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ABSTRACT

Activation is a nonlinearity function that plays a predominant role in the con-
vergence and performance of deep neural networks. While Rectified Linear Unit
(ReLU) is the most successful activation function, its derivatives have shown supe-
rior performance on benchmark datasets. In this work, we explore the polynomials
as activation functions (order ≥ 2) that can approximate continuous real valued
function within a given interval. Leveraging this property, the main idea is to
learn the nonlinearity, accepting that the ensuing function may not be monotonic.
While having the ability to learn more suitable nonlinearity, we cannot ignore the
fact that it is a challenge to achieve stable performance due to exploding gradients
- which is prominent with the increase in order. To handle this issue, we introduce
dynamic input scaling, output scaling, and lower learning rate for the polynomial
weights. Moreover, lower learning rate will control the abrupt fluctuations of the
polynomials between weight updates. In experiments on three public datasets,
our proposed method matches the performance of prior activation functions, thus
providing insight into a network’s nonlinearity preference.

1 INTRODUCTION

Deep learning methods have achieved excellent results in visual understanding, visual recognition,
speech, and natural language processing tasks (Krizhevsky et al. (2012), Lee et al. (2014), Good-
fellow et al. (2014), Hochreiter & Schmidhuber (1997), Oord et al. (2016), Vaswani et al. (2017)).
The convolutional neural networks (CNNs) first introduced in LeCun et al. (1999), is the foundation
for numerous vision tasks. While recurrent neural networks, wavenet and the recent transformers
with attention mechanism are the core algorithms used in speech and natural language processing.
The commonality is the importance of deeper architectures that has both theoretical and empirical
evidence (Serre et al. (2007), Simonyan & Zisserman (2015), Lee et al. (2014)).

One essential component for deep neural networks is the activation function that enables nonlinear-
ity. While ReLUs are the most used nonlinearity, sigmoid and hyperbolic tangent are the traditional
functions. Several derivatives of ReLU are presented in recent years that further improve the perfor-
mance and minimize vanishing gradients issue (Maas et al. (2013), He et al. (2015a), Clevert et al.
(2015), Ramachandran et al. (2019)). While most are fixed functions, the negative slope for Leaky
ReLUs can be adjusted during the network design, and remains constant while training. Parametric
ReLU adaptively changes the negative slope during training using a trainable parameter and demon-
strate a significant boost in performance (He et al. (2015a)). A relatively new activation function,
Swish, is derived by an automated search techniques (Ramachandran et al. (2019)). While the pa-
rameter β enables learning, the performance difference reported in the study between parametric
and non-parametric versions is minimal. To this end, rather than using a fixed or heavily constrained
nonlinearity, we believe that the nonlinearity learned by the deep networks can provide more insight
on how they can be designed.

In this work, we focus on the use of polynomials as nonlinearity functions. We demonstrate the
stability of polynomial of orders 2 to 9 by introducing scaling functions and initialization scheme
that approximates well known activation functions. Experiments on three public datasets show that
our method competes with state-of-the-art activation functions on a variety of deep architectures.
Despite their imperfections, our method allows each layer to find their preferred nonlinearity during
training. Finally, we show the learned nonlinearities that are both monotonic and non-monotonic.
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2 RELATED WORK

In this section we review activation functions and their relative formulation. Sigmoid (σ(x) = (1 +
exp(−z))−1), and the hyperbolic tangent (tanh(x) = (exp(x)− exp(−x))/(exp(x) + exp(−x))),
are the usual nonlinearity functions for neural networks. However, the deeper networks suffer van-
ishing gradient issue (Bengio et al. (1994)) that have near zero gradients at the initial layers. Softplus
(f(x) = log(1 + exp(x))) initially proposed in Dugas et al. (2000), is a smoother verion of ReLU
whose derivative is a sigmoid function.

Unlike sigmoid or tanh, ReLU (ReLU(x) = max(x, 0)) can have gradient flow as long as the inputs
are positive (Hahnioser et al. (2000), Nair & Hinton (2010), Glorot et al. (2011)). An extension of
ReLU, called Leaky ReLUs (LReLU), allows a fraction of negative part to speed-up the learning
process by avoiding the constant zero gradients when x < 0 (Maas et al. (2013)). LReLU are
relatively popular for generative adversarial networks (Radford et al. (2015)).

LReLU(x) =

{
αx if x < 0
x if x ≥ 0

where α = 1.0

While the slope (α) is constant for LReLU, it is a learnable parameter for Parametric ReLU
(PReLU), which has achieved better performance on image benchmark datasets (He et al. (2015a)).
However, Exponential Linear Unit (ELU), another derivative of ReLU, has improved learning by
shifting the mean towards zero and ensuring a noise-robust deactivation state (Clevert et al. (2015)).

ELU(x) =

{
α(exp(x)− 1) if x < 0

x if x ≥ 0
where α = 1.0

Gaussian Error Linear Unit, defined by GeLU(x) = xΦ(x), is a non-monotonic nonlinearity func-
tion (Hendrycks & Gimpel (2016)), where Φ(x) is the cumulative distribution function. Scaled
Exponential Linear Unit (SELU) with self-normalizing property delivers robust training of deeper
networks Klambauer et al. (2017).

SELU(x) = λ

{
αexp(x)− α if x < 0

x if x ≥ 0
where λ = 1.0507 and α = 1.6733

Unlike any of the above, Swish is a result of automated search technique Ramachandran et al. (2019).
Using a combination of exhaustive and reinforcement learning based search techniques (Bello et al.
(2017), Zoph & Le (2016)), the authors reported eight novel activation functions (x ∗ σ(βx),
max(x, σ(x)), cos(x) − x, min(x, sin(x)), (tan−1(x))2 − x, max(x, tanh(x)), sinc(x) + x,
and x ∗ (sinh−1(x))2). Of which, x ∗ σ(βx) (Swish) and max(x, σ(x)) matched or outperformed
ReLU in CIFAR experiments, with the former showing better performance on ImageNet and ma-
chine translation tasks. The authors claim that the non-monotonic bump, controlled by β, is an
important aspect of Swish. β can either be a constant or trainable parameter. To our knowledge this
is the first work to search activation functions.

In contrast, we use polynomials with trainable coefficients to learn activation functions that have the
ability to approximate a well-known or novel continuous nonlinearity. Furthermore, we demonstrate
its stability and performance on three public benchmark datasets. We emphasize that our goal is to
understand a network’s nonlinearity preference given the ability to learn.

3 POLYNOMIAL ACTIVATION

An nth order polynomial with trainable weights wj , j ∈ 0, 1, ...n and its derivatives are defined as
follows:

fn(x) =

n∑
i=1

wi ∗ xi = w0 ∗ x0 + w1 ∗ x1 + ...+ wn ∗ xn

dfn(x)

dx
= w1 + w2 ∗ 2 ∗ x+ ...+ wn ∗ n ∗ xn−1
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Given an input with zero mean and unit variance, a deeper network with multiple fn(x) suf-
fer exploding gradients as fn(x) scales exponentially with increase in order (n) for x > 1
(limx→∞ fn(x)/x=∞). While this can be avoided by using sigmoid(x), the approximations of
fn(sigmoid(x)) are limited for lower weights and saturates for higher weights. Moreover, the
lower weights can suffer from vanishing gradients and the higher weights beacause of exploding
gradients. To circumvent the exploding weights and gradients, we introduce dynamic input scaling,
g(.). Consider xi, i ∈ 1, 2, ...K is the ouput of a dense layer withK neurons, we define the dynamic
input scaling g(.) as follows:

g(xi) =

√
2 ∗ xi

max1≤i≤k|xi|

Essentially, we constrain g(.), such that max1≤i≤k|g(xi)| =
√

2, regardless of the input dimen-
sions. The choice of

√
2 allowed us to contain fn(g(x)) for higher order’s with larger wn, espe-

cially in our mixed precision training. The primary advantage of the g(.) is that for any given order
of the polynomial, we have max(fn(g(xi))) ≤ ‖wj‖2 ∗

√
2
n; this constraint allows us to normal-

ize the output, resulting in fn(g(xi))/
√
2
n ≤ ‖wj‖2. Observing the experiments in Section 4, we

limit ‖wj‖2 ≤ 3 which allows us to explore prior activations as initilizations. Essentially, when
‖wj‖2 > 3, we renormalize the weights using wj ∗ 3/‖wj‖2. Therefore, we define nth order
polynomial activations as:

PolynomialActivation(xi) =
fn(g(xi))√

2
n

=
w0 ∗ g(xi)

0
+ w1 ∗ g(xi)

1
+ ...+ wn ∗ g(xi)

n

√
2
n

Unlike the usual, polynomial activation is not for a scalar value and of course, not as simple as
ReLU. The purpose of our proposal is to explore newer nonlinearities by allowing the network to
choose an appropriate nonlinearity for each layer and eventually, design better activation functions
on the gathered intuitions.

4 WEIGHT INITIALIZATION FOR POLYNOMIAL ACTIVATIONS

Initialization of polynomial weights play a significant role in the stability and convergence of net-
works. We start by examining this issue with random initializations. In this scenario, we start with
Network-1 defined in Section 5.1 and polynomial activation with n = 2. We train all the networks
using stochastic gradient descent (SGD) with a learning rate of 0.1 and a batch size of 256. To speed-
up this experiment, we use mixed precision training. By varying wi ∈ {−1,−0.95, 0.90, ..., 1}, we
train each possible combinations (413 = 68921) of initialization for an epoch. We use same initial-
ization for all the three activations. The weights of both convolution and linear layers are initialized
using He et al. (2015a) for each run. Given the simplicity of MNIST hand written digits dataset,
we consider any network with test error of ≤ 10% as fast converging initialization. In compari-
son, all the networks reported in Table2 achieved a test error of ≤ 5% after the first epoch. One
interesting observation with this experiment is that the networks initialized with fn(x) ≈ x and
fn(x) ≈ −x have always achieved a test error of ≤ 5%. We extended our experiment to n = 3 with
wi ∈ {−1,−0.8,−0.6, ..., 1} and observed the same. Our second observation is that the weights
closer to 0 never converged.

To this end, rather than initializing the polynomial weights with a normal or uniform distribu-
tion, we instead used weights that can approximate an activation function, F (x). The advantage
is that we can start with some of the most successful activation functions, and gradually allow the
weights to choose an appropriate nonlinearity. It is important to understand that the local minima
for fn(x) ≈ F (x) is not gaurenteed since x does not satisfy boundary conditions, regardless of it
being continuous (Weierstrass theorem). While lower order polynomial suffer more, failure often
leads to fn(x) ≈ x, which is stable.
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Along with fn(x) = x (w1 = 1), we investigate ReLU, Swish (β = 1) and TanH approximations
as initializations that are derived by minimizing the sum of squared residuals of fn(x)−ReLU(x),
fn(x) − Swish(x), and fn(x) − tanh(x) using the least squares within the bounds −5 ≤ x ≤ 5.
Essentially, for an nth order polynomial, we initialize the wj such that the fn(x) ≈ ReLU(x),
fn(x) ≈ Swish(x), or fn(x) ≈ tanh(x). Figure 1 shows the approximations of ReLU, Swish and
TanH using polynomials of orders 2 to 9, and their respective initializations used in this experiment
are in Table1. On observation, Swish approximations are relatively more accurate when compared
to ReLU and TanH.

Using Network-1 and Network-2 defined in Section 5.1, we evaluate the stability and performance
of each of the four initializations for order’s 2 to 9 under the following optimization setting: 1) SGD
with a learning rate of 0.1 2) SGD with a learning rate of 0.05 3) SGD with a learning rate of 0.01
4) Adam (Kingma & Ba (2014)) with a learning rate of 0.001. By varying the batch size from 23 to
210, we trained Network-1 and Network-2 in each setting for 10 epochs to minimize cross entropy
loss on MNIST data. In total, we train 512 configurations (2 different networks * 8 different orders
* 4 different optimization settings * 8 different batch sizes) per initialization, and compute the test
error at the end of 10th epoch.

We observed that ∼ 22% of our networks with order ≥ 6 failed to converge. On monitoring the
gradients, we reduced the learning rate (lr) for the polynomial weights to lr ∗ 2−0.5∗order1, resulting
in the convergence of all the 512 configurations. The issue is that the polynomials fluctuate heavily
between the updates due to high backpropogated gradients.

The networks whose activations are initialized with fn(x) ≈ Swish(x) outperformed in 167 exper-
iments, followed by fn(x) ≈ ReLU(x) in 155, fn(x) = x in 148 and fn(x) ≈ tanh(x) in 42. The
results suggest that the Swish approximations as initializations are marginally better when compared
to the rest. It is important to note that the activation after training does not resemble Swish or any
other approximations that are used during the initialization. Instead, allows the network to converge
faster.
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Figure 1: ReLU, Tanh, and Swish approximations derived for initializing polynomial activations.

5 BENCHMARK RESULTS

We evaluate the polynomial activations on three public datasets and compare our work with seven
state-of-art activation functions reported in the literature. On CIFAR, we present the accuracies of
the networks with polynomial activations presented in Ramachandran et al. (2019).

Here on, we initialize polynomial activations with fn(x) ≈ Swish(x) weights. We set α = 0.01
for LReLUs, α = 1.0 for ELUs, λ = 1.0507 and α = 1.6733 for SELU, and a non-trainable β = 1
for Swish (Swish-1). We adopt the initilization proposed in He et al. (2015a) for both convolution
and linear layers, and implement all the models in PyTorch.

1Gradient clipping was not effective in our experiments.
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Table 1: Derived coefficients used to initialize the weights of polynomial activations by approximat-
ing ReLU, Swish and TanH

Activation Approximation

ReLU f2(x) = 0.47 + 0.50 ∗ x+ 0.09 ∗ x2
Swish f2(x) = 0.24 + 0.50 ∗ x+ 0.10 ∗ x2
TanH f2(x) = 2.5e−12 + 0.29 ∗ x− 4.0e−12 ∗ x2
ReLU f3(x) = 0.47 + 0.50 ∗ x+ 0.09 ∗ x2 − 1.7e−10 ∗ x3
Swish f3(x) = 0.24 + 0.50 ∗ x+ 0.10 ∗ x2 − 1.2e−10 ∗ x3
TanH f3(x) = 1.0e−9 + 0.51 ∗ x− 2.2e−10 ∗ x2 − 0.01 ∗ x3
ReLU f4(x) = 0.29 + 0.50 ∗ x+ 0.16 ∗ x2 + 1.8e−10 ∗ x3 − 3.3e−3 ∗ x4
Swish f4(x) = 0.07 + 0.50 ∗ x+ 0.17 ∗ x2 + 1.8e−10 ∗ x3 − 3.2e−3 ∗ x4
TanH f4(x) = −1.1e−8 + 0.51 ∗ x+ 4.5e−9 ∗ x2 − 0.01 ∗ x3 − 1.5e−10 ∗ x4
ReLU f5(x) = 0.29 + 0.50 ∗ x+ 0.16 ∗ x2 − 1.6e−8 ∗ x3 − 3.3e−3 ∗ x4

+7.5e−10 ∗ x5
Swish f5(x) = 0.07 + 0.50 ∗ x+ 0.17 ∗ x2 − 1.5e−8 ∗ x3 − 3.2e−3 ∗ x4

+6.9e−10 ∗ x5
TanH f5(x) = 3.0e−8 + 0.67 ∗ x− 2.4e−8 ∗ x2 − 0.04 ∗ x3 + 1.7e−9 ∗ x4

+1.1e−3 ∗ x5
ReLU f6(x) = 0.21 + 0.50 ∗ x+ 0.23 ∗ x2 + 7.6e−8 ∗ x3 − 1.1e−2 ∗ x4

−3.5e−9 ∗ x5 + 2.3e−4 ∗ x6
Swish f6(x) = 0.02 + 0.50 ∗ x+ 0.21 ∗ x2 − 1.0e−7 ∗ x3 − 8.1e−3 ∗ x4

+3.7e−9 ∗ x5 + 1.4e−4 ∗ x6
TanH f6(x) = −3.7e−8 + 0.67 ∗ x+ 2.6e−8 ∗ x2 − 0.04 ∗ x3 − 4.9e−9 ∗ x4

+1.1e−3 ∗ x5 + 3.4e−10 ∗ x6
ReLU f7(x) = 0.21 + 0.50 ∗ x+ 0.23 ∗ x2 + 1.4e−6 ∗ x3 − 1.1e−2 ∗ x4

−1.2e−7 ∗ x5 + 2.3e−4 ∗ x6 + 2.7e−9 ∗ x7
Swish f7(x) = 0.02 + 0.50 ∗ x+ 0.21 ∗ x2 + 4.8e−8 ∗ x3 − 8.1e−3 ∗ x4

−6.5e−9 ∗ x5 + 1.4e−4 ∗ x6 + 1.9e−10 ∗ x7
TanH f7(x) = −2.2e−6 + 0.79 ∗ x− 3.4e−7 ∗ x2 − 0.09 ∗ x3 − 1.2e−10 ∗ x4

+4.8e−3 ∗ x5 + 8.5e−10 ∗ x6 − 9.1e−5 ∗ x7
ReLU f8(x) = 0.17 + 0.50 ∗ x+ 0.29 ∗ x2 − 1.4e−7 ∗ x3 − 2.6e−2 ∗ x4

+9.7e−9 ∗ x5 + 1.2e−3 ∗ x6 − 2.0e−10 ∗ x7 − 2.1e−5 ∗ x8
Swish f8(x) = 6.5e−3 + 0.50 ∗ x+ 0.23 ∗ x2 + 2.2e−8 ∗ x3 − 0.01 ∗ x4

−1.7e−9 ∗ x5 + 4.7e−4 ∗ x6 + 4.0e−11 ∗ x7 − 7.0e−6 ∗ x8
TanH f8(x) = 1.3e−6 + 0.79 ∗ x− 8.0e−7 ∗ x2 − 0.09 ∗ x3 + 1.3e−7 ∗ x4

+4.8e−3 ∗ x5 − 8.2e−9 ∗ x6 − 9.1e−5 ∗ x7 + 1.6e−10 ∗ x8
ReLU f9(x) = 0.17 + 0.50 ∗ x+ 0.29 ∗ x2 + 9.0e−8 ∗ x3 − 2.6e−2 ∗ x4

−1.2e−8 ∗ x5 + 1.2e−3 ∗ x6 + 6.5e−10 ∗ x7 − 2.1e−5 ∗ x8 − 1.1e−11 ∗ x9
Swish f9(x) = 6.5e−3 + 0.50 ∗ x+ 0.23 ∗ x2 − 1.3e−8 ∗ x3 − 0.01 ∗ x4

+1.8e−9 ∗ x5 + 4.7e−4 ∗ x6 − 9.5e−11 ∗ x7 − 7.0e−6 ∗ x8 + 1.7e−12 ∗ x9
TanH f9(x) = −5.7e−8 + 0.87 ∗ x+ 1.0e−7 ∗ x2 − 0.13 ∗ x3 − 2.3e−8 ∗ x4

+1.2e−2 ∗ x5 + 1.6e−9 ∗ x6 − 5.0e−4 ∗ x7 − 3.3e−11 ∗ x8 + 7.8e−6 ∗ x9

5.1 MNIST

The MNIST dataset consists greysale handwritten digits (0-9) of size 28 x 28 pixel, with 60,000
training and 10,000 test samples, no augmentation was used for this experiment. We consider four
different networks to understand the behaviour of the proposed activation for orders 2 to 9 on net-
work depth. In each network, there are k convolutional layers (ends with an activation function),
followed by a dropout (p = 0.2), a linear with 64 output neurons, an activation, and a softmax layer.
The number of convolutional layers, k, in Network-1, Network-2, Network-3 and Network-4 is two,
four, six and eight, respectively. The choice of networks is driven by our curiosity to investigate the
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stability of the proposed activation function. The filter size in the first convolutional layer is 7x7,
and then the rest are 3x3 filters. The number of output channels in the first k/2 convolutional layers
is 64, and then the rest are 128. The subsampling is performed by convolutions with a stride of 2 at
k/2 and k layer. We train each configuration for 60 epochs using stochastic gradient descent with a
momentum of 0.9. The initial learning rate is set to 0.01 and reduced to 0.001 at epoch 402. Realiz-
ing the effect of learning rate on polynomial activations from the weight initialization experiments,
we use a lower learning rate only for the polynomial weights, lr ∗ 2−0.5∗order.

Table2 shows the test error (median of 5 different runs) measured at the end of the final epoch. Poly-
nomial activations with order 2 and 3 either match or outperform other activation functions. While
our method performs well overall, we observed that the order greater than three is unnecessary. It
does not improve accuracy, and increases both complexity and computation cost. Figure 2 shows the
learned polynomial activation functions for network’s 1, 2 and 3 across two different runs. While
lower order nonlinearities are similar to parabola, higher orders tend to avoid most information. We
believe the reason to avoid information by the higher orders comes from the simplicity of the data.
Overall, polynomial activations and PReLUs have performed better.

−4

−2

0

2

4

N
et
w
or
k-
1

Order = 2 Order = 3 Order = 4 Order = 5 Order = 6 Order = 7 Order = 8 Order = 9

conv-0
conv-1
linear

−2

−1

0

1

2

N
et
w
or
k-
2

conv-0
conv-1
conv-2
conv-3
linear

−2

−1

0

1

2

N
et
w
or
k-
3

conv-0
conv-1
conv-2
conv-3
conv-4
conv-5
linear

−4

−2

0

2

4

N
et
w
or
k-
1

conv-0
conv-1
linear

−2

−1

0

1

2

N
et
w
or
k-
2

conv-0
conv-1
conv-2
conv-3
linear

−1 0 1

−2

−1

0

1

2

N
et
w
or
k-
3

−1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1

conv-0
conv-1
conv-2
conv-3
conv-4
conv-5
linear

Figure 2: Learned polynomial activations across two different runs by Network-1 (1st and 4th row),
Network-2 (2nd and 5th row), and Network-3 (3rd and 6th row) on MNIST dataset. Best viewed in
color.

5.2 CIFAR

The CIFAR-10 and CIFAR-100 datasets consists of color images from 10 and 100 labels, respec-
tively (Krizhevsky (2009)). There are 50,000 training and 10,000 test samples with a resolution
of 32 x 32 pixels. The training data is augmented with random crop and random horizontal flip
(Lee et al. (2014)). We extend the experiments reported on CIFAR in Ramachandran et al. (2019)
with polynomial activations using the ResNet-164 (R164) (He et al. (2015b)), Wide ResNet 28-10
(WRN) (Zagoruyko & Komodakis (2016)), and DenseNet 100-12 (Dense) (Huang et al. (2017))
models. We replicate the architecture (with two changes) and training setting from the original pa-
pers, and switch the ReLU with polynomial activations. The two changes are 1. lower the learning
rate only for the polynomial weights, 2. disable the polynomial activation right before the average

2Initial learning rate for ELU, PReLU and SELU is dropped to 0.005 due to convergence issues.
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Table 2: Comparison of activation functions on MNIST

Method Network-1 Network-2 Network-3 Network-4

ReLU 0.77 0.66 0.51 0.50
LReLU 0.74 0.57 0.54 0.59
PReLU 0.71 0.55 0.45 0.51
ELU 0.86 0.54 0.58 0.68
GELU 0.79 0.63 0.55 0.67
SELU 0.76 0.69 0.63 0.68
Swish-1 0.75 0.63 0.66 0.52
Ours (n=2) 0.64 0.48 0.51 0.55
Ours (n=3) 0.61 0.50 0.54 0.46
Ours (n=4) 0.69 0.62 0.69 0.66
Ours (n=5) 0.71 0.58 0.59 0.49
Ours (n=6) 0.67 0.65 0.58 0.50
Ours (n=7) 0.83 0.59 0.62 0.71
Ours (n=8) 0.81 0.69 0.68 0.54
Ours (n=9) 0.75 0.71 1.03 0.58

Table 3: Comparison of various activation functions performance on CIFAR using ResNet-164
(R164), Wide ResNet 28-10 (WRN), and DenseNet 100-12 (Dense)

Method CIFAR10 CIFAR100
R164 WRN Dense R164 WRN Dense

Softplus 94.6* 94.9* 94.7* 76.0* 78.4* 83.7*

ReLU 93.8* 95.3* 94.8* 74.2* 77.8* 83.7*

LReLU 94.2* 95.6* 94.7* 74.2* 78.0* 83.3*

PReLU 94.1* 95.1* 94.5* 74.5* 77.3* 81.5*

ELU 94.1* 94.1* 94.4* 75.0* 76.0* 80.6*

GELU 94.3* 95.5* 94.8* 74.7* 78.0* 83.8*

SELU 93.0* 93.2* 93.9* 73.2* 74.3* 80.8*

Swish-1 94.7* 95.5* 94.8* 75.1* 78.5* 83.8*

Swish 94.5* 95.5* 94.8* 75.1* 78.0* 83.9*

Ours (n = 2) 94.0 94.7 93.7 75.1 78.6 79.5
Ours (n = 3) 93.6 95.6 94.1 74.6 77.8 78.9

∗Reported in Ramachandran et al. (2019)

pool as the gradients are usually high during backpropogation. We train using SGD with an initial
learning rate of 0.1, a momentum of 0.9 and a weight decay of 0.0005.

Table3 shows the test accuracy (median of 5 different runs) measured at the end of final epoch
for both CIFAR-10 and CIFAR-100. The results are comparable and the best performance occurs
with Wide ResNet which is shallow when compared to DenseNet and ResNet with relatively fewer
parameters. In this case, most activations are non-monotonic signifying its importance stated in
Ramachandran et al. (2019). We also observe that the information allowed through initial layers is
lower when compared to the deeper layers. One reason is that the residual connections is common
in all the networks. Our numbers on CIFAR100 for DenseNet is lower when compared to Ra-
machandran et al. (2019), however, we are comparable to the original implementation that reported
an accuracy of 79.80 using ReLUs (Huang et al. (2017)).
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Figure 3: Learned polynomial activations on CIFAR10 data. Each row represents activations for a
given network. All the activations in a network are split into 6 columns for better visibility. For
R164, we only plot the first activation of each residual block for better visibility. Best viewed in
color.

6 CONCLUSIONS

We proposed a polynomial activation function that learns the nonlinearity using trainable coeffi-
cients. Our contribution is stabilizing the networks with polynomial activation as a nonlinearity by
introducing scaling, initilization technique and applying a lower learning rate for the polynomial
weights, which provides more insight about the nonlinearity prefered by networks. The resulting
nonlinearities are both monotonic and non-monotonic in nature. In our MNIST experiments, we
showed the stability of our method with orders 2 to 9 and achieved superior perfromance when
compared to ReLUs, LReLUs, PReLUs, ELUs, GELUs, SELUs and Swish. In our CIFAR experi-
ments, the performance by replacing ReLUs with polynomial activations using DenseNet, Residual
Networks and Wide Residual Networks is on par with eight state-of-the-art activation functions.

While the increase of parameters is negligible, our method is computationally expensive. We believe
that by designing networks with simpler activations like ReLU for the initial layers, followed by
layers with polynomial activations can further improve accuracies.
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