steps of gradient-based optimization, and
is commonly used in meta-learning problems. However, when T is small the training objective is
biased compared to the objective that considers the optimal Wb.

Alternatively, the recurrent backpropagation algorithm (Almeida, 1987; Pineda, 1987; Liao et al.,
2018) allows us to backpropagate through fixed-point iterations efficiently without unrolling the
computation graph and storing intermediate activations. Consider a vanilla gradient descent process
on Wb with step size α. The difference between two steps Φ can be written as Φ(W

(t)
b ) = W

(t)
b −

F (W
(t)
b ), where F (W

(t)
b ) = W

(t+1)
b = W

(t)
b − α∇LS(W

(t)
b ). Since Φ(W ∗b (θE)) is identically

zero as a function of θE , we have
∂W ∗b
∂θE

= (I − J>F,W∗b )−1
∂F

∂θE
, (12)

where JF,W∗b denotes the Jacobian matrix of the mapping F evaluated at W ∗b .

Damped Neumann RBP To compute the matrix-inverse vector product (I − J>)−1v in Equa-
tion 12, Liao et al. (2018) propose to use the Neumann series:

(I − J>)−1v =

∞∑
n=0

(J>)nv ≡
∞∑
n=0

v(n). (13)
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Algorithm 1 Learning an Energy Function for Incremental Few-Shot Learning
Require: θ0, Da, Db, N , K′, h
Ensure: θE
1: θE ← θ0;
2: for t = 1 ... T do
3: {(xSb , ySb )}, {(xQb , y

Q
b )} ← SampleEpisode(Db, N,K′);

4: {xQa+b, y
Q
a+b} ← SampleMiniBatch(Da, NK′) ∪ {(xQb , y

Q
b )};

5: repeat
6: ŷSb,j ← softmax([Wa,Wb]

>h(xSb,j));
7: LS ← 1

NK′
∑
i y
S
b,i log ŷSb,i + λ‖Wb‖22 + E(Wb; θE);

8: Wb ← OptimizerStep(Wb,∇WbL
S);

9: until Wb converges
10: ŷQa+b,j ← softmax([Wa,Wb]

>h(xQa+b,j)), ∀j;
11: LQ ← 1

2NK′
∑
j y

Q
a+b,j log ŷQa+b,j ;

// Backprop through the above converging process
// A dummy gradient descent step

12: W ′
b ←Wb − α∇WbL

S ;

13: J ← ∂W ′b
∂Wb

; v ← ∂LQ

∂Wb
; g ← v;

14: repeat
15: v ← J>v − εv; g ← g + v;
16: until g converges
17: θE ← OptimizerStep(θE , g

> ∂Wb
∂θE

)

18: end for

Note that the matrix vector product J>v can be computed by standard backpropagation. Nonethe-
less, we empirically observe that directly applying the Neumann RBP algorithm leads to numerical
instability. Therefore, we propose “damped Neumann RBP”, which adds a damping term 0 < ε < 1
to I −J>. It results in the following update: ṽ(n) = (J>− εI)nv. The damping constant ε can also
be interpreted as an additional weight decay term of the energy function during the backpropagation
steps EB(Wb) = E(Wb) + ε

2α‖Wb‖22. In practice, we found the damping term with ε = 0.1 helps
alleviate the issue significantly.

Algorithm 1 outlines the key steps for learning an energy function using RBP in the incremental
few-shot learning setting.

4 EXPERIMENTS

4.1 DATASETS

We used few-shot image classification benchmarks, mini-ImageNet Vinyals et al. (2016) and tiered-
ImageNet Ren et al. (2018), and made modifications of the datasets to accommodate the incremental
few-shot learning settings. For meta-learning we need to split between training base classes, and
training classes from which we sample few-shot episodes. In tiered-ImageNet we split the 351
training classes to 200 base classes and 151 novel classes used to train the meta-learner. In mini-
ImageNet this is problematic as there are only 64 training classes, therefore at each meta-learning
episode we randomly erase 5 classes, considering the 59 left as our base classes and sampling a
few-shot episode from the removed 5 classes. For validation/test we sample from the validation/test
set of the base classes and sample episodes from separate validation and test classes. Further details
about these datasets and the class splits are in the supplementary material.

4.2 EXPERIMENTAL SETUP

In the first stage, we use a standard ResNet backbone (He et al., 2016) to learn the feature
representation through supervised training. For mini-ImageNet experiments, we follow Mishra et al.
(2018) and use a modified version of ResNet. For tiered-ImageNet, we use the standard ResNet-18
(He et al., 2016), but replace all batch normalization (Ioffe & Szegedy, 2015) layers with group
normalization (Wu & He, 2018), as there is a large distributional shift from training to testing in
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Table 1: mini-ImageNet 64+5-way few-shot classification results

1-shot 5-shot
Model Backbone Base Novel Both ∆ Novel Both ∆

MatchingNets (Vinyals et al., 2016) C64 - 43.60 - - 55.30 - -
Meta-LSTM (Ravi & Larochelle, 2017) C32 - 43.40 ± 0.77 - - 60.20 ± 0.71 - -

MAML (Finn et al., 2017) C64 - 48.70 ± 1.84 - - 63.10 ± 0.92 - -
RelationNet (Sung et al., 2018) C64 - 50.44 ± 0.82 - - 65.32 ± 0.70 - -
R2-D2 (Bertinetto et al., 2018) C256 - 51.20 ± 0.60 - - 68.20 ± 0.60 - -
SNAIL (Mishra et al., 2018) ResNet - 55.71 ± 0.99 - - 68.88 ± 0.92 - -
ProtoNet (Snell et al., 2017) C64 - 49.42 ± 0.78 - - 68.20 ± 0.66 - -

ProtoNet (our implementation) ResNet 75.79 50.09 ± 0.41 42.73 -20.21 70.76 ± 0.19 57.05 -31.72
LwoF (Gidaris & Komodakis, 2018) ResNet 80.24 55.45 ± 0.89 51.23 - 70.92 ± 0.35 56.04 -

LwoF (our implementation) ResNet 74.58 56.97 ± 0.24 52.37 -13.65 70.50 ± 0.36 59.90 -14.18
Ours (1st stage) ResNet 77.17 54.78 ± 0.43 52.74 -13.95 70.57 ± 0.36 60.34 -13.60

Ours (full model) ResNet 76.84 55.72 ± 0.41 54.89 -11.39 70.50 ± 0.36 62.37 -11.48

Table 2: tiered-ImageNet 200+5-way few-shot classification results

1-shot 5-shot
Model Backbone Base Novel Both ∆ Novel Both ∆

ProtoNet (Snell et al., 2017) ResNet 59.70 48.19 ± 0.43 34.49 -19.45 65.90 ± 0.19 50.27 -12.54
LwoF (Gidaris & Komodakis, 2018) ResNet 61.84 50.90 ± 0.46 54.05 -2.35 66.69 ± 0.36 62.32 -1.90

Ours (1st stage) ResNet 62.01 47.09 ± 0.42 48.58 -5.95 64.90 ± 0.41 59.73 -3.72
Ours (full model) ResNet 61.59 51.12 ± 0.45 55.56 -0.80 66.40 ± 0.36 63.27 -0.83

tiered-ImageNet due to categorical splits. We used standard data augmentation, with random crops
and random horizonal flips. All of our models in our implementations use the same pretrained model
as the starting point for the second stage.

In the second stage of learning as well as the final evaluation, we sample a few-shot episode from the
Db, together with a regular mini-batch from the Da. The base class images are added to the query
set of the few-shot episode. The base and novel classes are maintained in equal proportion in our
experiments. For all the experiments, we consider 5-way classification with 1 or 5 support examples
(i.e. shots); the total number of query images per episode is 75×2 =150.

We use an L-BFGS (Zhu et al., 1997) to solve the inner loop of our models to make sure Wb

converges. For BPTT baselines, we unroll the computation graph using vanilla gradient descent
with a fixed learning rate 1e-2. We use the ADAM (Kingma & Ba, 2015) optimizer for meta-
learning with a learning rate of 1e-3, which decays by a factor of 10 after 4,000 steps, for a total of
8,000 steps. We fix the RBP to 20 iterations and ε = 0.1.

4.3 EVALUATION METRICS

We consider the following evaluation metrics: 1) overall accuracy on individual query sets and
the joint query set (“Base”, “Novel”, and “Both”); and 2) decrease in performance during joint
prediction within the base and novel classes, considered separately (“∆a” and “∆b”). Finally we
take the average ∆ = 1

2 (∆a + ∆b) as a key measure of the overall decrease in accuracy.

4.4 RESULTS

We present the few-shot benchmark in Table 1 and2. On mini-ImageNet, we compare our models to
other incremental few-shot learning methods as well as pure few-shot learning methods. Note that
our model uses the same backbone architecture as Mishra et al. (2018) and Gidaris & Komodakis
(2018), and is directly comparable with their results. The “1st stage” baseline is a CNN trained on
the base classes, where we train the new classes using logistic regression with weight decay.

In the incremental few-shot learning setting, we implemented and compared to two methods. First,
we adapted ProtoNet (Snell et al., 2017) to incremental few-shot settings. For each base class we
store a base representation, which is the average representation over all images belonging to the
base class. During the few-shot learning stage, we again average the representation of the few-
shot classes and add them to the bank of base representations. Finally, we retrieve the nearest
neighbor by comparing the representation of a test image with entries in the representation store.
In summary, both Wa and Wb are stored as the average representation of all images seen so far
that belong to a certain class. We also compare to Dynamic Few-Shot Learning without Forgetting
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Table 3: Learning an attention attractor network using damped Neumann RBP vs. truncated BPTT.
Models are on evaluated on the validation set of tiered-ImageNet. During evaluation, “*” models
are solved till convergence using a second-order optimizer.

1-shot Base Base+ ∆a Novel Novel+ ∆b Both ∆

BPTT 20 Steps 61.41 61.16 -0.25 42.09 ± 0.40 37.80 ± 0.37 -4.28 49.44 -2.27
BPTT 100 Steps 61.41 61.08 -0.33 44.49 ± 0.42 40.43 ± 0.38 -4.06 50.75 -2.20
BPTT 200 Steps 61.43 60.86 -0.57 45.49 ± 0.42 42.40 ± 0.40 -3.09 51.63 -1.83
BPTT 20 Steps * 61.65 6.02 -55.63 27.08 ± 0.26 21.99 ± 0.24 -5.08 14.01 -30.36
BPTT 100 Steps * 61.46 5.23 -56.22 27.70 ± 0.29 19.59 ± 0.26 -8.11 12.41 -32.17
BPTT 200 Steps * 61.52 5.62 -55.89 29.31 ± 0.32 21.09 ± 0.30 -8.22 13.36 -32.06
Ours (RBP 20 Steps) 61.52 61.11 -0.41 48.72 ± 0.45 47.04 ± 0.45 -1.68 54.08 -1.05

Table 4: Ablation studies on tiered-ImageNet. “Base+” and “Novel+” are the prediction accuracies
on Base and Novel classes within a joint query set.

1-shot Base Base+ ∆a Novel Novel+ ∆b Both ∆

None 61.63 59.61 -2.02 43.68 ± 0.40 34.59 ± 0.34 -9.10 47.10 -5.56
Best WD (λ=0) 61.63 59.61 -2.02 43.68 ± 0.40 34.59 ± 0.34 -9.10 47.10 -5.56

Gamma Random 61.84 61.28 -0.56 44.29 ± 0.40 18.66 ± 0.29 -25.63 39.97 -13.09
Gamma w/o Wa 61.97 61.57 -0.40 48.05 ± 0.43 32.16 ± 0.38 -15.89 46.86 -8.14

Gamma 61.68 60.43 -1.25 46.17 ± 0.42 43.39 ± 0.41 -2.77 51.91 -2.01
Fixed Attractor 61.74 61.06 -0.67 45.96 ± 0.42 44.30 ± 0.42 -1.66 52.68 -1.17

Full Model 61.52 61.11 -0.41 48.72 ± 0.45 47.04 ± 0.45 -1.68 54.08 -1.05
5-shot Base Base+ ∆a Novel Novel+ ∆b Both ∆

None 61.75 52.74 -9.01 61.00 ± 0.39 59.82 ± 0.38 -1.18 56.28 -5.09
Best WD (λ=5e-4) 61.62 58.48 -3.14 61.59 ± 0.39 57.93 ± 0.37 -3.65 58.21 -3.39
Gamma Random 61.78 59.42 -2.36 61.20 ± 0.38 55.66 ± 0.36 -5.54 57.54 -3.95
Gamma w/o Wa 62.00 57.99 -4.01 61.18 ± 0.40 59.00 ± 0.39 -2.18 58.49 -3.09

Gamma 61.46 59.87 -1.59 61.72 ± 0.39 59.80 ± 0.39 -1.92 59.83 -1.76
Fixed Attractor 61.78 60.82 -0.97 61.33 ± 0.39 60.06 ± 0.39 -1.28 60.44 -1.12

Full Model 61.80 61.28 -0.53 63.40 ± 0.39 62.09 ± 0.39 -1.31 61.68 -0.92

(LwoF) (Gidaris & Komodakis, 2018). Here the base weights Wa are learned regularly through
supervised pre-training, and Wb are computed using prototypical averaging. We implemented the
most advanced variants proposed in the paper, which involves a class-wise attention mechanism.
The main difference to this work is that we use an iterative optimization to compute Wb.

Shown in Table 1 and2, our proposed method consistently outperform the two approaches described
above, particularly in “∆”. Our method is significantly improved during the second stage training,
compared to a baseline that has only been pre-trained on base classes in the first stage.

4.5 COMPARISON TO TRUNCATED BPTT

An alternative way to learn the energy function is to unroll the inner optimization for a fixed number
of steps in a differentiable computation graph, and then we can back-propagate through time. In fact,
truncated BPTT is a popular learning algorithm in recent meta-learning approaches (Andrychowicz
et al., 2016; Ravi & Larochelle, 2017; Finn et al., 2017; Sprechmann et al., 2018).

In Table 6, we report the performance of the truncated BPTT versions of our attention attractor
model on 1-shot learning. Results on 5-shot are in the supplementary material. We unrolled the
computation graph by 20 or 100 steps. In comparison, the RBP version also runs for only 20
truncation Neumann steps. At test time, we also test the BPTT learned model by solving the
learned energy function until convergence, just like the RBP model. We can see that truncated
BPTT versions have worse performance than RBP, since solving the fully connected layer weights
requires more iterations than the number of unrolling steps. When we tried to solve the optimization
to convergence at test time, we found that the BPTT model performance greatly decayed (colored
in red), as they are only guaranteed to work well for a certain number of steps, and failed to learn
a good energy function. In contrast, learning the energy function with RBP finds a good solution
upon convergence, regardless of the optimizer being used.
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4.6 ABLATION STUDIES

To understand the effectiveness of each part of the proposed model, we consider the following
baselines as control experiments:

• Plain logistic regression (“None”) solves a logistic regression problem at each few-shot episode,
without any form of weight decay other regularizers.

• Scalar weight decay (“WD”) has a constant λ for weight decay as the regularizer. The λ is
chosen according to validation performance.

• Learnable γ (“Gamma”) learns γ, which affects the size of the attractor basin, while keeping the
center of the attractor u at zero. “w/o Wa” variant does not fine-tune Wa in the second stage.

• Fixed attractor learns a fixed attractor center, in addition to learning γ. No attention mechanism
is employed here.

Experimental results are reported in Table 4. While models have similar performance on individually
predicting base and novel classes, since they are using the same pre-trained backbone, there are
significant differences in terms of joint prediction. Adding γ, fine-tuning Wa, adding attractors, and
using our attention mechanism all contribute towards the final performance. In particular, on ∆, the
full attention attractor model is 80% better compared to no regularization, and 10-18% relative to to
the fixed attractor.

5 CONCLUSION AND FUTURE WORK

Incremental few-shot learning, the ability to jointly predict based on a set of pre-defined concepts
as well as additional novel concepts, is an important step towards making machine learning models
more flexible and usable in everyday life. In this work, we propose an attention attractor model,
which outputs an additional energy function by attending to the set of base classes. We show that
recurrent back-propagation is an effective and modular tool for learning energy functions in a general
meta-learning setting, whereas truncated back-propagation through time fails to learn functions that
converge well. Our attention attractor network is an iterative model that learns to remember the base
classes without needing to review examples from the original training set, outperforming baselines
that only do one-step inference. Future directions of this work include sequential iterative learning
of few-shot novel concepts, and hierarchical memory organization.
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A DATASETS

We experiment on two datasets, mini-ImageNet and tiered-ImageNet. Both are sub-sets of imagenet
(Russakovsky et al., 2015), with images size reduced to size of 84× 84 pixels

• mini-ImageNet Proposed by Vinyals et al. (2016), mini-ImageNet which contains 100
object classes and 60,000 images. We used the splits proposed by Ravi & Larochelle
(2017), where training, validation, and testing have 64, 16, and 20 classes respectively.
• tiered-ImageNet Proposed by Ren et al. (2018), tiered-ImageNet is a larger subset of

ILSVRC-12. It features a categorical split among training, validation, and testing subsets.
The categorical split means that classes that belong to the same high-level category, e.g.
“working dog”, are not split between training, validation and test. This is harder task,
but one that more truthfully evaluates generalization to new classes. It is also an order of
magnitude larger than mini-ImageNet.

Details about number of samples are presented in Table 5.

Table 5: mini-ImageNet and tiered-ImageNet split statistics

mini-ImageNet tiered-ImageNet
Classes Purpose Split N. Cls N. Img Split N. Cls N. Img

Base
Train Train-Train 64 38,400 Train-A-Train 200 203,751
Val Train-Val 64 18,748 Train-A-Val 200 25,460
Test Train-Test 64 19,200 Train-A-Test 200 25,488

Novel
Train Train-Train 64 38,400 Train-B 151 193,996
Val Val 16 9,600 Val 97 124,261
Test Test 20 12,000 Test 160 206,209

A.1 VALIDATION AND TESTING SPLITS FOR BASE CLASSES

In standard few-shot learning, meta-training, validation, and test set have disjoint sets of object
classes. However, in our incremental few-shot learning setting, to evaluate the model performance
on the base class predictions, additional splits of validation and test splits of the meta-training set are
required. Splits and dataset statistics are listed in Table 5. For mini-ImageNet, Gidaris & Komodakis
(2018) released additional images for evaluating training set, namely “Train-Val” and “Train-Test”.
For tiered-ImageNet, we split out≈ 20% of the images for validation and testing of the base classes.

A.2 NOVEL CLASSES

In mini-ImageNet experiments, the same training set is used for bothDa andDb. In order to pretend
that the classes in the few-shot episode are novel, following Gidaris & Komodakis (2018), we
masked the base classes in Wa, which contains 64 base classes. In other words, we essentially
train for a 59+5 classification task. We found that under this setting, the progress of meta-learning
in the second stage is not very significant, since all classes have already been seen before.

In tiered-ImageNet experiments, to emulate the process of learning novel classes during the second
stage, we split the training classes into base classes (“Train-A”) with 200 classes and novel classes
(“Train-B”) with 151 classes, just for meta-learning purpose. During the first stage the classifier is
trained using Train-A-Train data. In each meta-learning episode we sample few-shot examples from
the novel classes (Train-B) and a query base set from Train-A-Val.

200 Base Classes (“Train-A”):

n02128757, n02950826, n01694178, n01582220, n03075370, n01531178,
n03947888, n03884397, n02883205, n03788195, n04141975, n02992529,
n03954731, n03661043, n04606251, n03344393, n01847000, n03032252,
n02128385, n04443257, n03394916, n01592084, n02398521, n01748264,
n04355338, n02481823, n03146219, n02963159, n02123597, n01675722,
n03637318, n04136333, n02002556, n02408429, n02415577, n02787622,

12



Under review as a conference paper at ICLR 2019

n04008634, n02091831, n02488702, n04515003, n04370456, n02093256,
n01693334, n02088466, n03495258, n02865351, n01688243, n02093428,
n02410509, n02487347, n03249569, n03866082, n04479046, n02093754,
n01687978, n04350905, n02488291, n02804610, n02094433, n03481172,
n01689811, n04423845, n03476684, n04536866, n01751748, n02028035,
n03770439, n04417672, n02988304, n03673027, n02492660, n03840681,
n02011460, n03272010, n02089078, n03109150, n03424325, n02002724,
n03857828, n02007558, n02096051, n01601694, n04273569, n02018207,
n01756291, n04208210, n03447447, n02091467, n02089867, n02089973,
n03777754, n04392985, n02125311, n02676566, n02092002, n02051845,
n04153751, n02097209, n04376876, n02097298, n04371430, n03461385,
n04540053, n04552348, n02097047, n02494079, n03457902, n02403003,
n03781244, n02895154, n02422699, n04254680, n02672831, n02483362,
n02690373, n02092339, n02879718, n02776631, n04141076, n03710721,
n03658185, n01728920, n02009229, n03929855, n03721384, n03773504,
n03649909, n04523525, n02088632, n04347754, n02058221, n02091635,
n02094258, n01695060, n02486410, n03017168, n02910353, n03594734,
n02095570, n03706229, n02791270, n02127052, n02009912, n03467068,
n02094114, n03782006, n01558993, n03841143, n02825657, n03110669,
n03877845, n02128925, n02091032, n03595614, n01735189, n04081281,
n04328186, n03494278, n02841315, n03854065, n03498962, n04141327,
n02951585, n02397096, n02123045, n02095889, n01532829, n02981792,
n02097130, n04317175, n04311174, n03372029, n04229816, n02802426,
n03980874, n02486261, n02006656, n02025239, n03967562, n03089624,
n02129165, n01753488, n02124075, n02500267, n03544143, n02687172,
n02391049, n02412080, n04118776, n03838899, n01580077, n04589890,
n03188531, n03874599, n02843684, n02489166, n01855672, n04483307,
n02096177, n02088364.

151 Novel Classes (“Train-B”):

n03720891, n02090379, n03134739, n03584254, n02859443, n03617480,
n01677366, n02490219, n02749479, n04044716, n03942813, n02692877,
n01534433, n02708093, n03804744, n04162706, n04590129, n04356056,
n01729322, n02091134, n03788365, n01739381, n02727426, n02396427,
n03527444, n01682714, n03630383, n04591157, n02871525, n02096585,
n02093991, n02013706, n04200800, n04090263, n02493793, n03529860,
n02088238, n02992211, n03657121, n02492035, n03662601, n04127249,
n03197337, n02056570, n04005630, n01537544, n02422106, n02130308,
n03187595, n03028079, n02098413, n02098105, n02480855, n02437616,
n02123159, n03803284, n02090622, n02012849, n01744401, n06785654,
n04192698, n02027492, n02129604, n02090721, n02395406, n02794156,
n01860187, n01740131, n02097658, n03220513, n04462240, n01737021,
n04346328, n04487394, n03627232, n04023962, n03598930, n03000247,
n04009552, n02123394, n01729977, n02037110, n01734418, n02417914,
n02979186, n01530575, n03534580, n03447721, n04118538, n02951358,
n01749939, n02033041, n04548280, n01755581, n03208938, n04154565,
n02927161, n02484975, n03445777, n02840245, n02837789, n02437312,
n04266014, n03347037, n04612504, n02497673, n03085013, n02098286,
n03692522, n04147183, n01728572, n02483708, n04435653, n02480495,
n01742172, n03452741, n03956157, n02667093, n04409515, n02096437,
n01685808, n02799071, n02095314, n04325704, n02793495, n03891332,
n02782093, n02018795, n03041632, n02097474, n03404251, n01560419,
n02093647, n03196217, n03325584, n02493509, n04507155, n03970156,
n02088094, n01692333, n01855032, n02017213, n02423022, n03095699,
n04086273, n02096294, n03902125, n02892767, n02091244, n02093859,
n02389026.
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B 5-SHOT RESULTS

We show here additional results on 5-shot learning. In table ?? we compare RBP to BPTT
optimization.

Table 6: Learning an attention attractor network using damped Neumann RBP vs. truncated BPTT.
Models are on evaluated on the validation set of tiered-ImageNet. During evaluation, “*” models
are solved till convergence using a second-order optimizer.

5-shot Base Base+ ∆a Novel Novel+ ∆b Both ∆

BPTT 20 Steps 61.48 61.05 -0.43 47.72 ± 0.37 41.72 ± 0.37 -6.00 51.39 -3.21
BPTT 100 Steps 61.75 61.28 -0.47 59.51 ± 0.37 55.79 ± 0.36 -3.72 58.53 -2.10
BPTT 200 Steps 61.59 60.79 -0.79 62.50 ± 0.39 60.40 ± 0.38 -2.10 60.60 -1.44
BPTT 20 Steps * 61.49 7.29 -54.20 37.16 ± 0.33 37.11 ± 0.33 -0.05 22.20 -27.12
BPTT 100 Steps * 61.46 4.00 -57.45 41.68± 0.36 41.67 ± 0.36 0.00 22.84 -28.73
BPTT 200 Steps * 61.37 5.63 -55.74 43.74± 0.37 43.73 ± 0.36 0.00 24.68 -27.87
Ours (RBP 20 Steps) 61.80 61.28 -0.53 63.40 ± 0.39 62.09 ± 0.39 -1.31 61.68 -0.92
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