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Álvaro Torralba
Saarland University, Saarland Informatics Campus

Saarbrücken, Germany
torralba@cs.uni-saarland.de

Silvan Sievers
Basel University

Switzerland
silvan.sievers@unibas.ch

Abstract

The performance of domain-independent planning systems
heavily depends on how the planning task has been modeled.
This makes task reformulation an important tool to get rid of
unnecessary complexity and increase the robustness of plan-
ners with respect to the model chosen by the user. In this pa-
per, we represent tasks as factored transition systems (FTS),
and use the merge-and-shrink (M&S) framework for task re-
formulation for optimal and satisficing planning. We prove
that the flexibility of the underlying representation makes the
M&S reformulation methods more powerful than the coun-
terparts based on the more popular finite-domain representa-
tion. We adapt delete-relaxation and M&S heuristics to work
on the FTS representation and evaluate the impact of our re-
formulation.

Introduction
Classical planning deals with the problem of finding a se-
quence of actions that achieve a set of goals, given a model
of the world that describes an initial state and a set of
available actions. For representing the problem, different
planning formalisms can be used, the most common be-
ing STRIPS or finite-domain representation (FDR). The
choice of formalism does not change the complexity of
the problem, which is PSPACE-complete (Bylander 1994;
Bäckström and Nebel 1995). However, it may impact the
so-called accidental complexity, when the structure of the
task is disguised by how it is encoded (Haslum 2007). Ac-
cidental complexity can be dealt with by reformulating the
planning task prior to solving it. There are several refor-
mulation methods based on, e.g., downward-refinable ab-
stractions (Haslum 2007) or tunnel macros (Coles and Coles
2010), which can be combined to reduce the size of FDR
tasks (Tozicka et al. 2016).

Merge-and-Shrink (M&S) is a general framework to gen-
erate abstractions, originally defined in the model-checking
area (Dräger, Finkbeiner, and Podelski 2006; 2009), that can
be used to derive an admissible heuristic (Helmert, Haslum,
and Hoffmann 2007; Helmert et al. 2014) and/or detect un-
solvability (Hoffmann, Kissmann, and Torralba 2014). Fur-
ther work on the topic noticed that this can be understood as
applying transformations to a set of transition systems (Siev-
ers, Wehrle, and Helmert 2014) and hence as a method to
transform planning tasks in the factored transition system

(FTS) representation (Torralba and Kissmann 2015). How-
ever, these methods perform the search on an FDR task, only
using M&S to derive heuristics or remove irrelevant actions.

In this paper, we use M&S as a task reformulation method
on FTS tasks. We show that some of the M&S transforma-
tions originally devised for constructing abstraction heuris-
tics can also be used for optimal and satisficing reformu-
lation. To do so, we provide algorithms that transform so-
lutions for the reformulated task into plans for the original
task. We also show that our M&S reformulations dominate
their counterparts based on FDR representations, i.e., a suit-
able combination of existing M&S transformations can al-
ways do the same (and sometimes more) simplifications to
any task.

To search on the FTS representation, planning algorithms
and heuristics originally devised for STRIPS or FDR tasks
must be adapted. As the FTS formalism is slightly more
expressive than FDR, this is similar to adapting algorithms
to support (a limited form of) disjunctive preconditions and
conditional effects. We adapt heuristic search methods with
M&S and delete-relaxation heuristics for the FTS represen-
tation. Our experimental study shows the potential of these
reformulations to reduce the state space and speed-up the
search. Full proofs and additional experimental results are
included in a technical report (Torralba and Sievers 2019).

Representation of Planning Tasks
A planning task is a compact representation of a TS. A tran-
sition system (TS) is a tuple Θ = 〈S,L, T, sI ,S?〉 where S
is a finite set of states, L is a finite set of labels each associ-
ated with a label cost c(`) ∈ R+

0 , T ⊆ S × L × S is a set
of transitions, sI ∈ S is the initial state, and S? ⊆ S is the
set of goal states. We use s ∈ Θ to refer to states in Θ and
s `−→ t ∈ Θ to refer to its transitions. An s-plan for a state s
is a path from s to any s∗ ∈ S?. Its cost is the summed label
costs of all labels of the path. The perfect heuristic, h∗(s),
is the cost of a cheapest s-plan. An s-plan is optimal iff its
cost equals h∗(s). A plan for Π is an sI -plan.

An abstraction is a function α mapping states in Θ to a
set of abstract states Sα. The abstract state space Θα is
〈Sα, L, Tα, sIα,S?α〉, where α(s) `−→ α(s′) ∈ Tα iff s `−→ s′

in Θ, sIα = α(sI), and S?α = {α(s) | s ∈ S?}.
An FDR task is a tuple ΠV = 〈V,A, sI ,G〉. V is a finite

set of variables v, each with a finite domain Dv . A partial



state is a function s on a subset V(s) of V , so that s(v) ∈ Dv

for all v ∈ V(s); s is a state if V(s) = V . sI is the initial
state and the goal G is a partial state. A is a finite set of
actions. Each a ∈ A is a tuple 〈prea, eff a, c(a)〉where prea
and eff a are partial states, called its precondition and effect,
and c(a) ∈ R+

0 is its cost. An action a is applicable in a
state s if ∀v∈V(prea)s(v) = prea(v). Applying it yields the
successor state sJaK with sJaK(v) = eff a(v) if v ∈ V(eff a)
and sJaK(v) = s(v) otherwise.

The state space of an FDR task ΠV is a TS Θ =
〈S,L, T, sI ,S?〉 where S is the set of all states, sI = sI ,
s ∈ S? iff ∀v∈V(G)G(v) = s(v), L = A, and s a−→ sJaK ∈ T
if a is applicable in s.

An FTS task is a set of TSs {Θ1, . . . ,Θn}with a common
set L of labels. The synchronized product Θ1 ⊗ Θ2 of two
TSs is another TS with states S = {(s1, s2) | s1 ∈ Θ1∧s2 ∈
Θ2}, labels L = L1 = L2, transitions T = {(s1, s2) `−→
(s′1s

′
2) | s1

`−→ s′1 ∈ Θ1 ∧ s2
`−→ s′2 ∈ Θ2}, initial state

sI = (sI1 , s
I
2 ), and goal states S? = {(s1, s2) | s1 ∈ S?1 ∧

s2 ∈ S?2}.
The state space of an FTS task ΠT = {Θ1, . . . ,Θn} is

defined as Θ = Θ1⊗· · ·⊗Θk. Whenever it is not clear from
context, we will use subscripts to differentiate states in the
state space (s, s′, t ∈ Θ) and in the individual components
(si, s′i, ti ∈ Θi). Given s ∈ Θ, we write s[Θi] to refer to the
projection of s onto Θi. A solution π for an FTS task is a
sequence s0

`1−→ s1
`2−→ . . . `k−→ sk such that sk ∈ S?.

There is a close connection between FTS and FDR tasks,
since TSs in an FTS task correspond to FDR variables with
domain equal to the set of states of the TS. Then, states in
FDR (which are assignments of values to variables) corre-
spond to states in the FTS representation, which are an as-
signment of states si to each Θi. Given an FDR task ΠV it
is simple to construct the corresponding FTS task, which we
call the atomic representation of ΠV . There is a TS Θv for
every variable v, with one state sv ∈ Θv per value in Dv .
For every action a ∈ A, there is an outgoing transition from
sv if v 6∈ V(prea) or prea(v) = sv which leads to sv if
v 6∈ V(eff a) or tv if eff a(v) = tv .

As running example, consider a task where a truck can
drive between four locations with a limited amount of fuel
and with the restriction that the engine can only be turned
on with a full tank. This can be encoded as an FDR task
with three variables V = {vt, vf , vs} with domains Dt =
{A, B, C, D}, Df = {2, 1, 0}, and Ds = {off, rd, on}
that represent the position of the truck, the amount of fuel
available, and the status of the engine (off, ready, on), re-
spectively. In the atomic FTS task, shown in Fig. 1a, there
are hence three TSs Θvt ,Θvf ,Θvs , one for each variable.
The task has an action DRx-y,f1-f2 with precondition {vt =
x, vf = f1, vs = on} and effect {vt = y, vf = f2} for every
pair of connected locations (x, y), and every f1, f2 ∈ Df s.t.
f2 = f1 − 1. These actions induce transitions from x to y
in Θvt , from f1 to f2 in Θvf , and a self-looping transition
at state on in Θvs . Furthermore, there exist actions check-
fuel, CF, with precondition {vf = 2, vs = off} and effect
{vs = rd} and ON with precondition {vs = rd} and effect
{vs = on}. All actions have unit cost. The initial state of the
FDR task is sI = {vt = A, vf = 2, vs = off} and its goal
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(a) Atomic task: truck position (Θvt ), fuel (Θvf ), and status (Θvs ).
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(b) After label reduction
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(c) After shrinking and removing
irrelevant label ON.
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(d) After merging and pruning
unreachable states.

Figure 1: Example FTS task where a truck must drive from
A to D with a fuel capacity of 2 and the restriction to first
check the fuel capacity and turn on the engine. Transitions
with wildcards (*) have multiple labels, e.g., DRA-B,* stands
for DRA-B,2-1 and DRA-B,1-0. Each subfigure corresponds to
a reformulation (see Section ).

is G = {vt = D}, which translates to (A, 2, off) being the
initial state (marked with incoming arrows) and all (D, ∗, ∗)
being goal states (marked with double circles) of the FTS
task.

The reverse transformation from an FTS to an FDR task is
not as straightforward and it may require to introduce more
FDR actions than there are labels in the FTS task. The reason
is that transitions in the individual TSs are more expressive
than the precondition-effect tuple of FDR actions because
they can encode a limited form of angelic non-determinism,
disjunctive preconditions, and conditional effects. Consider
the task shown in Fig. 1b, an FTS task of the same plan-
ning task that uses label DR for all drive actions. Translating
this task to FDR requires re-introducing multiple actions to
represent DR for different pairs of locations and amounts
of fuel. One reason is the non-determinism where there are
multiple transitions with the same label and source state, but
different targets. For example, in the state (A, 2, on), we can
apply two transitions with label DR to reach either (C, 1, on)
or (B, 1, on). The non-determinism is angelic because the re-
sult is chosen by the planner at will. Also, the transitions in
Θvf encode a disjunctive precondition (DR is applicable for
vf = 2 or vf = 1) and conditional effects (the result of DR
is vf = 1 iff vf = 2 holds in the source state).



M&S Task Reformulation Framework
A task reformulation is a transformation of a task such that
any solution for the new task can be transformed into a so-
lution for the original task. We follow the definition of task
reduction introduced by Tozicka et al. (2016) but without
requiring the reformulated task to be smaller than the input
task. Most of the reformulations we consider aim to reduce
the size of the task, but reformulations that make the task
bigger may be useful as well, e.g., if it makes the search
space smaller.

Definition 1 (Task reformulation). A task reformulation ρ is
a partial function from tasks to tasks s.t.:

1. ρ(Π) is solvable if and only if Π is solvable, and
2. there exists a plan reconstruction function ←−ρ that maps

each solution π of ρ(Π) to a solution←−ρ (π) of Π.

A task reformulation is polynomial if both ρ and ←−ρ can
be computed in polynomial time in the size of the input task
and the reconstructed plan. It is optimal if, given an opti-
mal plan π of ρ(Π),←−ρ (π) is an optimal plan of Π. We are
interested in polynomial reformulations for optimal and sat-
isficing planning. Note that we explicitly allow the reformu-
lated plan to be exponentially larger than the input task. This
is necessary for domains (e.g. Towers of Hanoi) where the
original plan is exponentially long, but a reformulation with
a solution that implicitly encodes the plan can be found in
polynomial time.

Merge-and-Shrink Transformations
There are multiple M&S transformations that can be used to
reformulate an FTS task ΠT = {Θ1, . . . ,Θn}with labelsL.
A transformation is exact if it preserves the set of solutions
and hence is an optimal reformulation.

Label reduction reduces the set of labels by mapping
some of them to a common new one (Sievers, Wehrle, and
Helmert 2014). It is exact if for any pair of labels `, `′ ∈ L
reduced to the same label, c(`) = c(`′) and ` and `′ induce
the same transitions in all but (at most) one Θi, 1 ≤ i ≤ n.
The task of Fig. 1b is the result of repeatedly applying ex-
act label reduction on the atomic task of Fig. 1a. By itself,
it does not affect the search space, but it reduces the amount
of labels increasing the efficiency and effectiveness of other
transformations.

Shrinking consists of replacing one TS Θi ∈ ΠT by
an abstraction thereof. This results in an abstraction of
the original task, possibly introducing spurious plans that
do not have any counterpart in the original task. There-
fore, not all shrink transformations are suitable for task
reformulation. However, using refinable abstraction hierar-
chies is a long standing idea in planning (Sacerdoti 1974;
Bacchus and Yang 1994; Knoblock 1994). We compute re-
finable abstractions via shrinking strategies based on bisim-
ulation (Milner 1971).

Definition 2 (Bisimulation). Let Θ = 〈S,L, T, sI ,S?〉 be
a TS. An equivalence relation ∼ on S is a goal-respecting
bisimulation iff s ∼ t implies that (a) s ∈ S? ↔ t ∈ S?,
and (b) {[s′] | s `−→ s′ ∈ T} = {[t′] | t `−→ t′ ∈ T} for all
` ∈ L where [s] denotes the equivalence class of s.

Bisimulation shrinking aggregates all states in the same
equivalence class of the coarsest bisimulation of some Θi ∈
ΠT . This is a symmetry-reduction technique that preserves
all plans and as such is an exact transformation (Helmert et
al. 2014; Sievers et al. 2015). In our example (cf. Fig. 1b),
states B and C of Θvt are bisimilar in Θvt and are hence
combined into a new state BC by bisimulation shrinking (cf.
Fig. 1c). Note that shrinking B and C is only possible after
label reduction, since otherwise their outgoing labels differ.

When preserving optimality is not necessary, it suffices
to guarantee that any abstract plan can be refined into a
real plan. Hoffmann, Kissmann, and Torralba (2014) used
shrinking strategies with this property for proving unsolv-
ability with M&S. We re-define these strategies using a dif-
ferent nomenclature based on the notion of weak bisimu-
lation (Milner 1971; 1990). The key idea is to consider τ -
labels which are “internal” to a TS in the sense that they can
always be taken in Θi without changing other TSs. The set
of τ -labels for Θi consists of those labels ` having a tran-
sition sj

`−→ sj ∀sj ∈ Θj ∀Θj , j 6= i. Other definitions are
possible; ours is more general than that of own-labels used
by Hoffmann, Kissmann, and Torralba (2014), whereas there
are stronger notions based on dominance (Torralba 2017;
2018). We use τ==⇒ to denote a (possibly empty) path using
only τ -labels, and s `==⇒ s′ as a shorthand for s τ==⇒ `−→ τ==⇒
s′.

Following the observation by Haslum (2007) that it suf-
fices to focus on paths with labels that either are outside rel-
evant (i.e., have some effect on other variables) or reach the
goal, we devise a variant of weak bisimulation that ignores
some irrelevant paths. We say that a label ` is outside rele-
vant for a transition system Θi if there exists some Θj with
i 6= j such that sj

`−→ tj for some sj 6= tj . A path si
`==⇒ s′i

is relevant for Θi if ` is outside relevant for Θi, or there
does not exist si

τ==⇒ s′′i such that s′i ∼ s′′i . Otherwise, it
is safe to ignore such path in weak bisimulation because the
alternative τ -path can always be used to reach s′′ instead.

Definition 3 (Weak Bisimulation). Let Θ be a TS with a
set τ of τ -labels, and a set Trel of relevant paths. An equiva-
lence relation∼ on S is a goal-respecting weak bisimulation
iff s ∼ t implies (∃s′∈S?s τ==⇒ s′) ↔ (∃t′∈S?t τ==⇒ t′), and
∀`∈L{[s′] | s `==⇒ s′ ∈ Trel} = {[t′] | t `==⇒ t′ ∈ Trel}.

Weak bisimulation shrinking maps all weakly bisimi-
lar states into the same abstract state. In our example (cf.
Fig. 1b), ON is a τ -label in Θvs , therefore states rd and on
of Θvs are weakly bisimilar (both have a single relevant path

DR==⇒ [on]) resulting in Θvs as shown in Fig. 1c.
Another useful abstraction transformation consists of re-

moving TSs with a core state. We say that a state sC is a
core for Θi if (1) for every outside relevant label ` there ex-
ists sC `==⇒ sC , (2) there is a τ -path from the initial state to
sC , and (3) there is a τ -path from sC to a goal state. Such
a TS can be abstracted away because all outside relevant la-
bels can always be reached via a τ -path through sC .

Merging replaces two TSs by their synchronized product.
Fig. 1d shows the FTS task that results from merging Θvf



and Θvs of the FTS task shown in Fig. 1c. Merging is an
exact transformation (Helmert et al. 2014), which comes at
the price that the size of the task grows quadratically with
every merge, so it increases exponentially with the number
of merges. In practice, we limit the maximum size of any
TS in the reformulated task, forbidding any merge that goes
beyond this limit. As label reduction, by itself merging does
not change the reachable search space. However, it often en-
ables additional label reduction, shrinking, and/or pruning.
In our example of Fig. 1d, CF has become a τ -label, so 2off
and 2ro could be reduced by weak bisimulation.

Finally, there are multiple pruning techniques defined in
the M&S framework. If a state si is unreachable (from the
initial state) or irrelevant (cannot reach a goal) in any Θi, it
can be pruned (Helmert et al. 2014). If a label ` is dead (i.e.,
there is no transition labeled with ` in any Θi ∈ ΠT ) or ir-
relevant (i.e., all transitions labeled with ` are self-loop tran-
sitions), then it can be pruned (Sievers, Wehrle, and Helmert
2014). If a TS Θi ∈ ΠT is the only one with a goal de-
fined, i.e., there are no non-goal states in Θj ∈ ΠT with
j 6= i, all outgoing transitions from goal states in Θi can be
removed (Hoffmann, Kissmann, and Torralba 2014). If a TS
has only one state and no dead labels, it can be pruned. All
these pruning techniques preserve at least one optimal plan
and are therefore exact transformations.

Plan Reconstruction
M&S iteratively applies the transformations described above
on a task ΠT = {Θ1, . . . ,Θk}, resulting in a sequence
of reformulation steps ρ1, . . . , ρn producing a sequence of
planning tasks ΠT0 , . . . ,Π

T
n where ΠT0 = ΠT , and ΠTi =

ρi(Π
T
i−1) for i ∈ [1, n]. We can run any planning algorithm

to find a plan πρn = sρn1
`ρn1−−→ sρn2

`ρn2−−→ s3, . . . of the final
task ΠTn . The plan reconstruction procedure is then tasked to
compute a plan π = s1

`1−→ s2
`2−→ . . . for the original task

ΠT from πρn and the sequence of reformulations.
Performing a reconstruction←−ρi for each step ρi has some

overhead because it requires to store each intermediate task.
We avoid this by combining sequences of reformulations
that correspond to merge, label reduction, and bisimulation
transformations. Pruning-based transformations can be ig-
nored by the plan reconstruction procedure because the plan
found is still valid for the original task without any modifi-
cations. Plan reconstruction can be done for the entire trans-
formation at once without storing information about the in-
termediate planning tasks. Therefore, we have a sequence
of transformations ΠT ρ1−→ ΠT1

ρ2−→ ΠT2 . . . with only two
types of reformulations to consider: merging + label reduc-
tion + bisimulation shrinking (ρMLB ), and weak bisimula-
tion shrinking (ρτB ).

We first consider the reconstruction of a reformulation
ρMLB on a task ΠTi , resulting in a task ΠTi+1. The state
space of ΠTi+1 is a bisimulation of the state space of ΠTi ,
so any sequence s1

`1−→ s2
`2−→ . . . in ΠTi has its coun-

terpart α(s) `′1−→ α(s2) `′2−→ . . . in ΠTi+1 and vice versa.
To reconstruct the plan, we need two functions α and λ,
mapping states and labels in ΠTi to states and labels in
ΠTi+1. The α function is computed by M&S heuristics and

compactly represented with the so-called cascading tables
or merge-and-shrink representation (Helmert et al. 2014;
Helmert, Röger, and Sievers 2015). The label mapping is
simply the composition of all label reduction transforma-
tions used by ρMLB .

The plan can be reconstructed step by step, starting from
sI . Given the current factored state s and a step in the ab-
stract plan α(s) `′−→ t′, find a transition s `−→ t such that
α(t) = t′ and λ(`) = `′. Note that the straightforward ap-
proach of enumerating all transitions applicable from s is not
guaranteed to terminate in polynomial time because, unlike
in FDR tasks where the number of successors is bounded
by the number of actions, in FTS there may be exponen-
tially many successors in the size of the task. However, one
can use the cascading tables representation to retrieve a fac-
tored state t = (t1, . . . , tn) such that s `−→ t, `′ = λ(`)
and α(t) = t′. This works as follows: First, for each tran-
sition system Θi, obtain the set S′i of target states ti such
that si

`−→ ti for any label ` such that `′ = λ(`). Then, tra-
verse the cascading tables and, for each intermediate table
that maps states of two transition systems Θi,Θj to an ab-
stract TS Θγ = γ(Θi ⊗ Θj), compute the set of abstract
states Sγ = {sγ | ∃si∈S′

i,sj∈S′
j
sγ = γ((si, sj))}, mapping

each sγ ∈ Sγ to one such (si, sj) pair. This allows us to
keep track of one factored state for each abstract state. After
all cascading tables have been traversed, it suffices to return
the factored state t associated with the abstract state t′.

Proposition 1. Label reduction, merging (up to a size limit),
pruning and bisimulation shrinking are optimal and polyno-
mial reformulations.

Proof. It is well-known that all these techniques can be
computed in polynomial time (Helmert et al. 2014; Sievers,
Wehrle, and Helmert 2014). Each step of the plan can be
reconstructed by traversing the cascading-tables representa-
tion, which is polynomial in the size of the input task.

We now consider the reconstruction of a reformula-
tion ρτB on a task ΠTi = {Θ1, . . . ,Θk} where ρτB ap-
plies weak bisimulation shrinking to some TS in ΠTi . We
assume WLOG that Θ1 is the shrunk TS, so ΠTi+1 =

{ατB (Θ1),Θ2, . . . ,Θk}. As ατB is induced by a weak
bisimulation on the states of Θ1, then for any state s in ΠTi
and any transition ρτB (s) `−→ tρ in the reformulated task,
there exists a path s `==⇒ t in the original task such that
ρτB (t) = tρ. Therefore, to reconstruct the plan for ΠTi from
a plan for ΠTi+1 one must re-introduce the τ -label transitions
until reaching a state where ` is applicable and this results
in some t such that ρτB (t) τ==⇒ tρ. The search can be done
locally in Θ1 because τ -labels have self-loop transitions in
other TSs. To do so, we first look for all states u1 such that
u1

`−→ ( τ−→)∗t1 in Θ1 and (ατB (t1), s[Θ2], . . . , s[Θn]) = tρ.
Then, we run uniform-cost search from s[Θ1] using only
transitions with τ -labels until we reach such an u1. Note that
this runs in polynomial time in the size of the input task.

This procedure has similarities with red-black plan re-
pair (Domshlak, Hoffmann, and Katz 2015), the plan re-
construction of the merge values reformulation (Tozicka et



al. 2016), or decoupled search (Gnad and Hoffmann 2018).
These algorithms repair an abstract/relaxed plan by intro-
ducing additional actions to enable the preconditions ig-
nored by the relaxed plan. Our case is slightly more com-
plex because the same label may have multiple targets so
one must ensure the remaining abstract plan is applicable in
the resulting state.

If a TS Θi with a core state sC was abstracted away,
its corresponding path must be reconstructed as well. For
each transition in the abstract plan with label `, we find the
shortest si

`==⇒ s′i from the current state si (initialized to
the initial state of Θi in the first iteration, and to the final
state in the path of the previous iterations afterwards), and
s′i

τ==⇒ sC . Note that to keep the plan shorter, we do not
enforce the τ -path to go via the core state, but rather the
condition above suffices to ensure that the rest of the plan
can be reconstructed.
Proposition 2. Weak bisimulation shrinking is a polynomial
reformulation.

Proof. The coarsest weak bisimulation of a TS can be com-
puted by computing the bisimulation of the transitive clo-
sure of the TS over τ . Each step of the plan reconstruction
corresponds to an uniform-cost search on each TS. Both op-
erations take polynomial time in the size of the TS.

Consider the following plan of the task shown in Fig. 1c:
(A, 2, off) CF−−→ (A, 2, ro) DR−−→ (BC, 1, ro) DR−−→ (D, 0, ro). To
reconstruct the plan for the task prior to weak bisimulation
shrinking (cf. Fig. 1b), we execute it and, when DR cannot
be applied in rd, we insert a τ -transition with ON resulting
in the plan: (A, 2, off) CF−−→ (A, 2, rd) ON−−→ (A, 2, on) DR−−→
(BC, 1, on) DR−−→ (D, 0, on). Then, we reconstruct the plan
for the atomic task of Fig. 1a step by step, resulting in a
plan: (A, 2, off) CF−−→ (A, 2, rd) ON−−→ (A, 2, on) DRA-B,2-1−−−−−→
(B, 1, on) DRB-D,1-0−−−−−→ (D, 0, on).

Relation to FDR Reformulation Methods
The M&S reformulations are closely related to pre-
vious FDR reformulation methods like the generalize
actions (Tozicka et al. 2016), fluent merging (Seipp
and Helmert 2011), and abstraction-based reformula-
tions (Helmert 2006b; Haslum 2007; Tozicka et al. 2016). To
compare reformulation methods over different formalisms,
we consider that a method dominates another if it can per-
form the same reformulations.
Definition 4 (Dominance of Reformulation Methods). An
FTS task reformulation method X dominates an FDR refor-
mulation method Y if, given an FDR task ΠV and a reformu-
lation ρY ∈ Y applicable over ΠV , there exists a reformu-
lation ρX ∈ X such that it is applicable in atomic(ΠV)
and ρX(atomic(ΠV)) = atomic(ρY (ΠV)). We say that
the domination is strict if there exists ρX ∈ X such that
it is applicable in atomic(ΠV) but there does not exist
any ρY ∈ Y applicable in ΠV and ρX(atomic(ΠV)) =
atomic(ρY (ΠV)).

The generalize actions reformulation reduces the num-
ber of FDR actions by substituting two actions by a single

one if they are equal except for a precondition on a binary
variable. Formally, whenever there is a variable w with do-
main Dw = {x, y}, and two actions a1, a2 s.t. V(prea1) =
V(prea2), ∀v ∈ (V(prea1) \ {w}) prea1(v) = prea2(v),
prea1(w) = x, prea2(w) = y, and eff a1 = eff a2. Then,
a1 and a2 can be replaced by a′ where eff a′ = eff a1 and
prea′(v) = prea1(v) ∀v ∈ (V(prea1) \ {w}).

Theorem 1. Exact label reduction strictly dominates the
generalize actions reformulation.

Proof Sketch. If generalize actions replaces a1 and a2 in ΠV

by a′, then there are labels `1 and `2 in atomic(ΠV) that cor-
respond to a1 and a2 and a TS Θw that corresponds to w in
ΠV . As a1 and a2 have the same effects and preconditions on
all variables except v, then `1 and `2 are equal except for Θw

so they can be reduced. Label reduction is more general be-
cause it may result in transitions with different targets from
the same state and label, which is not possible in FDR.

Fluent merging is an FDR reformulation inspired by the
merge transformation in M&S (Seipp and Helmert 2011). It
replaces two variables v1, v2 ∈ V by their product, resulting
in a variable v1,2 with domain Dv1,v2 = Dv1 ×Dv2 . How-
ever, adapting the FDR actions is not straightforward since
they would require disjunctive preconditions. For example,
if action a1 has a precondition on v1 but not on v2, then the
action is applicable for several values of Dv1,v2 but not for
all of them. Since FDR does not allow for disjunctive pre-
conditions, multiple copies of the actions are needed to en-
code the preconditions and effects on the new variable. Simi-
larly, auxiliary actions must be added to encode a disjunctive
goal whenever a goal and a non-goal variable are merged. In
this case, the merge transformation does not dominate fluent
merging because it does not add such auxiliary labels and
transitions. This is arguably an advantage since adding them
is not expected to be beneficial or, otherwise, an equivalent
reformulation could be defined in M&S.

The use of abstraction for task reformulation in planning
has a long history (Knoblock 1994). The key idea is to solve
an abstraction of the problem and then refine the abstract
solution by filling the gaps. Not all abstractions are suit-
able for this, since they need to ensure that any solution for
the abstract task can be refined into a plan for the original
task. Abstractions with this property are said to be refinable.
Abstraction reformulations were first applied in FDR by the
Fast Downward planner (Helmert 2006a). Their reformula-
tion abstracts away any root variable in the causal graph (i.e.,
does not have dependencies on other variables) whose free
domain transition graph is strongly connected (i.e., one can
always set the variable to any desired value by applying a se-
quence of actions). This was generalized by Haslum (2007)
into the safe variable abstraction reformulation under the
observation that (1) it suffices to consider values that are rel-
evant for other variables (because they are precondition or
effect of an action that has another variable in its effect); and
(2) the goal only needs to be achieved at the end of the plan
so the goal value must be free reachable from other relevant
values, but it is not necessary that other values are reachable
from the goal value.



Finally, one can also ignore the difference among some
values of a variable without ignoring it completely: the
merge values reformulation reduces the domain of an FDR
variable by merging several values whenever they can be
switched via actions without any side effects (Tozicka et al.
2016). Formally, let v be a variable with x, y ∈ Dv , and a1

and a2 be actions s.t. V(prea1) = V(eff a1) = V(prea2) =
V(eff a2) = {v}, and prea1(v) = eff a2(v) = x, and
prea2(v) = eff a1(v) = y. Then, x may be removed from
Dv , replacing every occurrence of x in A, I , and G by y.

As all these methods, weak bisimulation shrinking obtains
a refinable abstraction, but on the FTS representation, taking
advantage of the flexibility of M&S to compute abstractions.

Theorem 2. Removing transition systems with core states
after applying weak bismulation shrinking strictly domi-
nates the safe variable abstraction reformulation.

Proof Sketch. If a variable is abstracted away, abstract states
corresponding to the values that appear in the preconditions
of outside relevant actions are all weakly bisimilar. After
shrinking, the resulting abstract state is a core state.

Theorem 3. Weak bisimulation shrinking strictly dominates
the merge values reformulation.

Proof Sketch. If values x, y of variable v are merged, there
exist `1, `2 in atomic(ΠV) corresponding to a1, a2, and a
TS Θv representing v. As v is the only variable in the pre-
conditions and effects of a1 and a2, `1 and `2 are τ -labels
in Θv . Since x τ==⇒ y and y τ==⇒ x, x and y are weakly
bisimilar.

Search on the FTS Representation
To use our reformulation framework, planning algorithms
must be used to find a solution to the reformulated FTS task.
Heuristic search is a leading approach for solving classical
planning problems (Bonet and Geffner 2001). A compilation
into an FDR task having an action for each combination of
transitions with the same label in different TSs is possible,
but may incur a big overhead, potentially losing any gains
obtained by the reformulation methods. Here, we consider
how to apply heuristic search algorithms to FTS tasks by
defining the successor generation and heuristic evaluation.

Successor generation is the operation that, given a state s,
generates all transitions s l−→ t in the state space of the task.
This typically is done in two steps: (1) generate the set of
actions that are applicable in s and (2) for each such action
obtain the corresponding successor state.

Since the number of actions in FDR tasks may be very
large, iterating over all of them to check whether they are
applicable in s is inefficient. The Fast Downward Planning
System uses a tree data-structure to efficiently retrieve the
applicable actions in a given state (Helmert 2006b). How-
ever, this data-structure relies on actions being applicable
either only for one value of each variable if v ∈ V(prea)
or in all values of such variable otherwise. This is no longer
true for labels in the FTS representation. A label is appli-
cable in a factored state s if there exists an outgoing tran-
sition s[Θi]

l−→ ti for each Θi ∈ ΠT . Since there may be

any number of transitions in each Θi from any number of
source states, labels may be applicable for arbitrary sets of
states. We pre-compute for every abstract state si ∈ Θi the
set of labels with an outgoing transition from si, denoted
Lsi . Then, given a state s, the set of applicable labels can be
computed as

⋂
Θi
Ls[Θi].

Step (2) is simple in FDR since the new state is a copy
of s, overriding the value of variables in the effect. In the
FTS representation, however, there may be multiple succes-
sors from s with label `. We enumerate all possible succes-
sors by considering all outgoing transitions from s[Θi] in
every Θi. To do this efficiently, for each label ` we divide
the set of TSs in ΠT in three sets: the irrelevant TSs where `
only induces self-loop transitions, deterministic TSs where
for every si ∈ Θi there is a single outgoing transition with
`, and non-deterministic TSs where there may be multiple
transitions from the same source state. Only the latter require
to enumerate all possible transitions, whereas irrelevant TSs
are ignored and the effect on deterministic TSs can be set as
in FDR tasks.

We now discuss how to derive heuristic functions for the
FTS representation, which are essential to guide the search
and find solutions to large tasks. As most heuristic functions
have originally been defined for STRIPS or FDR, they need
to be adapted to use them in FTS tasks. This is similar to
adding support for a limited form of disjunctive precondi-
tions and conditional effects. In optimal planning, we use
merge-and-shrink heuristics since they are already based on
FTS.

To apply our reformulation framework on satisficing plan-
ning, we adapt the FF heuristic (Hoffmann and Nebel 2001).
FF is based on the delete-relaxation, ignoring the delete ef-
fects of STRIPS actions. In FDR, “ignoring deletes” is inter-
preted as ignoring the negative effect of the actions, so that
variables accumulate values instead of replacing them. This
is easily extrapolated to the FTS representation by consider-
ing that each TS may simultaneously be in multiple states.

To compute the heuristic, we compile our task into an
FDR task with one unary action asi,`,ti for each transition
si

`−→ ti in some Θi. This action has ti as effect, and si
as precondition plus additional preconditions for each other
Θj where l is not applicable in all states. If there is a single
state sj ∈ Θj where ` is applicable, we add sj to the pre-
condition of asi,`,ti . If there are more than one, we add an
auxiliary fact to our task f`,j that represents the disjunction
of those states, as well as auxiliary unary actions from each
of those states to f`,j .

Afterwards, we retrieve the relaxed plan as a set of transi-
tions si

`−→ ti, and add the cost of all their labels to obtain the
heuristic value. One difference to FF for FDR is that there,
FF counts each action only once because no action needs
to be applied more than once in delete-free tasks. We do
not do this to avoid underestimating the goal distance when
the same label may have different effects (e.g. label DR in
Fig.1b).

The delete-relaxation is also useful to select preferred ac-
tions. In FDR, an action is preferred in state s if it belongs
to the relaxed plan of FF for s. In FTS, we consider s `−→ t to
be preferred if the relaxed plan from s contains a transition



labeled with ` and with target ti s.t. ∃Θit[Θi] = ti.

Experiments
We implemented the M&S reformulation framework in Fast
Downward (FD) (Helmert 2006b), using its existing M&S
framework (Sievers 2018) and extending it with weak bisim-
ulation as well as pruning transformations that remove dead
labels and irrelevant TSs and labels. We also modified the
layout of the algorithm: firstly, since our pruning transfor-
mations might trigger further pruning opportunities, we al-
ways repeatedly apply them until a fixpoint is reached. Sec-
ondly, we run label reduction and shrinking on the atomic
FTS task until no more simplifications are possible. Finally,
we cannot exactly control the amount of shrinking done be-
cause this would result in non-refinable abstractions that do
not admit plan reconstruction. Instead, we restrict merging
to satisfy the size limit and only shrink after merging and
pruning.

To consider the effects of some of the M&S transforma-
tions on the task reformulation individually, we consider the
following configurations. As the simplest baseline, we only
transform the FDR task (FDR) into the atomic FTS task (a),
without any further transformations. This does not affect the
state space at all, but serves for quantifying the overhead of
our implementation over FD, mainly due to using different
data structures to represent the task and perform successor
generation. Another variant of atomic adds exact label re-
duction and shrinking (a-ls), either based on bisimulation
for optimal planning or weak bisimulation for satisficing
planning. Other configurations combine label reduction and
shrinking with a merge strategy. For the latter, we consider
DFP (d-ls) and sbMIASM (m-ls, called dyn-MIASM origi-
nally) (Sievers, Wehrle, and Helmert 2014), with a size limit
of 1000 on the resulting product. We did not find qualita-
tive differences with size limits of 100 and 10000. We im-
pose a time limit of 900s on the reformulation process. For
the overall planning, we use a limit of 3.5 GiB and 1800s.
We use all STRIPS benchmarks from the optimal/satisficing
tracks of all IPCs, two sets consisting of 1827/1816 tasks
across 48 unique domains.1

Search Space Reduction
To assess the impact of our task reformulations on the reach-
able state space, we run uniform-cost search and evaluate the
number of expansions until the last f -layer. Fig. 2 compares
the FDR representation against a-ls and d-ls with bisimu-
lation (top) and weak bisimulation (bottom) shrinking. We
observe that even with only label reduction and bisimulation
shrinking (a-ls) there are state space reductions of up to one
order of magnitude in some cases. Most of these gains are
due to shrinking, given that label reduction does not change
the state space and pruning cannot be performed often in the
atomic representation due to the preprocessing of FD. When
using merge transformations (d-ls), state space reductions
can often be of up to several orders of magnitude. It is worth

1Implementation: https://doi.org/10.5281/
zenodo.3232878, dataset with benchmarks: https:
//doi.org/10.5281/zenodo.3232844.
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Figure 2: Expansions until last f -layer of blind search on the
FDR task and different reformulated FTS tasks, using bisim-
ulation (top) and weak bisimulation (bottom) for shrinking.

noting that merging does not affect the state space, so this
reduction is due to the synergy with pruning and shrinking.

If optimality does not need to be preserved, larger reduc-
tions can be achieved with weak bisimulation shrinking. In
this case, 305 tasks (including entire domains like logistics,
miconic, movie, rovers, and zenotravel) can be solved dur-
ing the reformulation resulting in 0 expansions (points on
the x-axis). The reason is that weak bisimulation shrinks
away entire TSs (e.g., if they form a single connected com-
ponent with actions without side preconditions or effects,
which translate to τ -labels). An example is logistics: as
trucks/airplanes can always freely change their location with
the drive/fly action, weak bisimulation simplifies the TSs de-
scribing their position, after which the TSs for packages can
also be simplified. Previous abstraction reformulation ap-
proaches solved many of these domains too, with the excep-
tion of Rovers, where they obtained reductions but without
completely simplifying the domain. With merge reformula-
tions, 460 tasks are solved with DFP (completely solving
transport-opt), and 514 with MIASM (solving all but two
instances in parcprinter-opt). This is remarkable given the
low limit of 1000 abstract states.

Results with Informed Search
We evaluate the impact of our reformulations in terms of
coverage (see Table 1), expansions, and total time (see
Fig. 3). On the optimal benchmarks, we run A∗ with hmax

and M&S with DFP using a 50000 size limit and (ap-
proximate) bisimulation shrinking. On the satisficing bench-
marks, we run lazy greedy search with hFF, with and with-
out preferred operators. The comparison of FDR and atomic
(a) shows that our implementation has some overhead. Both
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Figure 3: Expansions until last f -layer and total time of a vs. a-ls (left) and a-ls vs. d-ls (right) for A∗with M&S (left block)
and lazy greedy search with hFFand preferred operators (right block).

configurations explore the same state space with very sim-
ilar heuristics. hmax and hFF are computed in the same way
with no big overhead and the runtime of plan reconstruc-
tion is usually negligible. In terms of heuristic value, hmax

is identical and hFF only differs due to tie-breaking and be-
cause some actions may be counted twice. One of the main
sources of overhead is the memory used to represent FTS
tasks. Our data structures use O(|L|) memory on each TS,
whereas in FDR no memory is wasted for variables not men-
tioned in the preconditions or effects.

Label reduction and shrinking on the atomic FTS task (a-
ls) is useful in most cases, increasing total coverage in all
configurations. This reformulation reduces the state space
as well as the task description size (i.e. reducing the TSs in
the FTS representation). Therefore, gains in expanded nodes
usually translate into lower search times, and it can pay off
despite the overhead of the precomputation phase on total
time.

Merge reductions (d-ls), however, are oftentimes harm-
ful in combination with delete-relaxation heuristics (hmax

and hFF), due to the overhead caused by increasing the task
size. Nevertheless, they can be very useful in some domains,
whenever there is enough synergy with pruning (e.g. wood-
working, tpp) or shrinking (e.g. childsnack). Indeed, for all
heuristics we tried, merge reformulations are useful in at
least a few domains. This is also reflected in the orcl col-
umn that shows how many instances are solved by any of
our configurations. This is often much larger than our atomic
configuration, but also than the FDR baseline, showing that
if the right reformulations are chosen for each domain, they
can compensate for the overhead of using an FTS represen-
tation.

The results of d-ls with M&S heuristics are different be-
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3a 6 – 13 28 22 1272
a-ls 18 15 – 31 24 1368
d-ls 10 10 4 – 11 1208
m-ls 13 15 7 21 – 1224

FDR – 17 15 24 23 1502

h
FF

p.
:1

58
9

a 8 – 11 25 24 1461
a-ls 13 8 – 26 26 1471
d-ls 9 6 2 – 15 1357
m-ls 9 7 3 16 – 1322

Table 1: Domain comparison of coverage for A∗(left) with
hmax(top) and M&S (bottom), and lazy greedy search (right)
with hFF, without (top) and with (bottom) preferred opera-
tors. A value in row x and column y denotes the number of
domains where x is better than y. It is bold if this is higher
than the value in y/x. Column “tot” shows total coverage and
“orcl” shows the oracle, i.e., per-task maximized, coverage
over our algorithms (thus excluding FDR).

cause there are more cases where the heuristic is less in-
formed after the d-ls reformulation, increasing the number
of expansions. There is also a large number of instances
where the heuristic value for the initial state is perfect for
a-ls whereas a large amount of search is needed with d-ls.
The reason is that the options available for the merge strat-
egy during the reformulation are reduced by the limit on ab-
stract states, leading to different merge decisions, and pos-
sibly degrading the quality of the heuristic. However, with



M&S heuristics there is no overhead in runtime so d-ls pays
off more often.

The rightmost two columns of Fig. 3 show results with
hFFand preferred operators for satisficing planning. The re-
ductions obtained by weak bisimulation shrinking are much
stronger than by optimality preserving strategies, improving
the performance of a-ls and d-ls in terms of expanded nodes.
In terms of runtime, a-ls is useful in many cases despite the
overhead caused by spending up to 900s in preprocessing.
Merge reformulations, however, increase the computational
cost of the heuristic, so they do not pay off over a-ls except
in a few cases where the reduction is huge.

Conclusion
In this work, we use the M&S framework for task reformula-
tion and analyze its advantages over reformulations in FDR.
Our results show a large potential of state space reductions,
that sometimes can solve entire domains without any search.

The framework has even more potential by integrat-
ing new reformulation methods like subsumed transition
pruning (Torralba and Kissmann 2015), or graph factoriza-
tion (Wehrle, Sievers, and Helmert 2016). Our results also
show that not all reformulations are always helpful. Thus,
to materialize all this potential, methods to automatically
select the best reformulation method for each domain are
also of great interest (Gerevini, Saetti, and Vallati 2009;
Fuentetaja et al. 2018).
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Dräger, K.; Finkbeiner, B.; and Podelski, A. 2009. Directed model
checking with distance-preserving abstractions. International
Journal on Software Tools for Technology Transfer 11(1):27–37.
Fuentetaja, R.; Barley, M. W.; Borrajo, D.; Douglas, J.; Franco, S.;
and Riddle, P. J. 2018. Meta-search through the space of repre-
sentations and heuristics on a problem by problem basis. In Proc.
AAAI’18, 6169–6176.
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An automatically
configurable portfolio-based planner with macro-actions: PbP. In
Proc. ICAPS’09, 350–353.
Gnad, D., and Hoffmann, J. 2018. Star-topology decoupled state
space search. Artificial Intelligence 257:24 – 60.
Haslum, P. 2007. Reducing accidental complexity in planning
problems. In Proc. IJCAI’07, 1898–1903.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge & shrink abstraction: A method for generating lower bounds
in factored state spaces. Journal of the Association for Computing
Machinery 61(3).
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible abstrac-
tion heuristics for optimal sequential planning. In Proc. ICAPS’07,
176–183.
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