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ABSTRACT

We consider learning based methods for visual localization that do not require the
construction of explicit maps in the form of point clouds or voxels. The goal is
to learn an implicit representation of the environment at a higher, more abstract
level, for instance that of objects. We propose to use a generative approach based
on Generative Query Networks (GQNs, Eslami et al., 2018), asking the following
questions: 1) Can GQN capture more complex scenes than those it was originally
demonstrated on? 2) Can GQN be used for localization in those scenes? To study
this approach we consider procedurally generated Minecraft worlds, for which we
can generate images of complex 3D scenes along with camera pose coordinates. We
first show that GQNs, enhanced with a novel attention mechanism can capture the
structure of 3D scenes in Minecraft, as evidenced by their samples. We then apply
the models to the localization problem, comparing the results to a discriminative
baseline, and comparing the ways each approach captures the task uncertainty.

1 INTRODUCTION

The problem of identifying the position of the camera that captured an image of a scene has been
studied extensively for decades (Triggs et al., 1999; Thrun et al., 2005; Cadena et al., 2016). With
applications in domains such as robotics and autonomous driving, a considerable amount of engi-
neering effort has been dedicated to developing systems for different versions of the problem. One
formulation, often referred to as simply ‘localization’, assumes that a map of the 3D scene is provided
in advance and the goal is to localize any new image of the scene relative to this map. A second
formulation, commonly referred to as ‘Simultaneous Localization and Mapping’ (SLAM), assumes
that there is no prespecified map of the scene, and that it should be estimated concurrently with
the locations of each observed image. Research on this topic has focused on different aspects and
challenges including: estimating the displacement between frames in small time scales, correcting
accumulated drifts in large time scales (also known as ‘loop closure’), extracting and tracking features
from the observed images (e.g. Lowe, 2004; Mur-Artal et al., 2015), reducing computational costs of
inference (graph-based SLAM, Grisetti et al., 2010) and more.

Although this field has seen huge progress, performance is still limited by several factors (Cadena
et al., 2016). One key limitation stems from reliance on hand-engineered representations of various
components of the problem (e.g. key-point descriptors as representations of images and occupancy
grids as representations of the map), and it has been argued that moving towards systems that operate
using more abstract representations is likely to be beneficial (Salas-Moreno et al., 2013; McCormac
et al., 2017). Considering the map, it is typically specified as either part of the input provided to the
system (in localization) or part of its expected output (in SLAM). This forces algorithm designers to
define its structure explicitly in advance, e.g. either as 3D positions of key-points, or an occupancy
grid of a pre-specified resolution. It is not always clear what the optimal representation is, and the
need to pre-define this structure is restricting and can lead to sub-optimal performance.

In this work, we investigate the problem of localization with implicit mapping, by considering the
‘re-localization’ task, using learned models with no explicit form of map. Given a collection of
‘context’ images with known camera poses, ‘re-localization’ is defined as finding the relative camera
pose of a new image which we call the ‘target’. This task can also be viewed as loop closure without
an explicit map. We consider deep models that learn implicit representations of the map, where at
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Figure 1: The Minecraft random walk dataset for localization in 3D scenes. We generate random
trajectories in the Minecraft environment, and collect images along the trajectory labelled by camera
pose coordinates (x,y,z yaw and pitch). Bottom: Images from random scenes. Top: The localization
problem setting - for a new trajectory in a new scene, given a set of images and corresponding camera
poses (the ‘context’), predict the camera pose of an additional observed image (the ‘target’, in green).

the price of making the map less interpretable, the models can capture abstract descriptions of the
environment and exploit abstract cues for the localization problem.

In recent years, several methods for localization that are based on machine learning have been pro-
posed. Those methods include models that are trained for navigation tasks that require localization. In
some cases the models do not deal with the localization explicitly, and show that implicit localization
and mapping can emerge using learning approaches (Mirowski et al., 2016; Cueva & Wei, 2018;
Banino et al., 2018; Wayne et al., 2018). In other cases, the models are equipped with specially
designed spatial memories, that can be thought of as explicit maps (Zhang et al., 2017; Gupta et al.,
2017a; Parisotto & Salakhutdinov, 2017). Other types of methods tackle the localization problem
more directly using models that are either trained to output the relative pose between two images
(Zamir et al., 2016; Ummenhofer et al., 2017), or models like PoseNet (Kendall et al., 2015), trained
for re-localization, where the model outputs the camera pose of a new image, given a context of
images with known poses. Models like PoseNet do not have an explicit map, and therefore have
an opportunity to learn more abstract mapping cues that can lead to better performance. However,
while machine learning approaches outperform hand-crafted methods in many computer vision tasks,
they are still far behind in visual localization. A recent study (Walch et al., 2017) shows that a
method based on traditional structure-from-motion approaches (Sattler et al., 2017a) significantly
outperforms PoseNet. One potential reason for this, is that most machine learning methods for
localization, like PoseNet, are discriminative, i.e. they are trained to directly output the camera pose.
In contrast, hand-crafted methods are usually constructed in a generative approach, where the model
encodes geometrical assumptions in the causal direction, concerning the reconstruction of the images
given the poses of the camera and some key-points. Since localization relies heavily on reasoning
with uncertainty, modeling the data in the generative direction could be key in capturing the true
uncertainty in the task. Therefore, we investigate here the use of a generative learning approach,
where on one hand the data is modeled in the same direction as hand-crafted methods, and on the other
hand there is no explicit map structure, and the model can learn implicit and abstract representations.

A recent generative model that has shown promise in learning representations for 3D scene structure
is the Generative Query Network (GQN) (Eslami et al., 2018). The GQN is conditioned on different
views of a 3D scene, and trained to generate images from new views of the same scene. Although
the model demonstrates generalization of the representation and rendering capabilities to held-out
3D scenes, the experiments are in simple environments that only exhibit relatively well-defined,
small-scale structure, e.g. a few objects in a room, or small mazes with a few rooms. In this paper,
we ask two questions: 1) Can the GQN scale to more complex, visually rich environments? 2) Can
the model be used for localization? To this end, we propose a dataset of random walks in the game
Minecraft (figure 1), using the Malmo platform (Johnson et al., 2016). We show that coupled with a
novel attention mechanism, the GQN can capture the 3D structure of complex Minecraft scenes, and
can use this for accurate localization. In order to analyze the advantages and shortcomings of the
model, we compare to a discriminative version of it, similar to previously proposed methods.
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In summary, our contributions are the following: 1) We suggest a generative approach to localization
with implicit mapping and propose a dataset for it. 2) We enhance the GQN using a novel sequential
attention model, showing it can capture the complexity of 3D scenes in Minecraft. 3) We show that
GQN can be used for localization, finding that it performs comparably to our discriminative baseline
when used for point estimates, and investigate how the uncertainty is captured in each approach.

2 DATA FOR LOCALIZATION WITH IMPLICIT MAPPING

In order to study machine learning approaches to visual localization with implicit mapping, we
create a dataset of random walks in a visually rich simulated environment. We use the Minecraft
environment through the open source Malmo platform (Johnson et al., 2016). Minecraft is a popular
computer game where a player can wander in a virtual world, and the Malmo platform allows us to
connect to the game engine, control the player and record data. Since the environment is procedurally
generated, we can generate sequences of images in an unlimited number of different scenes. Figure 1
shows the visual richness of the environment and the diversity of the scene types including forests,
lakes, deserts, mountains etc. The images are not realistic but nevertheless contain many details such
as trees, leaves, grass, clouds, and also different lighting conditions.

Our dataset consists of 6000 sequences of 100 images each generated by a blind exploration policy
based on simple heuristics (see appendix A for details). We record images at a resolution of 128×128
although for all the experiments in this paper we downscale to 32× 32. Each image is recorded along
with a 5 dimensional vector of camera pose coordinates consisting of the x, y, z position and yaw and
pitch angles (omitting the roll as it is constant). Figure 1 also demonstrates the localization task: For
every sequence we are given a context of images along with their camera poses, and an additional
target image with unknown pose. The task is to find the camera pose of the target image.

While other datasets for localization with more realistic images have been recently proposed (Armeni
et al., 2016; Savva et al., 2017; Chang et al., 2017; Song et al., 2017), we choose to use Minecraft
data for several reasons. First, in terms of the visual complexity, it is a smaller step to take from
the original GQN data, which still poses interesting questions on the model’s ability to scale. The
generative approach is known to be hard to scale but nevertheless has advantages and this intermediate
dataset allows us to demonstrate them. The second reason, is that Minecraft consists of outdoors
scenes which compared to indoor environments, contain a 3D structure that is larger in scale, and
where localization should rely on more diverse clues such as using both distant key-points (e.g.
mountains in the horizon) and closer structure (e.g. trees and bushes). Indoor datasets also tend to
be oriented towards sequential navigation tasks relying much on strong priors of motion. Although
in practice, agents moving in an environment usually have access to dense observations, and can
exploit the fact that the motion between subsequent observations is very small, we focus here on
localization with a sparse observation set, since we are interested in testing the model’s ability to
capture the underlying structure of the scene only from observations and without any prior on the
camera’s motion. One example for this setting is when multiple agents can broadcast observations
to help each other localize. In this case there are usually constraints on the network bandwidth and
therefore on the number of observations, and there is also no strong prior on the camera poses which
all come from different cameras.

3 MODEL

The localization problem can be cast as an inference task in the probabilistic graphical model
presented in figure 2a. Given an unobserved environment E (which can also be thought of as the
map), any observed image X depends on the environment E and on the pose P of the camera that
captured the image Pr(X|P,E). The camera pose P depends on the environment and perhaps some
prior, e.g. a noisy odometry sensor. In this framing, localization is an inference task involving the
posterior probability of the camera pose which can be computed using Bayes’ rule:

Pr(P |X,E) =
1

Z
Pr(X|P,E)Pr(P |E) (1)

In our case, the environment is only implicitly observed through the context, a set of image and
camera pose pairs, which we denote by C = {xi, pi}. We can use the context to estimate the
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(a) Localization as inference (b) The GQN model

Figure 2: Localization as probabilistic inference (a). The observed images X depend on the environ-
ment E and the camera pose P . To predict Pr(P |X), in the generative approach, we use a model of
Pr(X|P ) (green) and apply Bayes’ rule. In the discriminative approach we directly train a model
of Pr(P |X) (red). In both cases the environment is implicitly modeled given a context of (image,
camera pose) pairs C = {xi, pi}. In the GQN model (b), the context is processed by a representation
network and the resulting scene representation is fed to a recurrent generation network with L layers,
predicting an image given a camera pose.

environment Ê(C) and use the estimate for inference:

Pr(P |X,C) =
1

Z
Pr(X|P, Ê(C))Pr(P |Ê(C)) (2)

Relying on the context to estimate the environment E can be seen as an empirical Bayes approach,
where the prior for the data is estimated (in a point-wise manner) at test time from a set of obser-
vations. In order to model the empirical Bayes likelihood function Pr(X|P, Ê(C)) we consider
the Generative Query Network (GQN) model (Eslami et al., 2018) (figure 2b). We use the same
model as described in the GQN paper, which has two components: a representation network, and
a generation network. The representation network processes each context image along with its
corresponding camera pose coordinates using a 6-layer convolutional neural network. The cam-
era pose coordinates are combined to each image by concatenating a 7 dimensional vector of
x, y, z, sin(yaw), cos(yaw), sin(pitch), cos(pitch) to the features of the neural network in the mid-
dle layer. The output of the network for each image is then added up resulting in a single scene
representation. Conditioned on this scene representation and the camera pose of a new target view, the
generation network which consists of a conditional latent-variable model DRAW (Eslami et al., 2018)
with 8 recurrent layers, generates a probability distribution of the target image PrGQN (X|P,C). We
use this to model Pr(X|P, Ê(C)), where the scene representation r serves as the point-wise estimate
of the environment Ê(C).

Given a pre-trained GQN model as a likelihood function, and a prior over the camera pose Pr(P |C),
localization can be done by maximizing the posterior probability of equation 2 (MAP inference):

argmax
P

Pr(P |X,C) = argmax
P

logPrGQN (X|P,C) + logP (P |C) (3)

With no prior, we can simply resort to maximum likelihood, omitting the second term above. The
optimization problem can be a hard problem in itself, and although we show some results for simple
cases, this is usually the main limitation of this generative approach.

3.1 ATTENTION

One limitation of the GQN model is the fact that the representation network compresses all the
information from the context images and poses to a single global representation vector r. Although
the GQN has shown the ability to capture the 3D structure of scenes and generate samples of new
views that are almost indistinguishable from ground truth, it has done so in fairly simple scenes
with only a few objects in each scene and limited variability. Since we are interested here in more
complex scenes with much more visual variability, it is unlikely for a simple representation network
with a fixed size scene representation to be able to retain all the important information of the scene.
Following previous work on using attention for making conditional predictions (Vinyals et al., 2016;
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(a) A GQN model with attention. (b) Attention computation

Figure 3: (a) Instead of conditioning on a parametric representation of the scene, all patches from
context images are stored in a dictionary, and each layer of the generation network can access them
through an attention mechanism. In each layer, the key is computed as a function of the generation
network’s recurrent state, and the result v is fed back to the layer (b).

Reed et al., 2017; Parisotto et al., 2018), we propose a variation of the GQN model that relies on
attention rather than a parametric representation of the scene.

We enhance the GQN model using an attention mechanism on patches inspired by (Reed et al.,
2017) (figure 3), where instead of passing the context images through a representation network, we
extract from each of the images all the 8 by 8 patches and concatenate to each the camera poses and
the 2D coordinates of the patch within the image. For each patch we also compute a key using a
convolutional neural network, and place all patches and their corresponding keys in a large dictionary,
which is passed to the generation network. In the generation network, which is based on the DRAW
model with 8 recurrent layers, a key is computed at every layer from the current state, and used to
perform soft attention on the patch dictionary. The attention is performed using a dot-product with all
the patches’ keys, normalizing the results to one using a softmax, and using them as the weights in a
weighted sum of all patches. The resulting vector is then used by the generation network in the same
way as the global representation vector is used in the parametric GQN model. See appendix B for
more details.

In this sequential attention mechanism, the key in each layer depends on the result of the attention at
the previous layer, which allows the model to use a more sophisticated attention strategy, depending
both on the initial query and on patches and coordinates that previous layers attended to.

3.2 A DISCRIMINATIVE APPROACH

As a baseline for the proposed generative approach based on GQN, we use a discriminative model
which we base on a ‘reversed-GQN’. This makes the baseline similar to previously proposed methods
(see section 4), but also similar to the proposed GQN model in terms of architecture and the
information it has access to, allowing us to make more informative comparisons.

While the generative approach is to learn models in the P → X direction and invert them using
Bayes’ rule as described above, a discriminative approach would be to directly learn models in the
X → P direction. In order to model Pr(P |X,C) directly, we construct a ‘reversed-GQN’ model,
by using the same GQN model described above, but ‘reversing’ the generation network, i.e. using
a model that is conditioned on the target image, and outputs a distribution over the camera pose.
The output of the model is a set of categorical distributions over the camera pose space, allowing
multi-modal distributions to be captured. In order to keep the output dimension manageable, we
split the camera pose coordinate space to four components: 1) the x, y positions, 2) the z position,
3) the yaw angle, and 4) the pitch angle. To implement this we process the target image using a
convolutional neural network, where the scene representation is concatenated to the middle layer, and
compute each probability map using an MLP.

We also implement an attention based version of this model, where the decoder’s MLP is preceded by
a sequential attention mechanism with 10 layers, comparable to the attention in the generative model.
For more details on all models see appendix B.
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generative loss pixel MSE discriminative loss pose MSE

Figure 4: The loss and predictive MSE for both the generative direction and the discriminative
direction. The attention model results in lower loss and lower MSE in both directions.

Although the discriminative approach is a more direct way to solve the problem and will typically
result in much faster inference at test time, the generative approach has some aspects that can prove
advantageous: it learns a model in the causal direction, which might be easier to capture, easier to
interpret and easier to break into modular components; and it learns a more general problem not
specific to any particular task and free from any prior on the solution, such as the statistics that
generated the trajectories. In this way it can be used for tasks which it was not trained for, for example
different types of trajectories, or for predicting the x,y location in a different spatial resolution.

4 RELATED WORK

In recent years, machine learning has been increasingly used in localization and SLAM methods. In
one type of methods, a model is trained to perform some navigation task that requires localization,
and constructed using some specially designed spatial memory that encourages the model to encode
the camera location explicitly (Zhang et al., 2017; Parisotto & Salakhutdinov, 2017; Gupta et al.,
2017a;b; Henriques & Vedaldi, 2018; Savinov et al., 2018; Parisotto et al., 2018). The spatial memory
can then be used to extract the location. Other models are directly trained to estimate either relative
pose between image pairs (Zamir et al., 2016; Ummenhofer et al., 2017), or camera re-localization in
a given scene (Kendall et al., 2015; Walch et al., 2017; Clark et al., 2017).

All these methods are discriminative, i.e. they are trained to estimate the location (or a task that
requires a location estimate) in an end-to-end fashion, essentially modeling Pr(P |X) in the graphical
model of figure 2. In that sense, our baseline model using a reversed-GQN, is similiar to the learned
camera re-localization methods like PoseNet (Kendall et al., 2015), and in fact can be thought of
as an adaptive (or meta-learned) PoseNet, where the model is not trained on one specific scene, but
rather inferred at test time, thus adapting to different scenes. The reason we implement an adaptive
PoseNet rather than comparing to the original version is that in our setting it is unlikely for PoseNet
to successfully learn the network’s weights from scratch for every scene, which contains only a small
number of images. In addition, having a baseline which is as close as possible to the proposed model
makes the direct comparison of the approaches easier.

In contrast to the more standard discriminative approach, the model that we propose using GQN, is a
generative approach that captures Pr(X|P ), making it closer to traditional hand-crafted localization
methods that are usually constructed with geometric rules in the generative direction. For example,
typical methods based on structure-from-motion (SfM) (Li et al., 2012; Zeisl et al., 2015; Svärm
et al., 2017; Sattler et al., 2017a) optimize a loss involving reconstruction in image space given pose
estimates (the same way GQN is trained).

The question of explicit vs. implicit mapping in hand-crafted localization methods, has been studied
in (Sattler et al., 2017b), where it was shown that re-localization relying on image matching can
outperform methods that need to build complete 3D models of a scene. With learned models, the
hope is that we can get even more benefit from implicit mapping since it allows the model to learn
abstract mapping cues that are hard to define in advance. Two recent papers, Bloesch et al. (2018);
Tang & Tan (2018), take a somewhat similar approach to ours by encoding depth information into an
implicit encoding, and training the models based on image reprojection error. Other recent related
work (Zhou et al., 2017; Tulsiani et al., 2018) take a generative approach to pose estimation but
explicitly model depth maps or 3D shapes.
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Figure 5: Generated samples from the generative model (middle), and the whole output distribution
for the discriminative model (bottom). Both were computed using the attention models, and each
image and pose map is from a different scene conditioned on 20 context images. The samples capture
much of the structure of the scenes including the shape of mountains, the location of lakes, the
presence of large trees etc. The distribution of camera pose computed with the reversed GQN shows
the model’s uncertainty, and the distribution’s mode is usually close to the ground truth (green dot).

5 TRAINING RESULTS

We train the models on the Minecraft random walk data, where each sample consists of 20 context
images and 1 target image, from a random scene. The images are drawn randomly from the sequence
(containing 100 images) in order to reduce the effect of the prior on the target camera pose due to
the sequential nature of the captured images. The loss we optimize in the generative direction is the
negative variational lower bound on the log-likelihood over the target image, since the GQN contains
a DRAW model with latent variables. For the discriminative direction with the reversed GQN which
is fully deterministic, we minimize the negative log-likelihood over the target camera pose.

Figure 4 shows the training curves for the generative and discriminative directions. In both cases we
compare between the standard parametric model and the attention model. We also compare the MSE
of the trained models, computed in the generative direction by the L2 distance between the predicted
image and the ground-truth image, and in the discriminative direction by the L2 distance between
the most likely camera pose and the ground truth one. All results are computed on a held out test
set containing scenes that were not used in training, and are similar to results on the training set. A
notable result is that the attention models improve the performance significantly. This is true for both
the loss and the predictive MSE, and for both the discriminative and generative directions.

Figure 5 shows generated image samples from the generative model, and the predicted distribution
over the camera pose space from the reversed GQN model. All results are from attention based
models, and each image and camera pose map comes from a different scene from a held out test
set, conditioned on 20 context images. Image samples are blurrier than the ground truth but they
capture the underlying structure of the scene, including the shape of mountains, the location of lakes,
the presence of big trees etc. For the reversed GQN model, the predicted distribution shows the
uncertainty of the model, however the mode of the distribution is usually close to the ground truth
camera pose. The results show that some aspects of the camera pose are easier than others. Namely,
predicting the height z and the pitch angle are much easier than the x, y location and yaw angle. At
least for the pitch angle this can be explained by the fact that it can be estimated from the target
image alone, not relying on the context. As for the yaw angle, we see a frequent pattern of high
probability areas around multiples of 90 degrees. This is due to the cubic nature of the Minecraft
graphics, allowing the estimate of the yaw angle up to any 90 degrees rotation given the target image
only. This last phenomena is a typical one when comparing discriminative methods to generative
ones, where the former is capable of exploiting shortcuts in the data.

One interesting feature of models with attention, is that they can be analyzed by observing where they
are attending, shedding light on some aspects of the way they work. Figure 6 shows the attention in
three different scenes. Each row shows 1) the target image, 2) the x,y trajectory containing the poses
of all context images (in black) and the pose of the target image (in green), and 3) the context images
with a red overlay showing the patches with high attention weights. In each row we show the context

7



Under review as a conference paper at ICLR 2019

target
image

x,y
trajectory generative attention discriminative attention

Figure 6: Attention over the context images in the generative and discriminative directions. The
total attention weights are shown as a red overlay, using the same context images for both directions.
Similar to hand-crafted feature point extraction and graph-SLAM, the learned attention is sparse and
prunes out irrelevant images. While the generative attention is mainly position based, focusing on
one or two of the nearest context images, the discriminative attention is based more on appearance,
searching all context images for patches resembling the target. See also supplementary video.

images twice, once with the attention weights of the generative model, and once with the attention
weights of the discriminative model. In both cases we show the total attention weights summed over
all recurrent layers. A first point to note is that the attention weights are sparse, focusing on a small
number of patches in a small number of images. The attention focuses on patches with high contrast
like the edges between the sky and the ground. In these aspects, the model has learned to behave
similarly to the typical components of hand crafted localization methods - detecting informative
feature points (e.g. Harris corner detection), and constructing a sparse computation graph by pruning
out the irrelevant images (e.g. graph-SLAM). A second point to note is the difference between the
generative and discriminative attention, where the first concentrates on fewer images, covering more
space within them, and the second is distributed between more images. Since the generative model is
queried using a camera pose, and the discriminative model using an image, it is perhaps not surprising
that the resulting attention strategies tend to be position-based and appearance-based respectively.
For more examples see the video available at https://youtu.be/iHEXX5wXbCI.

6 LOCALIZATION

We compare the generative and discriminative models ability to perform localization, i.e. find the
camera pose of a target image, given a context of image and camera pose pairs. For the discriminative
models we simply run a forward pass and get the probability map of the target’s camera pose. For the
generative model, we fix the target image and optimize the likelihood by searching over the camera
pose used to query the model. We do this for both the x,y position, and the yaw, using grid search
with the same grid values as the probability maps that are predicted by the discriminative model. The
optimization of the x,y values, and the yaw values is done separately while fixing all other dimensions
of the camera pose to the ground truth values. We do this without using a prior on the camera pose,
essentially implementing maximum likelihood inference rather than MAP.

Figure 7 shows the results for a few held-out scenes comparing the output of the discriminative
model, with the probability map computed with the generative model. For both directions we use
the best trained models which are the ones with attention. We see that in most cases the maximum
likelihood estimate (magenta star) is a good predictor of the ground truth value (green circle) for both
models. However it is interesting to see the difference in the probability maps of the generative and
discriminative directions. One aspect of this difference is that while in the discriminative direction
the x,y values near the context points tend to have high probability, for the generative model it is the
opposite. This can be explained by the fact that the discriminative model captures the posterior of
the camera pose, which also includes the prior, consisting of the assumption that the target image
was taken near context images. The generative model only captures the likelihood Pr(X|P ), and
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Table 1: Localization with a varying number of context images. Using attention (‘+att’) and more
context images leads to better results. Even with no prior on poses, the generative+attention model
results in better MSE. However the discriminative+attention model assigns higher probability to the
ground-truth pose since the prior allows it to concentrate more mass near context poses.

M
SE

x,y position yaw angle
context 5 10 20 5 10 20

disc 0.27 0.25 0.27 0.25 0.21 0.17
gen 0.41 0.36 0.35 0.16 0.14 0.15

disc+att 0.17 0.12 0.09 0.21 0.15 0.11
gen+att 0.11 0.08 0.07 0.06 0.06 0.05 lo

g-
pr

ob
ab

ili
ty x,y position yaw angle

5 10 20 5 10 20
-8.14 -7.24 -7.08 -3.27 -3.08 -3.02
-10.19 -9.08 -8.55 -5.95 -5.16 -4.74
-7.65 -6.47 -5.74 -3.56 -3.29 -3.08
-7.56 -6.62 -6.00 -4.48 -4.06 -3.66

target image sample at
target position

x,y
generative

x,y
discriminative

yaw
generative

yaw
discriminative

Figure 7: Localization with the generative and discriminative models - target image, a sample drawn
using the ground-truth pose, and probability maps for x,y position and yaw angle (bright=high prob.).
The generative maps are computed by querying the model with all possible pose coordinates, and the
discriminative maps are simply the model’s output. The poses of the context images are shown in
cyan, target image in green and maximum likelihood estimates in magenta. The generative maps are
free from the prior on poses in the training data giving higher probability to unexplored areas.

therefore is free from this prior, resulting in an opposite effect where the area near context images
tend to have very low probability and a new image is more likely to be taken from an unexplored
location. See appendix figure 9 for more examples.

Table 1 shows a quantitative comparison of models with and without attention, with varying number
of context points. The first table compares the MSE of the maximum likelihood estimate of the x,y
position and the yaw angle, by computing the square distance from the ground truth values (again,
for the generative model we fix all other dimensions of the pose to the ground truth values). The
table shows the improvement due to attention, and that as expected, more context images result in
better estimates. We also see that the generative models estimates have a lower MSE for all context
sizes. This is true even though the generative model does not capture the prior on camera poses and
can therefore make very big mistakes by estimating the target pose far from the context poses. The
second table compares the log probability of the ground truth location for the x,y position and yaw
angles (by using the value in the probability map cell which is closest to the ground truth). Here
we see that the discriminative model results in higher probability. This can be caused again by the
fact that the generative model does not capture the prior of the data and therefore distributes a lot
of probability mass across all of the grid. We validate this claim by computing the log probability
in the vicinity of all context poses (summing the probability of a 3 by 3 grid around each context
point) and indeed get a log probability of -4.1 for the generative direction compared to -1.9 for the
discriminative one (using attention and 20 context images). Another support for the claim that the
discriminative model relies more on the prior of poses rather than the context images themselves is
that in both tables, the difference due to attention is bigger for the generative model compared to the
discriminative model.
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7 DISCUSSION

We have proposed a formulation of the localization problem that does not involve an explicit map,
where we can learn models with implicit mapping in order to capture higher level abstractions. We
have enhanced the GQN model with a novel attention mechanism, and showed its ability to capture
the underlying structure of complex 3D scenes demonstrated by generating samples of new views
of the scene. We showed that GQN-like models can be used for localization in a generative and
discriminative approach, and described the advantages and disadvantages of each.

When comparing the approaches for localization we have seen that the generative model is better
in capturing the underlying uncertainty of the problem and is free from the prior on the pose that is
induced by the training data. However, the clear disadvantage of the generative approach is that it
requires performing optimization at test time, while the discriminative model can be used by running
one forward pass. We believe that future research should focus on combining the approaches which
can be done in many different ways, e.g. using the discriminative model as a proposal distribution
for importance sampling, or accelerating the optimization using amortized inference by training an
inference model on top of the generative model (Rosenbaum & Weiss, 2015). While learning based
methods, as presented here and in prior work, have shown the ability to preform localization, they still
fall far behind hand-crafted methods in most cases. We believe that further development of generative
methods, which bear some of the advantages of hand-crafted methods, could prove key in bridging
this gap, and coupled with an increasing availability of real data could lead to better methods also for
real-world applications.
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A THE MINECRAFT RANDOM WALK DATASET FOR LOCALIZATION

To generate the data we use the Malmo platform (Johnson et al., 2016), an open source project
allowing access to the Minecraft engine. Our dataset consists of 6000 sequences of random walks
consisting of 100 images each. We use 1000 sequences as a held-out test set. The sequences are
generated using a simple heuristic-based blind policy as follows:

We generate a new world and a random initial position, and wait for the agent to drop to the ground.

For 100 steps:

1. Make a small random rotation and walk forward.

2. With some small probability make a bigger rotation.

3. If no motion is detected jump and walk forward, or make a bigger rotation

4. Record image and camera pose.

We prune out sequences where there was no large displacement or where all images look the same
(e.g. when starting in the middle of the ocean, or when quickly getting stuck in a hole), however in
some cases our exploration policy results in close up images of walls, or even underwater images
which might make the localization challenging.

We use 5 dimensional camera poses consisting of x, y, z position and yaw and pitch angles (omitting
the roll as it is constant). We record images in a resolution of 128 × 128 although for all the
experiments in this paper we downscale to 32× 32. We normalize the x,y,z position such that most
scenes contain values between -1 and 1.

B MODEL DETAILS

The basic model that we use is the Generative Query Network (GQN) as described in (Eslami et al.,
2018). In the representation network, every context image is processed by a 6 layer convolutional
neural network (CNN) outputting a representation with spatial dimension of 8× 8 and 64 channels.
We add the camera pose information of each image after 3 layers of the CNN by broadcasting
the values of x, y, z, sin(yaw), cos(yaw), sin(pitch), cos(pitch) to the whole spatial dimension
and concatenate as additional 7 channels. The output of each image is added up to a single scene
representation of 8×8×64. The architecture of the CNN we use is: [k=2,s=2,c=32]→ [k=3,s=1,c=32]
→ [k=2,s=2,c=64]→ [k=3,s=1,c=32]→ [k=3,s=1,c=32]→ [k=3,s=1,c=64], where for each layer ‘k’
stands for the kernel size, ‘s’ for the stride, and ‘c’ for the number of output channels.

In the generation network we use the recurrent DRAW model as described in (Eslami et al., 2018)
with 8 recurrent layers and representation dimension of 8× 8× 128 (used as both the recurrent state
and canvas dimensions). The model is conditioned on both the scene representation and the camera
pose query by injecting them (using addition) to the biases of the LSTM’s in every layer. The output
of the generation network is a normal distribution with a fixed standard deviation of 0.3.

In order to train the model, we optimize the negative variational lower bound on the log-likelihood,
using Adam (Kingma & Ba, 2014) with a batch size of 36, where each example comes from a random
scene in Minecraft, and contains 20 context images and 1 target image. We train the model for 4M
iterations, and anneal the output standard deviation starting from 1.5 in the first iteration, down to 0.3
in the 300K’th iteration, keeping it constant in further iterations.

B.1 REVERSED GQN

The reversed GQN model we use as a discriminative model is based on the GQN described above.
We use the same representation network, and a new decoder that we call the localization network,
which is queried using the target image, and outputs a distribution of camera poses (see figure 8). In
order to make the output space manageable, we divide it to 4 log-probability maps:

1. A matrix over x, y values between -1 and 1, quantized in a 0.02 resolution.

2. A vector over z values between -1 and 1, quantized in a 0.02 resolution.
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Figure 8: The reversed GQN model. A similar architecture to GQN, where the generation network
is ‘reversed’ to form a localization network, which is queried using a target image, and predicts its
camera pose.

3. A vector over yaw values between -180 and 180 degrees, quantized in a 1 degree resolution.
4. A vector over pitch values between -20 and 30 degrees, quantized in a 1 degree resolution.

The localization network first processes the image query using a CNN with the following specifica-
tions: [k=3,s=2,c=32]→ [k=3,s=2,c=64]→ [k=3,s=1,c=64]→ [k=1,s=1,c=64]→ [k=1,s=1,c=64],
resulting in an intermediate representation of 8× 8× 64. Then it concatenates the scene represen-
tation computed by the representation network and processes the result using another CNN with:
[k=3,s=1,c=64]→ [k=3,s=1,c=64]→ [k=3,s=1,c=64]→ [k=5,s=1,c=4]. Each of the 4 channels of
the last layer is used to generate one of the 4 log-probability maps using an MLP with 3 layers, and a
log-softmax normalizer. Figure 5 in the main paper shows examples of the resulting maps.

B.2 ATTENTION GQN

In the attention GQN model, instead of a scene encoder as described above, all 8× 8× 3 patches are
extracted from the context images with an overlap of 4 pixels and placed in a patch dictionary, along
with the camera pose coordinates, the 2D patch coordinates within the image (the x,y, position in
image space), and a corresponding key. The keys are computed by running a CNN on each image
resulting in a 8 × 8 × 64 feature map, and extracting the (channel-wise) vector corresponding to
each pixel. The architecture of the CNN is [k=2,s=2,c=32]→ [k=3,s=1,c=32]→ [k=2,s=2,c=64]
→ [k=1,s=1,c=32]→ [k=1,s=1,c=32]→ [k=1,s=1,c=64], such that every pixel in the output feature
map corresponds to a 4× 4 shift in the original image. The keys are also concatenated to the patches.

Given the patch dictionary, we use an attention mechanism within the recurrent layers of the generation
network based on DRAW as follows. In each layer we use the recurrent state to compute a key
using a CNN of [k=1,s=1,c=64]→ [k=1,s=1,c=64] followed by spatial average pooling. The key is
used to query the dictionary by computing the dot product with all dictionary keys, normalizing the
results using a softmax. The normalized dot products, are used as weights in a weighted sum over
all dictionary patches and keys (using the keys as additional values). See pseudo-code in figure 3b.
The result is injected to the computation of each layer in the same way as the scene representation
is injected in the standard GQN. Since the state in each layer of the recurrent DRAW depends on
the computation of the previous layer, the attention becomes sequential, with multiple attention keys
where each key depends on the result of the attention with the previous key.

In order to implement attention in the discriminative model, and make it comparable to the sequential
attention in DRAW, we implement a similar recurrent network used only for the attention. This is
done by adding 10 recurrent layers between layer 5 and 6 of the localization network’s CNN. Like in
DRAW, a key is computed using a 2 layer CNN of [k=1,s=1,c=64]→ [k=1,s=1,c=64] followed by
spatial average pooling. The key is used for attention in the same way as in DRAW, and the result
is processed through a 3 layer MLP with 64 channels and concatenated to the recurrent state. This
allows the discriminative model to also use a sequential attention strategy where keys depend on the
attention in previous layers.
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Figure 9: Localization with the generative and discriminative models - target image, a sample drawn
using the ground-truth pose, and probability maps for the x,y position and yaw angles. The generative
maps are computed by querying the model with all possible pose coordinates, and the discriminative
maps are simply the model’s output. The poses of the context images are shown in cyan, target image
in green and maximum likelihood estimates in magenta. The generative maps are free from the prior
in the training data (that target poses are close to the context poses) giving higher probability to
unexplored areas and lower probabilities to areas with context images which are dissimilar to the
target.
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