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ABSTRACT

Event-based neuromorphic systems promise to reduce the energy consumption of
deep neural networks by replacing expensive floating point operations on dense
matrices by low energy, sparse operations on spike events. While these systems
can be trained increasingly well using approximations of the backpropagation
algorithm, this usually requires high precision errors and is therefore incompatible
with the typical communication infrastructure of neuromorphic circuits. In this
work, we analyze how the gradient can be discretized into spike events when
training a spiking neural network. To accelerate our simulation, we show that
using a special implementation of the integrate-and-fire neuron allows us to de-
scribe the accumulated activations and errors of the spiking neural network in
terms of an equivalent artificial neural network, allowing us to largely speed up
training compared to an explicit simulation of all spike events. This way we are
able to demonstrate that even for deep networks, the gradients can be discretized
sufficiently well with spikes if the gradient is properly rescaled. This form of
spike-based backpropagation enables us to achieve equivalent or better accuracies
on the MNIST and CIFAR10 datasets than comparable state-of-the-art spiking
neural networks trained with full precision gradients. The algorithm, which we call
SpikeGrad, is based on accumulation and comparison operations and can naturally
exploit sparsity in the gradient computation, which makes it an interesting choice
for a spiking neuromorphic systems with on-chip learning capacities.

1 INTRODUCTION

Spiking neural networks (SNNs) are a new generation of artificial neural network models (Maass,
1997) that try to harness properties of biological neurons to build energy efficient spiking neuro-
morphic systems. Processing in traditional artificial neural networks (ANNS) is based on parallel
processing of operations on dense tensors of fixed length. In contrast to this, spiking neuromorphic
systems communicate with asynchronous events, which allows dynamic, data dependent computation
that can exploit high temporal and spatial sparsity.

The recent years have seen a large number of approaches devoted to optimization of spiking neural
networks with the backpropagation algorithm, either by converting ANNs to SNNs (Diehl et al.,[2015}
Esser et al.,|2016}; [Rueckauer et al.,|2017; Sengupta et al.,|2019) or by simulating spikes explicitly
in the forward pass and optimizing these dynamics with floating point gradients (Lee et al., 2016
Yin et al., 2017; |Wu et al.| 2018bic; [Severa et al., [2019; Jin et al., 2018 Bellec et al., [2018; [ Zenke
& Ganguli, 2018} [Shrestha & Orchard) 2018]). These methods aim to optimize SNNs for efficient
inference, and backpropagation is performed offline on a standard computing system. It would
however be desirable to also enable on-chip learning in neuromorphic chips using the power of the
backpropagation algorithm, and to maintain the advantages of spike-based processing also in the
error propagation phase.

Previous work on the implementation of backpropagation with spikes is mostly concerned with
biological plausibility. A non-spiking version of biologically inspired backpropagation is presented
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by |Sacramento et al.|(2018)). |Guerguiev et al.| (2017), Neftci et al.[(2017) and [Samadi et al.|(2017)
introduce spike-based versions of the backpropagation algorithm using variants of (direct) feedback
alignment (Lillicrap et al.l 2016; [Ngkland, |2016). The exact backpropagation algorithm, which
backpropagates through symmetric weights, might however be required to achieve good inference
performance on large-scale deep neural networks (Baldi & Sadowski, |[2016; Bartunov et al., [2018]).
O’Connor & Welling| (2016) and |Thiele et al.| (2019) present implementations of standard backpropa-
gation where the gradient is coded into spikes and propagated through symmetric weights. In the
same spirit, our work is mostly concerned with exploiting spike based information encoding for
energy efficient processing, which means that inference performance and operational simplicity will
be preferred over biological plausibility and complex neuron models.

We demonstrate how backpropagation can be seamlessly integrated into the spiking neural network
framework by using a second accumulation compartment that discretizes the error into spikes. By
additionally weighting the activity counters by the learning rate, we obtain a system that is able to
perform learning and inference based on accumulations and comparisons alone. As for the forward
pass, this allows us to use the dynamic precision computation provided by the discretization of all
operations into spike events, and to exploit the sparsity of the gradient. Using a similar reasoning as
Binas et al.[(2016) and /Wu et al.[(2019) have applied to forward propagation in SNNs, we show that
the system obtained in this way can be mapped to an integer activation ANN whose activations are
equivalent to the accumulated neuron responses for both the forward and the backward propagation
phase. This allows us to simulate training of large-scale SNNs efficiently on graphics processing units
(GPUs), using their equivalent ANN. Additionally, in contrast to conversion methods that approximate
pre-trained ANNs with SNNs, this method guarantees that the inference precision of the SNN will
be equivalent to the ANN. In contrast to|O’Connor & Welling| (2016), this is true for any number
of spikes and arbitrary spike order. We demonstrate classification accuracies equivalent or superior
to existing implementations of SNNs trained with full precision gradients, and comparable to the
precision of standard ANNs using similar topologies. This is the first time competitive classification
performances are reported on the CIFAR10 and CIFAR100 datasets using a large-scale SNN where
both training and inference are fully implemented with spikes. To the best of our knowledge, our work
provides for the first time a demonstration of how the sparsity of the gradient during backpropagation
could be exploited within a large-scale SNN processing structure.

2 THE SpikeGrad ALGORITHM

We begin with the description of SpikeGrad, the spike-based backpropagation algorithm. The
algorithm mainly consists of special implementations of the integrate-and-fire (IF) neuron model,
that are used to encode and propagate information in the forward and backward pass.

For each training example/mini-batch, integration is performed from ¢ = 0 to t = T for the forward
pass and from ¢t = T+ At tot = 7 in the backward pass. Since no explicit time is used in the
algorithm, At represents symbolically the (very short) time between the arrival of an incoming spike
and the response of the neuron, which is only used here to describe causality.

Spike discretization of the forward pass For forward propagation, the architecture is described
by multiple layers (labeled by I € [0, L]) of IF neurons with integration variable V! (¢) and threshold
@ffl
Vit + At) = VI (t) = Oasi(t) + > _wl;si (1), Vi(0) =10l (1)
J

The variable w}; is the weight and b a bias value. The spike activation function s}(t) € {—1,0,1} is
a function which triggers a signed spike event depending on the internal variables of the neuron. It
will be shown later that the specific choice of the activation function is fundamental for the mapping
to an equivalent ANN. After a neuron has fired, its integration variable is decremented or incremented

by the threshold value O, which is represented by the second term on the r.h.s. of equation I]
l

As a representation of the neuron activity, we use a trace x;

over a single example:

(t) which accumulates spike information

Ti(t + At) = zi(t) + ns; (). )
By weighting the activity with the learning rate 7 we avoid performing a multiplication when
weighting the input with the learning rate for the weight update equation
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Implementation of implicit ReL U and surrogate activation function derivative It is possible
to define an implicit activation function based on how the neuron variables affect the spike activation
function st (¢). In our implementation, we use the following fully symmetric function to represent
linear activation functions (used for instance in pooling layers):

. 1 if Vi) > 0Og
sé,lm (Vll(t)) — 1 if ‘/’il(t) < —Ogf. 3)
0 otherwise

The following function corresponds to the rectified linear unit (ReLU) activation function:

1 if VI(t) > Og
Sé’ReLU (Vll(t),wﬁ(t)) —J _1 if Vil(t) < —Og and l‘i(t) >0. “)
0 otherwise

The pseudo-derivative of the activation function is denoted symbolically by S;-l. We use S;l’hn (T)=1
for the linear case. For the ReLLU, we use a surrogate of the form:

' 1 if VH(T) > 0or2Y(T) >0
G LReLU () v v . 5
’ (T) 0 otherwise ®)
These choices will be motivated in the following sections. Note that the derivatives depend only on
the final states of the neurons at time 7'.

Discretization of the error into spikes For gradient backpropagation, we introduce a second
compartment with threshold ©y,;, in each neuron, which integrates error signals from higher layers.
The process discretizes errors in the same fashion as the forward pass discretizes an input signal into
a sequence of signed spike signals:

ULt + At) = ULt) — Oupzl(t) + Y wit ol (1), ©6)
k

To this end, we introduce a ternary error spike activation function z(t) € {—1,0,1} which is defined
in analogy to equation [3|using the error integration variable U} (¢) and the backpropagation threshold
Ovp. The error is then obtained by gating this ternarized variable 2!(t) with one of the surrogate
activation function derivatives of the previous section (linear or ReLU):

SL(t) = (1) S (). (7

This ternary spike signal is backpropagated through the weights to the lower layers and also applied
in the update rule of the weight increment accumulator w! T

whi(t+ At) = wi(t) — 8Lt (D), ®)

which is triggered every time an error spike (equation[/) is backpropagated. The weight updates are
accumulated during error propagation and are applied after propagation is finished to update each
weight simultaneously. In this way, the backpropagation of errors and the weight update will, exactly
as forward propagation, only involve additions and comparisons of floating point numbers.

The SpikeGrad algorithm can also be expressed in an event-based formulation, described in algorithms
[11 2Jand 3] This formulation is closer to how the algorithm would be implemented in an actual SNN
hardware implementation of the IF firing dynamics.

Loss function and error scale We use the cross entropy loss function in the final layer applied to
the softmax of the total integration V;Z(T') (no spikes are triggered in the top layer during inference).
This requires more complex operations than accumulations, but is negligible if the number of classes
is small. To make sure that sufficient error spikes are triggered in the top layer, and that error spikes
arrive even in the lowest layer of the network, we apply a scaling factor « to the error values before
transferring them to UL. This scaling factor also implicitly sets the precision of the gradient, since a
higher number of spikes means that a large range of values can be represented. To counteract the
relative increase of the gradient scale, the learning rates have to be rescaled by a factor 1/a.
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Input encoding As pointed out in Rueckauer et al.| (2017)) and Wu et al.| (2018c)), it is crucial to
maintain the full precision of the input image to obtain good performances on complex standard
benchmarks with SNNs. One possibility is to encode the input in a large number of spikes (Sengupta
et al.,2019). Another possibility, which has been shown to require a much lower number of spikes
in the network, is to multiply the input values directly with the weights of the first layer (just like
in a standard ANN). The drawback is that the first layer then requires multiplication operations.
The additional cost of this procedure may however be negligible if all other layers can profit from
spike-based computation. This problematic does not exist for stimuli which are natively encoded in
spikes.

- Algorithm 2 Backward
Algorithm 1 Forward - -
- — function BACKPROPAGATE((l, 4, k], 9)
function PROPAGATI;:([l,z,j],s) Ul Ut wl+1
V —Vi+s-w ! ivati ~
. 2t 2l (U ) > error activation function
st <— sk(Vi, 2L > spike activation function i 7
f £ til i d; <— 2t S,
if s en 1f 2t £ O then

Vl — Vl — 8 @ff

l‘l — xl + 7751

for k£ in [ + 1 connected to 7 do
PROPAGATE([l + 1, k, ], st)

Ul — Ul — Z @bp
for 7in layer l — 1 connected to ¢ do
BACKPROPAGATE([ 1,7,i],6%

! 1 11
wij<—w —0; -

Algorithm 3 Training of single example/batch

init: V «+ b, U <« 0,z 0,w<«0 > variables in bold describe all neurons in network/layer
while input spikes 5" do

for k in [ = 0 receiving si" do > spikes corresponding to training input
PROPAGATE([0, k, 3], s2"
S+ S'(V,x) > calculate surrogate derivatives
UL+ a-0c/gvE > calculate classfication error
foriinl =L do
while |UL| > Oy, do > backpropagate error spikes
BACKPROPAGATE([L, i, —|, 0) > last layer receives no error
w—w+w > update weights with weight update accumulator

3 FORMULATION OF THE EQUIVALENT ANN

The simulation of the temporal dynamics of spikes in SpikeGrad requires a large number of time
steps or events if activation or error values are large. It would therefore be extremely beneficial if
we were able to map the SNN to an equivalent ANN that can be trained much faster on standard
hardware. In this section, we demonstrate that it is possible to find such an ANN using the forward
and backward propagation dynamics of the SpikeGrad IF neuron model described in the previous
section.

Spike discretization error We start our ana1y51s with equation[I} We reorder the terms and sum
over the increments AVZ( )= Vit + At) — ( ) every time the integration variable is changed
either by a spike that arrives at time ¢; € [0, T} via connection j, or by a spike that is triggered at

time t§ € [0, T]. With the initial conditions V(0) = b, sL(0) = 0, we obtain the final value V}(T):

:ZAvjzfeffZ (t5) +waz () + o €)

to,t

By defining the total transmitted output of a neuron as S! :== " ,. si(tf) we obtain:

—ViT)=s.-5! sk: Syl 10
@H<>Zz,zgﬁngjj+ (10)
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The same reasoning can be applied to backpropagation of the gradient. We define the summed
responses over error spikes times 77 € [T+ At, T]as Z} := Y . z}(7}) to obtain:

1 1
— U =2 -2, 7\=_"— w1 B (11)
s UM =2-2, o Z o i
B =3 0 m) = Y s M) (n) = ST 240 (12)
T T

In both equation |10 and equation the terms S! and Z! are equivalent to the output of an ANN
with signed integer inputs Sé_l and E,ljl. /ey and !/e,, are implicit scaling factors of activations
and gradients. If gradients shall not be explicitly rescaled, backpropagation requires Oy, = Og.
The values of the residual integrations 1/e. V! (T') and 1/e,,U}(T) therefore represent the spike
discretization error SDEg = S! — S! or SDEy,, := ZL — Z! between the ANN outputs S} and
Z! and the accumulated SNN outputs S! and Z!. Since we know that V/(T) € (—Og, Og) and
UNT) € (—Oup, Onp), this gives bounds of [SDEg| < 1 and [SDEy,| < 1.

So far we can only represent linear functions. We now consider an implementation where the ANN
applies a ReLU activation function instead. The SDE in this case is:

SDEF"V := ReLU (S!) — SL. (13)
We can calculate the error by considering that equation ] forces the neuron in one of two regimes
(note that zt > 0 < S! > 0): In one case, S! = 0, V}(T') < Og (this includes V}(T) < —Og).
This implies S! = 1/o, V}(T') and therefore |SDEf"Y| < 1 (or even |SDEF*“Y| = 0if V}(T) < 0).
In the other case, S! > 0, V!(t) € (—Og, Og), where equationis equivalent to equation

This equivalence motivates the choice of equation [5] as a surrogate derivative for the SNN: the
condition (V}(T) > 0 or z}(T) > 0) can be seen to be equivalent to S.(7") > 0, which defines the
derivative of a ReLU. Finally, for the total weight increment Aw! j» it can be seen from equation
and equation [§] that:

#(T) =D Azi(t) =S}, = Awl(T)=> Awj(r)=-nS/"El, (14
ts ks

which is exactly the weight update formula of an ANN defined on the accumulated variables. We
have therefore demonstrated that the SNN can be represented by an ANN by replacing all S and Z
by S and Z and applying the corresponding activation function directly on these variables. The error
that will be caused by this substitution compared to using the accumulated variables S and Z of an
SNN is described by the SDE. This ANN can now be used for training of the SNN on GPUs. The
SpikeGrad algorithm formulated on the variables s, z, 0 and x represents the algorithm that would be
implemented on a dedicated, event-based spiking neural network hardware implementation of the IF
neurons. We will now demonstrate how the SDE can be further reduced to obtain an ANN and SNN
that are exactly equivalent.

Response equivalence For a large number of spikes, the SDE may be negligible compared to the
activation of the ANN. However, in a framework whose objective it is to minimize the number of
spikes emitted by each neuron, this error can have a potentially large impact.

One option to reduce the error between the ANN and the SNN output is to constrain the ANN during
training to integer values. One possibility is to round the ANN outputs:

1
stromd . round[S!] = round on Zwéj‘s’é_l +o || (15)
J

The round function here rounds to the next integer value, with boundary cases rounded away from
zero. This behavior can be implemented in the SNN by a modified spike activation function which is
applied after the full stimulus has been propagated. To obtain the exact response as the ANN, we
have to take into account the current value of S! and modify the threshold values:
1 if VI(T) > ©x/20r (St >0, VI(T) = ©n/2)
sy (VHT), 81) =1 —1 if VH(T) < —@u/f20r (S} <0, VH(T) = —Ouf2).  (16)
0 otherwise
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Because this spike activation function is applied only to the residual values, we call it the residual
spike activation function. The function is applied to a layer after all spikes have been propagated with
the standard spike activation function (equation [3|or equation ). We start with the lowest layer and
propagate all residual spikes to the higher layers, which use the standard activation function. We
then proceed with setting the next layer to residual mode and propagate the residual spikes. This is
continued until we arrive at the last layer of the network.

By considering all possible rounding scenarios, it can be seen that equation [I6|indeed implies:
St 4 ghres (VH(T), S!) = round[S! + /e V}(T)] = round|[S}]. (17)
The same principle can be applied to obtain integer-rounded error propagation:

1
Zi’mund = round [Zi] = round [9 (Z wglE,ﬁH)

bp &

(18)

We have to apply the following modified spike activation function in the SNN after the full error has
been propagated by the standard error spike activation function:

1 i UYT)) > ©we/20r (Z! >0, UNT) = Ovp/2)
Zhres (UNT, Z}) = =1 if UNT) < —Ow/20r (Z} <0, U(T) = —Ow/2) , (19)
0 otherwise

which implies:

Z! 4 Zbres (UKT), Z}) = round|Z! + 1/e,,UL(T)] = round|[Z}]. (20)

(3

We have therefore shown that the SNN will after each propagation phase have exactly the same
accumulated responses as the corresponding integer activation ANN. The same principle can be
applied to obtain other forms of rounding (e.g. floor and ceil), if equation[I6]and equation [I9] are
modified accordingly.

Computational complexity estimation Note that we have only demonstrated the equivalence of
the accumulated neuron responses. However, for each of the response values, there is a large number
of possible combinations of 1 and —1 values that lead to the same response. The computational
complexity of the event-based algorithm depends therefore on the total number n of these events. The
best possible case is when the accumulated response value S! is represented by exactly |S!| spikes.
In the worst case, a large number of additional redundant spikes is emitted which sum up to 0. The
maximal number of spikes in each layer is bounded by the largest possible integration value that can
be obtained. This depends on the maximal absolute weight value w', ., the number of connections
N! and the number of spike events n!~! each connection receives, which is given by the maximal
value of the previous layer (or the input in the first layer):

1
ninin = |S£|’ ninax = \‘@Nilnwfnaxni‘;ali . (21)
f
The same reasoning applies to backpropagation. Our experiments show that for input encodings
where the input is provided in a continuous fashion, and weight values that are much smaller than
the threshold value, the deviation from the best case scenario is rather small. This is because in
this case the sub-threshold integration allows to average out the fluctuations in the signal. This way
the firing rate stays rather close to its long term average and few redundant spikes are emitted. For

the total number of spikes n in the full network on the CIFAR10 test set, we obtain empirically
n—=nmin/np, < 0.035.

4 EXPERIMENTS

Classification performance Tables|I|and 2|compare the state-of-the-art results for SNNs on the
MNIST and CIFARI1O0 datasets. It can be seen that in both cases, our results are competitive with
respect to the state-of-the-art results of other SNNs trained with high precision gradients. Compared
to results using the same topology, our algorithm performs at least equivalently.
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Table 1: Comparison of different state-of-the-art spiking CNN architectures on MNIST. * indicates
that the same topology (28x28-15C5-P2-40C5-P2-300-10) was used.

Architecture Method Rec. Rate (max[mean-+std])
Wu et al.| (2018b)* BP float gradient 99.42%
Rueckauer et al. (2017) CNN converted to SNN  99.44%
Jin et al.| (2018)* BP float gradient 99.49%
This work™® BP float gradient 99.48[99.36 + 0.06]%
This work* BP spike gradient 99.52[99.38 + 0.06]%

Table 2: Comparison of different state-of-the-art spiking CNN architectures on CIFAR10. * indicates
that the same topology (32x32-128C3-256C3-P2-512C3-P2-1024C3-512C3-1024-512-10) was used.

Architecture Method Rec. Rate (max[mean+std])
Rueckauer et al.[(2017) CNN converted SNN (with BN)  90.85%
Sengupta et al. (2019) VGG-16 converted to SNN 91.55%
Wau et al.| (2018c)* BP float gradient (no NeuNorm)  89.32%
This work* BP float gradient 89.72[89.38 + 0.25]%
This work* BP spike gradient 89.99(89.49 + 0.28]%

The final classification performance of the network as a function of the error scaling term « in the
final layer can be seen in figure[I] Previous work on low bitwidth gradients (Zhou et al., 2018) found
that gradients usually require a higher precision than both weights and activations. Our results also
indicate that a certain minimum number of error spikes is necessary to achieve convergence. This
strongly depends on the depth of the network and if enough spikes are triggered to provide sufficient
gradient signal in the bottom layers. For the CIFAR10 network, convergence becomes unstable for
approximately o < 300. If the number of operations is large enough for convergence, the required
precision for the gradient does not seem to be extremely high. On the MNIST task, the difference in
test performance between a gradient rescaled by a factor of 50 and a gradient rescaled by a factor of
100 becomes insignificant. In the CIFAR10 task, this is true for a rescaling by 400 or 500. Also the
results obtained with the float precision gradients in tables[T|and [2] demonstrate the same performance,
given the range of the error.

To investigate the performance of SpikeGrad on databases with a larger number of classes, we also
ran an additional experiment on the CIFAR100 dataset. Using the exactly same architecture as for
CIFAR10 with o = 500 (besides the final layer that is increased to 100 classes), we obtain a maximal
classification score of 64.40%. Running the same experiment with only the forward pass encoded in
spikes, but floating point gradients, we obtain 64.69%. This result could probably be improved by
adapting the architecture better to the dataset. However, it demonstrates that coding the gradient into
spikes does not lead to a large precision loss even in this scenario.

Sparsity in backpropagated gradient To evaluate the potential efficiency of the spike coding
scheme relative to an ANN, we use the metric of relative synaptic operations. A synaptic operation
corresponds to a multiply-accumulate (MAC) in the case of an ANN, and a simple accumulation
(ACC) in the case of an SNN. This metric allows us to compare networks based on their fundamental
operation. The advantage of this metric is the fact that it does not depend on the exact implementation
of the operations (for instance the number of bits used to represent each number). Since an ACC is
however generally cheaper and easier to implement than a MAC, we can be sure that an SNN is more
efficient in terms of its operations than the corresponding ANN if the number of ACCs is smaller than
the number of MACs (without considering potential hardware overheads of event-based computing).

Numbers were obtained with the integer activations of the equivalent ANN to keep simulation times
tractable. As previously explained, the integer response of the equivalent ANN represents the best
case scenario for the SNN, i.e. the activation encoding with the lowest number of spikes. The actual
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Figure 1: Number of relative synaptic operations during backpropagation for different error scaling
factors « as a function of the epoch. Numbers are based on activation values of the equivalent integer
activation ANN. Test performance with error is given for each a. (a) MNIST. (b) CIFAR10.
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Figure 2: Number of relative synaptic operations during backpropagation in each layer (connections
in direction of backpropagation) for different epochs. Numbers are based on activation values of the
equivalent integer activation ANN. (a) MNIST with o = 100. (b) CIFAR10 with oo = 500.

number of events and synaptic operations in an SNN may therefore slightly deviate from these
numbers.

In figure[T] it can be seen that the number of operations decreases with increasing inference precision
of the network. This is a result of the decrease of error in the classification layer, which leads to the
emission of a smaller number of error spikes. Figure 2] demonstrates how the number of operations
during the backpropagation phase is distributed in the layers of the network (the float input bottom
layer and average pooling layers were omitted). While propagating deeper down the network, the
relative number of operations decreases and the error becomes increasingly sparse. This tendency is
consistent during the whole training process for different epochs.

5 DISCUSSION AND CONCLUSION

Using spike-based propagation of the gradient, we demonstrated that the paradigm of event-based
information propagation can be easily translated to the backpropagation algorithm. We have not only
shown that competitive inference performance can be achieved, but also that gradient propagation
seems particularly suitable to leverage spike-based processing by exploiting high signal sparsity. For
both forward and backward propagation, SpikeGrad requires a similar event-based communication
infrastructure between neurons, which simplifies a possible spiking hardware implementation. One
restriction of our algorithm is the need for negative spikes, which could be problematic for some
neuromorphic hardware platforms.
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In particular the topology used for CIFAR10 classification is rather large for the given task. We
decided to use the same topologies as other state-of-the-art SNNs to allow for better comparison. The
relatively large number of parameters of these topologies may to a certain extent explain the very low
number of relative synaptic operations we observe during backpropagation. It has been demonstrated
that the number of parameters in many ANNSs can be strongly reduced without a significant impact on
performance (Han et al.,2016)). It remains to show that the spike coding approach provides sufficient
gains also in topologies that are optimized for minimal computation and memory requirements.
This seems at least possible, since the reduction of operation count in SNNs is mainly caused by
two factors: the first factor is actual sparsity, that means the number of zeros that are produced by
thresholding and the ReLU activation function. The second factor is the more fine grained distribution
of activation and error values. If most values are represented by small integers, only a few spikes are
necessary to encode them. The consequence is that even topologies that are compressed and therefore
have lower sparsity may be able to profit from spike coding if most of the activation or error values
are small. This is typically the case for networks quantized to low precision integer values (see for
instance (Zhou et al., 2018)) or[Wu et al.|(2018a)) and could lead to interesting synergies between our
spike-based computation model and ANN quantization methods.

Our analysis of the potential energy efficiency of SpikeGrad in a dedicated SNN architecture is based
on counting the number of basic operations that are performed at the synapses of a neuron. This does
not take into account the potential hardware overhead that is introduced by the implementation of the
IF neuron model and the event-based processing scheme. If the low operation count can in the end be
translated into higher processing speed or increased energy efficiency, compared to a normal ANN,
depends on the particular SNN hardware implementation. Such dedicated neuromorphic hardware
is the subject of current research efforts (see for instance Merolla et al.| (2014) and Davies et al.
(2018))). We assumed in this work that such a system might be built and used operation count as
our principal metric, since it enables us to easily approximate the energy consumption of a spiking
neuromorphic chip if the average cost of such an operation is known. Our work shows that a hardware
implementation of SpikeGrad might profit sufficiently from the low operation count that energy or
speed improvements could be possible at least in certain cases.
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A APPENDIX

B ADDITIONAL EXPLANATIONS

B.1 ROUND FUNCTION
It can be seen that the residual spike activation function covers indeed all possible cases. In particular,

the boundary cases are rounded correctly: for V; = ©g, we obtain S = S; + 0.5. For S; > 0, this
should be rounded to round[S] = S; + 1 and for .S; < 0, we should obtain round|[S] = S;. Similarly,
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for V; = —Og, we obtain S = S; — 0.5. For S; < 0, this should be rounded to round[S] = S; — 1
and for S; > 0, we should obtain round|[S] = S;.

The same reasoning applies to error propagation.

C ADDITIONAL ARCHITECTURE DETAILS

C.1 AVERAGE POOLING

All pooling layers are average pooling layers, since these are much easier to implement in a spiking
neural network. Average pooling can simply be implemented as an IF neuron with constant weights:

1
wh. = =,
p;

5 (22)
where pl is the number of neurons in the pooling window of the neuron.

C.2 DRroOPOUT

Dropout can be implemented by an additional gating variable which randomly removes some neurons
during forward and backward propagation. During learning, the activations of the other neurons have
to be rescaled by the inverse of the dropout probability 1/(1 — parop). This can be implemented in
the SNN framework by rescaling the threshold values by (1 — parop)-

C.3 MOMENTUM

While momentum is not required for the basic algorithm, we used it to speed up training. In a SNN
implementation, this could be implemented by adding additional accumulators that save past gradient
information.

C.4 PARAMETER PRECISION

All real valued variables are coded with 32 bit floating point variables.

D EXPERIMENTS

D.1 COMPUTING FRAMEWORK

All experiments are performed with custom CUDA/cuDNN accelerated C++ code. Training is
performed on RTX 2080 Ti graphic cards.

D.2 ERROR BARS

For all experiments, the means, errors and maximal values are calculated over 20 simulation runs.

D.3 PREPROCESSING

No preprocessing is used on the MNIST dataset. We separate the training set of size 60000 into
50000 training and 10000 validation examples, which are used to monitor convergence. Testing is
performed on the test set of 10000 examples.

For CIFARI10, the values of all color channels are divided by 255 and then rescaled by a factor of
20 to trigger sufficient activation in the network. The usual preprocessing and data augmentation is
applied. For data augmentation images are padded with the image mean value by two pixels on each
side and random slices of 32 x 32 are extracted. Additionally, images are flipped randomly along the
vertical axis. We separate the training set of size 50000 into 40000 training and 10000 validation
examples, which are used to monitor convergence. Testing is performed on the test set of 10000
examples.

Final scores were obtained without retraining on the validation set.
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Table 3: Parameters used for training of MNIST.

Parameter Value

Epochs 60

Batch size 128

Og 1.0

Opp 1.0

Base learning rate 0.1

Momentum 0.9

Decay policy mutliply by 0.1 every 20 epochs

Dropout (fcl only) 0.5

Table 4: Parameters used for training of CIFAR10.

Parameter Value
Epochs 300
Batch size 16
Of 1.0
Opp 1.0
Base learning rate 0.001
Momentum 0.9
Decay policy multiply by 0.1 after 150 epochs

Dropout (all except pool and top) 0.2

D.4 HYPERPARAMETERS

The hyperparameters for training can be seen in tables [3]and 4]

The maximal inference performances in the results were achieved with @ = 100 for MNIST and
o = 400 for CIFAR10.
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