Merge-and-Shrink Task Reformulation for Classical Planning

Anonymous Submission

Abstract

The performance of domain-independent planning systems heavily depends on how the planning task has been modeled. This makes task reformulation an important tool to get rid of unnecessary complexity and increase the robustness of planners with respect to the model chosen by the user. In this paper, we represent tasks as factored transition systems (FTS), and use the merge-and-shrink (M&S) framework for task reformulation for optimal and satisficing planning. We prove that the flexibility of the underlying representation makes the M&S reformulation methods more powerful than the counterparts based on the more popular finite-domain representation. We adapt delete-relaxation and M&S heuristics to work on the FTS representation and evaluate the impact of our reformulation.

Introduction

Classical planning deals with the problem of finding a sequence of actions that achieve a set of goals, given a model of the world that describes an initial state and a set of available actions. For representing the problem, different planning formalisms can be used, the most common being STRIPS or finite-domain representation (FDR). The choice of formalism does not change the complexity of the problem, which is PSPACE-complete (Bylander 1994; Bäckström and Nebel 1995). However, it may impact the so-called accidental complexity, when the structure of the task is disguised by how it is encoded (Haslum 2007).

Accidental complexity can be dealt with by reformulating the planning task prior to solving it. There are several reformulation methods based on, e.g., abstraction (Haslum 2007) or tunnel macros (Coles and Coles 2010), which can be combined to reduce the size of FDR tasks (Tozicka et al. 2016).

Merge-and-Shrink (M&S) is a general framework to generate abstractions, originally defined in the model-checking area (Dräger, Finkbeiner, and Podelski 2006; 2009), that can be used to derive an admissible heuristic (Helmhert, Haslum, and Hoffmann 2007; Helmert et al. 2014) and/or detect unsolvability (Hoffmann, Kissmann, and Torralba 2014). Further work on the topic noticed that this can be understood as applying transformations to a set of transition systems (Sievers, Wehrle, and Helmert 2014) and hence as a method to transform planning tasks in the factored transition system (FTS) representation (Torralba and Kissmann 2015). However, these methods perform the search on an FDR task, only using M&S to derive heuristics or remove irrelevant actions.

In this paper, we use M&S as a task reformulation method on FTS tasks. Our first contribution is to analyze existing M&S transformations to determine which ones can be used for optimal and satisficing reformulation. We provide algorithms that transform solutions for the reformulated task into plans for the original task. Our second contribution is to prove that our reformulations dominate their counterparts based on FDR representations, i.e., a suitable combination of existing M&S transformations can always do the same (and sometimes more) simplifications to any task.

To search on the FTS representation, planning algorithms and heuristics originally devised for STRIPS or FDR tasks must be adapted. As the FTS formalism is slightly more expressive than FDR, this is similar to adapting algorithms to support (a limited form of) disjunctive preconditions and conditional effects. Our third contribution is to adapt heuristic search methods with M&S and delete-relaxation heuristics for the FTS representation.

Representation of Planning Tasks

A planning task is a compact representation of a TS. A transition system (TS) is a tuple \(\Theta = (S, L, T, s_0, S^*) \) where \(S \) is a finite set of states, \(L \) is a finite set of labels each associated with a label cost \(c(\ell) \in \mathbb{R}_+^* \), \(T \subseteq S \times L \times S \) is a set of transitions, \(s^1 \in S \) is the initial state, and \(S^* \subseteq S \) is the set of goal states. We use \(s \in \Theta \) to refer to states in \(\Theta \), \(s \xrightarrow{\ell} t \in \Theta \) to refer to transitions, and \(s \xrightarrow{\ell} s' \) denotes to denote a path using only labels in \(L' \subseteq L \). An s-plan for a state \(s \) is a path from \(s \) to any \(s_G \in S^* \). Its cost is the summed label costs of all labels of the path. The perfect heuristic, \(h^*(s) \), is the cost of a cheapest s-plan. An s-plan is optimal iff its cost equals \(h^*(s) \). A plan for \(\Pi \) is an s'-plan.

An abstraction is a function \(\alpha \) mapping states in \(\Theta \) to a set of abstract states \(S^\alpha \). The abstract state space \(\Theta^\alpha \) is \(\langle S^\alpha, L, T^\alpha, s_0^\alpha, S^*_\alpha \rangle \), where \(\alpha(s) \xrightarrow{\ell} \alpha(s') \in T^\alpha \) iff \(s \xrightarrow{\ell} s' \) in \(\Theta \), \(s_0^\alpha = \alpha(s_0) \), and \(S^*_\alpha = \{ \alpha(s) \mid s \in S^* \} \).

FDR Representation An FDR task is a tuple \(\Pi^\nu = \langle V, A, s^*, G \rangle \). \(V \) is a finite set of variables \(v \), each with a
finite domain D_v. A partial state is a function s on a subset $V(s)$ of V, so that $s(v) \in D_v$ for all $v \in V(s)$; s is a state if $V(s) = V$. s^2 is the initial state and the goal G is a partial state. A is a finite set of actions. Each $a \in A$ is a tuple $(\text{pre}_a, \text{eff}_a, c(a))$ where pre_a and eff_a are partial states, called its precondition and effect, and $c(a) \in \mathbb{R}^+_0$ is its cost. An action a is applicable in a state s if $\forall v \in V(\text{pre}_a) s(v) = \text{pre}_a(v)$. Applying it yields the successor state $s[a]_s$ with $s[a]_s(v) = \text{eff}_a(v)$ if $v \in V(\text{eff}_a)$ and $s[a]_s(v) = s(v)$ otherwise.

A planning task defines a state space, which is a TS where S is the set of all states, $s^I = s^2$, $s \in S^*$ if $\forall v \in V(G) \mathcal{G}(v) = s(v)$, $L = A$, and $s \not\sim s[a]_s \in T$ if a is applicable in s.

FTS Representation

An FTS task is a set of TSs $\{\Theta_1, \ldots, \Theta_n\}$ with a common set L of labels. The synchronized product $\Theta_1 \otimes \Theta_2$ of two TSs is another TS with states $S = \{(s_1, s_2) \mid s_1 \in \Theta_1 \land s_2 \in \Theta_2\}$, labels $L = L_1 = L_2$, transitions $T = \{(s_1, s_2) \xrightarrow{a} (s'_1, s'_2) \mid s_1 \rightarrow \in \Theta_1 \land s_2 \rightarrow \in \Theta_2\}$, initial state $s^I = (s^I_1, s^I_2)$, and goal states $S^* = \{(s_1, s_2) \mid s_1 \in S^*_1 \land s_2 \in S^*_2\}$.

The state space of an FTS task $\Pi^T = \{\Theta_1, \ldots, \Theta_n\}$ is defined as $\Theta = \Theta_1 \otimes \ldots \otimes \Theta_k$. Whenever it is not clear from context, we will use subscripts to differentiate states in the state space $(s, s', t \in \Theta)$ and in the individual components $(s_i, s_i', t_i \in \Theta_i)$. Given $s \in \Theta$, we write $s[\Theta_i]$ to refer to the projection of s onto Θ_i. A solution π for an FTS task is a sequence of states $s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} \ldots \xrightarrow{a_n} s_k$ such that $s_k \in S^*$.

Relation

There is a very close connection between an FTS and an FDR task, since TSs in the FTS task correspond to FDR variables with domain equal to the set of states of the TS. Then, states in FDR (which are assignments of values to variables) correspond to states in the FTS representation, which are an assignment of states s_i to each Θ_i.

Given an FDR task Π^ρ it is simple to construct the corresponding FTS task, which we call the atomic representation of Π^ρ. There is a TS Θ_v for every variable v, with one state $s_v \in \Theta_v$ per value in D_v. For every action $a \in A$, there is an outgoing transition from s_v if $v \notin V(\text{pre}_a)$ or $\text{pre}_a(v) = s_v$ which leads to s_v if $v \notin V(\text{eff}_a)$ or t_v if $\text{eff}_a(v) = t_v$.

The reverse transformation from an FTS to an FDR task is not as straightforward and it may require to introduce more FDR actions than there are labels in the FTS task. The reason is that transitions in the individual TSs are more expressive than the precondition-effect tuple of FDR actions because they can encode a limited form of angelic non-determinism, disjunctive preconditions, and conditional effects.

Consider a task where a truck can drive between four locations with a limited amount of fuel. This can be encoded as an FDR task with two variables $V = \{v_t, v_f\}$, with domain $D_v = \{A, B, C, D\}$ and $D_f = \{2, 1, 0\}$ that represent the position of the truck and the amount of fuel available, respectively. In the atomic FTS task, shown in Fig. 1a, there are hence two TSs Θ^{ν_t}, Θ^{ν_f}, one for each variable. The task has an action DR_{xy}, f_1, f_2 with precondition $\{v_t = x, v_f = f_1\}$ and effect $\{v_t = y, v_f = f_2\}$ for every pair of connected locations (x, y), and every $f_1, f_2 \in D_f$ s.t. $f_2 = f_1 - 1$.

These actions induce transitions from x to y in Θ^{ν_t} and from f_1 to f_2 in Θ^{ν_f}. Assuming $s^I = \{v_t = A, v_f = 2\}$ and $G = \{v_t = D\}$ in the FDR task, the initial state of the FTS task is $(A, 2)$ (marked with an incoming arrow) and all $(D,*)$ states are goal states (marked with double circles).

To see that the reverse transformation can be non-straightforward, consider the task shown in Fig. 1b, an FTS model of the same planning task that uses only one label, DR. Translating this task to FDR requires re-introducing multiple actions to represent DR for different pairs of locations and amounts of fuel. One reason is the non-determinism where there are multiple transitions with the same label and source state, but different targets. For example, in the initial state (A, 2), we can apply two transitions with label DR to reach either (C, 1) or (B, 1). The non-determinism is angelic because the result is chosen by the planner at will. Also, the transitions in Θ^{ν_t} encode a disjunctive precondition (DR is applicable for $v_f = 2$ or $v_f = 1$) and conditional effects (the result of DR is $v_f = 1$ if and only if $v_f = 2$ holds in the source state).

M&S Task Reformulation Framework

A task reformulation is a transformation of a task such that any solution for the new task can be transformed into a solution for the original task. We follow the definition of task reduction introduced by Tozicza et al. (2016) but without requiring the reformulated task to be smaller than the input task. Most of the reformulations we consider aim to reduce the size of the task, but reformulations that make the task bigger may be useful as well, e.g., if it makes the search space smaller.

Definition 1 (Task reformulation)

A task reformulation ρ is a partial function from tasks to tasks s.t.:

1. $\rho(\Pi)$ is solvable if and only if Π is solvable, and
2. there exists a plan reconstruction function $\overline{\rho}$ that maps each solution π of $\rho(\Pi)$ to a solution $\overline{\rho}(\pi)$ of Π.

A task reformulation is polynomial if both ρ and $\overline{\rho}$ can be computed in polynomial time in the size of the input task and the reconstructed plan. It is optimal if, given an optimal plan π of $\rho(\Pi)$, $\overline{\rho}(\pi)$ is an optimal plan of Π. We are interested in polynomial reformulations for optimal and satisfying planning. Note that we explicitly allow the reformulated plan to be exponentially larger than the input task.
is necessary for domains (e.g. Towers of Hanoi), where the original plan is necessarily exponential on the size of the input task but a reformulation that ensures a solution and implicitly encodes the plan can be found in polynomial time.

Merge-and-Shrink Transformations

There are multiple M&S transformations that can be used to reformulate an FTS task $\Pi^T = \{\Theta_1, \ldots, \Theta_n\}$ with labels L.

Label reduction reduces the set of labels by mapping some of them to a common new one (Sievers, Wehrle, and Helmer 2014). A label reduction is exact if for any pair of labels $\ell, \ell' \in L$ reduced to the same label, $c(\ell) = c(\ell')$ and ℓ and ℓ' induce the same transitions in all but (at most) one Θ_i, $1 \leq i \leq n$. The example of Fig. 1b can be automatically obtained by repeatedly applying label reduction on the atomic task of Fig. 1a.

Merging replaces two TSs by their synchronized product. The size of the task grows quadratically with every merge, so it increases exponentially with the number of merges. In practice, we limit the maximum size of any TS in the reformulated task, forbidding any merge that goes beyond this limit.

There are multiple *pruning* techniques defined in the M&S framework. If a state s_i is unreachable (from the initial state) or irrelevant (cannot reach a goal) in any Θ_i, it can be pruned (Helmer et al. 2014). If a label ℓ is dead (i.e., there is no transition labeled with ℓ in any $\Theta_i \in \Pi^T$) or irrelevant (i.e., all transitions labeled with ℓ are self-loop transitions), then it can be pruned (Sievers, Wehrle, and Helmer 2014). If a TS $\Theta_i \in \Pi^T$ is the only one with a goal defined, i.e., there are no non-goal states in $\Theta_j \in \Pi^T$ with $j \neq i$, all outgoing transitions from goal states in Θ_i can be removed (Hoffmann, Kissmann, and Torralba 2014). If a TS has only one state and no dead labels, it can be pruned.

Shrinking consists of replacing one TS $\Theta_i \in \Pi^T$ by an abstraction thereof. This results in an abstraction of the original task, possibly introducing spurious plans that do not have any counterpart in the original task. Therefore, not all shrink transformations are suitable for task reformulation. However, using refinable abstraction hierarchies is a long standing idea in planning (Sacerdotti 1974; Bacchus and Yang 1994; Knoblock 1994). We compute refinable abstractions via shrinking strategies based on bisimulation (Milner 1971).

Definition 2 (Bisimulation). Let $\Theta = \langle S, L, T, s^0, S^* \rangle$ be a TS. An equivalence relation \sim on S is a goal-respecting bisimulation iff $s \sim t$ implies that (a) $s \in S^* \iff t \in S^*$, and (b) $[\{s\}] \sim [\{t\}] \iff [\{t'\}] \iff [\{t\}]$ for all $\ell \in L$ where $[s]$ denotes the equivalence class of s.

Bisimulation shrinking aggregates all states in the same equivalence class of the coarsest bisimulation of some $\Theta_i \in \Pi^T$. In our example, after applying exact label reduction (cf. Fig. 1b), states C and B are bisimilar in Θ^{\sim} and can hence be combined into a new state BC without affecting optimality.

Bisimulation shrinking is a symmetry-reduction technique that preserves all plans (Helmer et al. 2014; Sievers et al. 2015). Also exact label reduction, merging, and the pruning techniques preserve all optimal plans without introducing any spurious solutions and hence are optimal reformulations.

When preserving optimality is not necessary, it suffices to guarantee that any abstract plan can be refined into a real plan. Hoffmann, Kissmann, and Torralba (2014) used shrinking strategies with this property for proving unsolvability with M&S. We re-define these strategies using a different nomenclature based on the notion of weak bisimulation (Milner 1971; 1990). The key idea is to consider τ-labels which are "internal" to a TS in the sense that they can always be taken in Θ, without changing other TSs. The set of τ-labels for Θ_i consists of labels ℓ having a transition $s_j \xrightarrow{\ell} s_j \forall s_j \in \Theta_j \forall \Theta_j, j \neq i$. Other definitions are possible; ours is more general than that of own-labels used by Hoffmann, Kissmann, and Torralba (2014), whereas there are stronger notions based on dominance (Torralba 2017; 2018).

Definition 3 (Weak Bisimulation). Let Θ be a TS with a set τ of τ-labels. An equivalence relation \sim on S is a weak bisimulation if $s \sim t$ implies $(\exists v \in S \exists \ell \xrightarrow{\ell} s) \iff (\exists v', s' \exists \ell' \xrightarrow{\ell'} t')$, and $v \in L (\{s\}) \iff s \xrightarrow{\ell} s' = \{\{t'\} \iff t \xrightarrow{\ell'} t'}$.

Weak bisimulation shrinking maps all weakly bisimilar states into the same abstract state.

All the transformations described in this section have a lot of synergy. For example (1) label reduction greatly improves the performance of (weak) bisimulation shrinking; (2) merging can enable label reduction, pruning methods, and enlarge the set of τ-labels available for weak bisimulation; or (3) after shrinking some TSs, they may become irrelevant.

Plan Reconstruction

The merge-and-shrink algorithm iteratively applies the transformations described above on a task $\Pi^T = \{\Theta_1, \ldots, \Theta_k\}$, resulting in a sequence of reformulation steps ρ_1, \ldots, ρ_n producing a sequence of planning tasks Π^T_1, \ldots, Π^T_n where $\Pi^T_n = \Pi^T$, and $\Pi^T_i = \rho_i(\Pi^T_{i-1})$ for $i \in [1, n]$. On the final task, we can run any planning algorithm on Π^T_n to find a plan $\pi \rho_n = s^0_{\rho_n}, \rho_n \to_{\rho_n} s^*_{\rho_n}, \rho_n \to_{\rho_n} s_1, \ldots$ for Π^T_n. The plan reconstruction procedure is then tasked to compute a plan $\pi = s^0 \xrightarrow{\ell} s_2 \xrightarrow{\ell} \ldots$ for the original task Π^T from $\pi \rho_n$ and the sequence of reformulations.

Performing a reconstruction Π^T_i for each step ρ_i has some overhead because it requires to store each intermediate task. We avoid this by ignoring pruning-based reformulations (the plan found is still valid for the original task without any modifications) and aggregating sequences of reformulations that correspond to merge, label reduction, and bisimulation transformation. Plan reconstruction can be done for the entire transformation at once without storing information about the intermediate planning tasks. Therefore, we have a sequence of transformations $\Pi^T_i \xrightarrow{\rho_n} \Pi^T_1 \xrightarrow{\rho_n} \ldots$ with only two types of reformulations to consider: merging + label reduction + bisimulation shrinking ($\rho^{ML\tau}_n$), and weak bisimulation shrinking ($\rho^{\tau\tau}_n$).
Reconstruction of MLB Reformulations We consider a reformulation \(\rho^{\text{MLB}} \) on a task \(\Pi_1^T \), resulting in a task \(\Pi_{i+1}^T \).

The state space of \(\Pi_{i+1}^T \) is a bisimulation of the state space of \(\Pi_1^T \), so any sequence \(s_1 \xrightarrow{\ell_1} s_2 \xrightarrow{\ell_2} \ldots \) in \(\Pi_1^T \) has its counterpart \(\alpha(s_1) \xrightarrow{\ell_1} \alpha(s_2) \xrightarrow{\ell_2} \ldots \) in \(\Pi_{i+1}^T \) and vice versa. To reconstruct the plan, we need two functions \(\alpha \) and \(f^T \), mapping states and labels in \(\Pi_1^T \) to states and labels in \(\Pi_{i+1}^T \). The function is computed by M&S heuristics and compactly represented with the so-called cascading tables or merge-and-shrink representation (Helmert et al. 2014; Helmert, Röger, and Sievers 2015). The labeling map is simply the composition of all label reduction transformations used by \(\rho^{\text{MLB}} \).

The plan can be reconstructed step by step, starting from \(s^T \). Given the current factored state \(s \) and a step in the abstract plan \(\alpha(s) \xrightarrow{\ell} t' \), find a transition \(s \xrightarrow{\ell} t \) such that \(\alpha(t) = t' \) and \(f^T(\ell) = \ell' \). Note that the straightforward approach of enumerating all transitions applicable from \(s \) is not guaranteed to terminate in polynomial time because, unlike in FDR tasks where the number of successors is bounded by the number of actions, in FTS there may be exponentially many successors in the size of the task.

However, one can use the cascading tables representation to retrieve a factored state \(t = (t_1, \ldots, t_n) \) such that \(s \xrightarrow{\ell} t \), \(t' = (t'_1, \ldots, t'_n) \). This works as follows: First, for each transition system \(\Theta_i \), obtain the set \(S'_i \) of target states \(t_i \) such that \(s_i \xrightarrow{\ell_i} t_i \) for any label \(\ell_i \) such that \(\ell = \ell_1 \). Then, traverse the cascading tables and, for each intermediate table that maps states of two transition systems \(\Theta_i, \Theta_j \) to an abstract TS \(\Theta_\gamma \), compute the set of abstract states \(S_\gamma = \{ s_{ij} \mid \exists s
 compute the set
Of all cascading tables have been traversed, it suffices to return the factored state \(t \) associated to the abstract state \(t' \).

We exemplify the procedure with a task where there are \(n \) binary counters (variables), initially all have value \(\perp \) and the goal is to set all variables to \(\top \). There is a single label \(\ell \) that can set any counter to \(\perp \) or \(\top \) at choice. Therefore, the initial state has \(2^n \) successors, so enumerating all of them would require exponential time in the size of the task. After merging two transition systems and applying bisimulation shrinking, the resulting TS has still only \(2^n \) states: one where both counters are set to 1 and another where at least one counter must still be set. This TS is exactly equivalent to the two merged TSs, so we can continue merging them until obtaining a single final LTS. The abstract plan consists of a single transition \(\perp \xrightarrow{\ell} \top \).

To reconstruct the plan for the original task, we compute the set of possible target states in each \(\Theta_i \), \(S'_i = \{ \perp_i, \top_i \} \). For each intermediate table that maps states of two transition systems \(\Theta_1, \Theta_2 \) to an abstract transition system \(\gamma(\Theta_1 \otimes \Theta_2) \), compute the set \(S'_i \) of abstract states corresponding to any pair of states from \(T_1 \) and \(T_2 \), keeping track of one of the factored states that corresponds to each abstract state. In the example, \((\top_1, \top_2)\) is the only factored state mapped to \(\top_2 \), whereas for \((\perp_1, \perp_2)\) one can arbitrarily pick \((\perp_1, \perp_2), (\top_1, \perp_2), \) or \((\perp_1, \top_2)\). After traversing all cascading tables, the factored state mapped to \(\top \) is \((\top_1, \ldots, \top_n)\), which is the desired target state.

Proposition 1. Label reduction, merge (up to a size limit), pruning and bisimulation shrinking are optimal and polynomial reformulations.

Proof. It is well-known that all these techniques can be computed in polynomial time (Helmert et al. 2014; Sievers, Wehrle, and Helmert 2014). Plan reconstruction can be done in polynomial time in the size of the input task and the reformulated plan since each transition can be reconstructed by traversing the cascading-tables representation, which can be done in polynomial time in the size of the cascading tables, which are polynomial in the size of the intermediate abstractions.

\(\tau \)-label Reconstruction We consider a reformulation \(\rho^{\tau B} \) on a task \(\Pi_1^T = \{ \Theta_1, \ldots, \Theta_k \} \) where \(\rho^{\tau B} \) applies weak bisimulation shrinking to some in \(\Pi_1^T \). We assume without loss of generality that \(\Theta_1 \) is the shrunk TS, so \(\Pi_{i+1}^T = \{ \alpha^{\tau B}(\Theta_1), \Theta_2, \ldots, \Theta_k \} \). As \(\alpha^{\tau B} \) is a weak bisimulation of \(\Theta_1 \), then for any state \(s \in \Pi_1^T \) and any transition \(\rho(s) \xrightarrow{\ell} t^o \) in the reformulated task, there exists a path \(\rho(s) \xrightarrow{\ell} t \) in the original task such that \(\rho(t) = t^o \). Therefore, to reconstruct the plan for \(\Pi_{i+1}^T \) from a plan for \(\Pi_{i+1}^T \) one must re-introduce the \(\tau \)-label transitions until reaching a state where \(\ell \) is applicable and this results in some \(t \) such that \(\rho(t) = t^o \). As all \(\tau \)-labels have self-loop transitions in all TSs except \(\Theta_1 \), the search can be done locally in \(\Theta_1 \). To do so, we first look for all states \(u \) such that there exists a transition \(u \xrightarrow{\ell} t_1 \) in \(\Theta_1 \) such that \(\alpha(t_1), s(\Theta_2), \ldots, s(\Theta_k) \}. Then, we run breadth-first search from \(s(\Theta_1) \) using only transitions with \(\tau \)-labels until we reach such an \(u \). Note that this runs in polynomial time in the size of \(\Theta_1 \), which in turn has polynomial size in the size of the input FDR task.

This procedure has similarities with red-black plan repair (Domshlak, Hoffmann, and Katz 2015), the plan reconstruction of the merge values reformulation (Tozicka et al. 2016), or decoupled search (Gnad and Hoffmann 2018). These algorithms repair an abstract/relaxed plan by introducing additional actions to enable the Preconditions ignored by the relaxed plan. Our case is slightly more complex because the same label may have multiple targets so one must ensure the remaining abstract plan is applicable in the resulting state.

Proposition 2. Weak bisimulation shrinking is a polynomial reformulation.

Proof. Computing the coarsest weak bisimulation of a TS can be done in polynomial time in the size of the transition system. The reconstruction procedure is also polynomial in the size of the input FTS task, because the shortest \(\tau \)-paths can be computed by uniform-cost search on each \(\Theta_i \), which takes time polynomial in the size of the task.

Relation to FDR Reformulation Methods

The M&S reformulations are closely related to previous FDR reformulation methods like the generalize actions and
merge values reformulations (Tozicka et al. 2016), and fluent merging (Seipp and Helmert 2011). To compare reformulation methods over different formalisms, we consider that a method dominates another if it can perform the same reformulations.

Definition 4 (Dominance of Reformulation Methods). An FTS task reformulation method X dominates an FDR reformulation method Y if, given an FDR task Π^Y and a reformulation $\rho^Y \in \mathcal{Y}$ applicable over Π^Y, there exists a reformulation $\rho^X \in \mathcal{X}$ such that it is applicable in $\text{atomic}(\Pi^Y)$ and $\text{atomic}(\rho^X(\Pi^Y)) = \text{atomic}(\rho^Y(\Pi^Y))$.

The generalization actions reformulation reduces the number of FDR actions by substituting two actions by a single one if they are equal except for a precondition on a binary variable. Formally, whenever there is a variable v with domain $D_v = \{x, y\}$, and two actions a_1, a_2 s.t. $\mathcal{V}(\text{pre}_{a_1}) = \mathcal{V}(\text{pre}_{a_2})$, $\forall v \in (\mathcal{V}(\text{pre}_{a_1}) \setminus \{w\})$ $\text{pre}_{a_1}(v) = \text{pre}_{a_2}(v)$, $\text{pre}_{a_1}(w) = x$, $\text{pre}_{a_2}(w) = y$, and $\text{eff}_{a_1} = \text{eff}_{a_2}$. Then, a_1 and a_2 can be replaced by a' where $\text{eff}_{a'} = \text{eff}_{a_1}$ and $\text{pre}_{a'}(v) = \text{pre}_{a_1}(v) \forall v \in (\mathcal{V}(\text{pre}_{a_1}) \setminus \{w\})$.

Theorem 1. Exact label reduction dominates the generalization actions reformulation.

Proof Sketch. If generalization actions replaces a_1 and a_2 in Π^Y by a', then there are labels ℓ_1 and ℓ_2 in $\text{atomic}(\Pi^Y)$ that correspond to a_1 and a_2 and a TS Θ_w that corresponds to w in Π^Y. As a_1 and a_2 have the same effects and preconditions on all variables except v, then ℓ_1 and ℓ_2 have the same transitions in all TSs except Θ_w so they can be reduced.

Label reduction is more general since it does not impose any restrictions on the size of Θ_w or the transitions of ℓ_1 and ℓ_2 in Θ_w. In general, after label reduction, there will be non-deterministic transitions (where multiple targets are reachable from the same source state with the same label) so defining an equivalent method in FDR is not possible.

The merge values reformulation reduces the domain of an FDR variable by merging several values into one whenever they can be switched via actions without any side effects. Formally, let v be a variable with values $x, y \in D_v$, and a_1 and a_2 be actions s.t. $\mathcal{V}(\text{pre}_{a_1}) = \mathcal{V}(\text{eff}_{a_1}) = \mathcal{V}(\text{pre}_{a_2}) = \mathcal{V}(\text{eff}_{a_2}) = \{v\}$, and $\text{pre}_{a_1}(v) = \text{eff}_{a_1}(v) = x$ and $\text{pre}_{a_2}(v) = \text{eff}_{a_2}(v) = y$. Then, x may be removed from D_v, replacing every occurrence of x in A, I, and G by y.

Theorem 2. Weak bisimulation shrinking dominates the merge values reformulation.

Proof Sketch. If the merge values reformulation merges two values x, y of variable v as described above, there exist labels ℓ_1 and ℓ_2 in Π^Y that correspond to a_1 and a_2, as well as a TS Θ_v that corresponds to variable v. As no other variable is mentioned in the preconditions and effects of a_1 and a_2, ℓ_1 and ℓ_2 are τ-labels in Θ_v. As there are transitions $x \xrightarrow{\tau} y$ and $y \xrightarrow{\tau} x$, x and y are weakly bisimilar.

Weak bisimulation shrinking is more general because, e.g., it may shrink any strongly connected component considering only τ-labeled transitions, even if no two states in the same component have invertible transitions.

Fluent merging is an FDR reformulation inspired by the merge transformation in M&S (Seipp and Helmert 2011). It replaces two variables $v_1, v_2 \in V$ by their product, resulting in a variable $v_{1,2}$ with domain $D_{v_{1,2}} = D_{v_1} \times D_{v_2}$. However, adapting the FDR actions to the new variable is not straightforward since they would require representing disjunctive preconditions. For example, if action a_1 has a precondition on v_1 but not on v_2, then the action is applicable for several values of $D_{v_{1,2}}$ but not for all of them. Since FDR does not allow for disjunctive preconditions, multiple copies of the actions are needed to encode the preconditions and effects on the new variable. Similarly, auxiliary actions must be added to encode a disjunctive goal whenever a goal and a non-goal variable are merged. In this case, the merge transformation does not dominate fluent merging because it does not add such auxiliary labels and transitions. However, this is arguably an advantage since adding auxiliary labels and transitions is not expected to improve the performance of planners. Otherwise, we could define a corresponding transformation in the M&S framework as well.

Search on the FTS Representation

To use our reformulation framework, planning algorithms must be used to find a solution to the reformulated FTS task. Heuristic search is a leading approach for solving classical planning problems (Bonet and Geffner 2001). A compilation into an FDR task having an action for each combination of transitions with the same label in different TSs is possible, but may incur in a big overhead, potentially losing any gains obtained by the reformulation methods. Here, we consider how to apply heuristic search algorithms to FTS tasks by defining the successor generation and heuristic evaluation.

Successor Generation Successor generation is the operation that, given a state s, generates all transitions $s \xrightarrow{t} t$ in the state space of the task. This typically is done in two steps: (1) generate the set of actions that are applicable in s and (2) for each such action obtain the corresponding successor state.

Since the number of actions in FDR tasks may be very large, iterating over all of them to check whether they are applicable in s is inefficient. The Fast Downward Planning System uses a tree data-structure to efficiently retrieve the applicable actions in a given state (Helmert 2006). However, this data-structure relies on actions being applicable either only for one value of each variable if $v \in \mathcal{V}(\text{pre}_{a})$ or in all values of such variable otherwise. This is no longer true for labels in the FTS representation. A label is applicable in a factored state s if there exists an outgoing transition $s(\Theta_1) \xrightarrow{t_1} t_1$ for each $\Theta_1 \in \Pi^s$. Since there may be any number of transitions in each Θ_1, from any number of source states, labels may be applicable for arbitrary sets of states. We pre-compute for every abstract state $s_i \in \Theta_1$ the set of labels with an outgoing transition from s_i, denoted L_{s_i}. Then, given a state s, the set of applicable labels can be computed as $\bigcap_{s_i \in \Theta_1} L_{s_i}(s_i)$.

Step (2) is simple in FDR since the new state is a copy of s, overriding the value of variables in the effect. In the
FTS representation, however, there may be multiple successors from s with label ℓ. We enumerate all possible successors by considering all outgoing transitions from $s_i(\Theta_i)$ in every Θ_i. To do this efficiently, for each label ℓ we divide the set of TSs in IT in three sets: the irrelevant TSs where ℓ only induces self-loop transitions, deterministic TSs where for every $s_i \in \Theta_i$ there is a single outgoing transition with ℓ, and non-deterministic TSs where there may be multiple transitions from the same state source. Only the latter require to enumerate all possible transitions, whereas irrelevant TSs are ignored and the effect on deterministic TSs can be set as in FDR tasks.

Delete-Relaxation Heuristics on the FTS representation

Heuristic functions are essential to guide the search and find solutions to large tasks. As most heuristic functions have originally been defined for STRIPS or FDR, they need to be adapted to use them in FTS tasks. This is similar to adding support for a limited form of disjunctive preconditions and conditional effects. In optimal planning, we use merge-and-shrink heuristics since they are already based on FTS.

To apply our reformulation framework on satisficing planning, we adapt the FF heuristic (Hoffmann and Nebel 2001). FF is based on the delete-relaxation, ignoring the delete effects of STRIPS actions. In FDR, “ignoring deletes” is interpreted as ignoring the negative effect of the actions, so that variables accumulate values instead of replacing them. This is easily extrapolated to the FTS representation by considering that each TS may simultaneously be in multiple states.

To compute the heuristic, we compile our task into an FDR task with one unary action a_{s_i,ℓ,t_i} for each transition $s_i \xrightarrow{\ell} t_i$ in some Θ_i. This action has t_i as effect, and s_i as precondition plus additional preconditions for each other Θ_j where ℓ is not applicable in all states. If there is a single state $s_j \in \Theta_j$ where ℓ is applicable, we add s_j to the precondition of a_{s_i,ℓ,t_i}. If there are more than one, we add an auxiliary fact to our task $f_{\ell,j}$ that represents the disjunction of those states, as well as auxiliary unary actions from each of those states to $f_{\ell,j}$.

Afterwards, we retrieve the relaxed plan as a set of transitions $s_i \xrightarrow{\ell} t_i$, and add the cost of all their labels to obtain the heuristic value. One difference to FF for FDR is that there, FF counts each action only once because no action needs heuristic value. One difference to FF for FDR is that there, FF counts each action only once because no action needs to be applied more than once in delete-free tasks. We do not do this to avoid underestimating the goal distance when the same label may have different effects (e.g. label DR in Fig.1b).

The delete-relaxation is also useful to select which actions are preferred on the state being expanded. In FDR, an action is preferred in state s if it belongs to the relaxed plan of FF for s. In FTS, we consider a transition $s \xrightarrow{\ell} t$ to be preferred if the plan of FF for s contains a transition labeled with ℓ and with target t, s.t. $\exists \Theta_i, t[\Theta_i] = t_i$.

Experiments

We implemented the M&S reformulation framework in Fast Downward (FD) (Helmert 2006), using its existing M&S framework (Sievers 2018) and extending it with weak bisimulation as well as pruning transformations that remove dead labels and irrelevant TSs and labels.1 We also modified the layout of the algorithm: firstly, since our pruning transformations might trigger further pruning opportunities, we always repeatedly apply them until a fixpoint is reached. Secondly, we run label reduction and shrinking on the atomic FTS task until no more simplifications are possible. Finally, we cannot exactly control the amount of shrinking done because this would result in non-refinable abstractions that do not admit plan reconstruction. Instead, we restrict merging to satisfy the size limit and only shrink after merging and pruning.

To consider the effects of some of the M&S transformations on the task reformulation individually, we consider the following configurations. As the simplest baseline, we only transform the FDR task (FDR) into the atomic FTS task (a), without any further transformations. This does not affect the state space at all, but serves for quantifying the overhead of our implementation over FD, mainly due to using different data structures to represent the task and perform successor generation. Another variant of atomic adds exact label reduction and shrinking (a-Is), either based on bisimulation for optimal planning or weak bisimulation for satisficing planning. Other configurations combine label reduction and shrinking with a merge strategy. For the latter, we consider DFP (d-Is) and sbMIA SM (m-Is, called dyn-MI ASSM originally) (Sievers, Wehrle, and Helmert 2014), with a size limit of 1000 on the resulting product. We did not find qualitative differences with size limits of 100 and 10000. We impose a time limit of 900s on the reformulation process.

For the overall planning, we use a limit of 3.5 GiB and 1800s. We use all STRIPS benchmarks from the optimal/satisficing tracks of all IPCs, two sets consisting of 1827/1816 tasks across 48 unique domains.

1Source code and data set will be published online.
Search Space Reduction

To assess the impact of our task reformulations on the reachable state space, we run uniform-cost search and evaluate the number of expansions until the last \(f \)-layer. Fig. 2 compares the FDR representation against a-ls and d-ls with bisimulation and weak bisimulation shrinking. We observe that even with only label reduction and bisimulation shrinking (a-ls) there are state space reductions of up to one order of magnitude in some cases. Most of these gains are due to shrinking, given that label reduction does not change the state space and pruning cannot be performed often in the atomic representation due to the preprocessing of FD. When using merge transformations (d-ls), state space reductions can often be of up to several orders of magnitude. It is worth noting that merging does not affect the state space, so this reduction is due to the synergy with pruning and shrinking.

If optimality does not need to be preserved, one can achieve much larger reductions by using weak bisimulation shrinking. In this case, 393 tasks (including entire domains like elevators, logistics, micronic, movie, transport, and zenotravel) can be solved during the reformulation, resulting in 0 expansions (points on the x-axis). The reason is that weak bisimulation shrinks away entire TSs (e.g., if they form a single connected component with actions without side pre-conditions or effects, which translate to \(\tau \)-labels). A simple example is logistics: as trucks/airplanes can always freely change their location with the drive/fly action, weak bisimulation simplifies the TSs describing their position, after which the TSs for packages can also be simplified.

Results with Informed Search

We evaluate the benefit of our reformulations in terms of coverage (see Table 1). On the optimal benchmarks, we run \(A^* \) with \(h_{\text{max}} \) and M&S with DFP using a 50000 size limit and (approximate) bisimulation shrinking. On the satisficing benchmarks, we run lazy greedy search with \(h_{\text{FF}} \), with and without preferred operators.

The comparison of FDR and atomic (a) shows that there is some overhead in our implementation. Both configurations explore the same state space with very similar heuristics. \(h_{\text{max}} \) and \(h_{\text{FF}} \) are computed in the same way with no big overhead and the runtime of plan reconstruction is usually negligible. In terms of heuristic value, \(h_{\text{max}} \) is identical in both representations and \(h_{\text{FF}} \) only differs in the fact that we may count the same action twice as well as some noise due to tie-breaking. One of the main sources of the overhead is the memory required by the data structures that represent the FTS tasks. Our data structures use \(O(|L| \cdot n) \) memory to store

![Figure 3: Expansions until last \(f \)-layer, search and total time of a vs. a-ls and a-ls vs. d-ls for \(A^* \) with \(h_{\text{max}} \) (left) and \(h_{\text{M&S}} \) (right).](image-url)
the transitions in each transition system, which is higher than
in FDR where no memory is wasted for variables not men-
tioned in the preconditions or effects of an action.
Label reduction and shrinking on the atomic FTS task is
useful in most cases, increasing total coverage in all config-
urations. This reformulation simplifies the planning task in
terms of state space size as well as task description size (i.e.
reducing the size of the individual TSs in the task represen-
tation). The greater impact in satisficing planning is due to
the larger state space reduction by weak bisimulation.
Merge reformulations are oftentimes harmful in combi-
nation with delete-relaxation heuristics, due to the overhead
caused by increasing the task size. Even though heuristics
can sometimes be more informed in the reformulated task,
they are also harder to compute. Nevertheless, merge refor-
mulations can be very useful in some domains, whenever
there is enough synergy with pruning and shrinking. Indeed,
for all heuristics we tried, merge reformulations are useful
in at least a few domains. This is also reflected in the orcl
column that shows how many instances are solved by any of
our configurations. This is often much larger than our atomic
configuration, but also than the FDR baseline, showing that
if the right reformulations are chosen for every domain, they
can pay-off for the overhead of using an FTS representation.

Figure 3 shows detailed results of the impact of our re-
formulations (a-ls, and d-ls) on the number of expansions,
search time and total time of A* with h^max and M&S. This
plots illustrate well that, even though one may expect refor-
mulations to have a positive impact on expansions and
search time when they significantly reduce the search space
(i.e., see Figure 2), this may depend on the interaction with
the techniques used to solve the task. In that sense, the results
with h^max and M&S heuristics are very different.

With h^max, our reformulations can only improve heuristic
estimates, therefore the impact on the number of expanded
nodes is always positive. Label reduction and shrinking (a-
ls) have some overhead on total time, but can sometimes

pay-off. Merge reductions (d-ls), however, almost never pay
off in search or total time. This is due to the increased task
size, which makes the computation of h^max slower.

The results with M&S are similar for the a-ls reformula-
tions, but very different for the merge reformulations.
In terms of expanded nodes, the merge reformulation can
sometimes be beneficial but there are also many cases where
the heuristic is less informed after the d-ls reformulation.
It is also remarkable the large amount of instances where
the heuristic value for the initial state is perfect in the base-
line (there is no expansions until last jump), whereas a
large amount of search is needed with the reformulation.
The reason is that, even though the reformulation uses the
same merge strategy as the M&S heuristic, the options avail-
able for the merge strategy during the reformulation are re-
bduced by the limit on abstract states. This leads to differ-
ent merge decisions, possibly degrading the quality of the
heuristic. However, with M&S heuristics there is no over-
head in search or total time so d-ls reformulations often pay
off in runtime.

Figure 4 shows results with FF and preferred operators
on satisficing planning. The reductions obtained by weak
bisimulation shrinking are much stronger than by optimal-
ity preserving strategies. Not only this greatly increases the

<table>
<thead>
<tr>
<th>FDR</th>
<th>a</th>
<th>a-ls</th>
<th>d-ls</th>
<th>m-ls</th>
<th>tot</th>
<th>orcl</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDR</td>
<td>12</td>
<td>14</td>
<td>38</td>
<td>35</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>2</td>
<td>36</td>
<td>35</td>
<td>774</td>
<td>212</td>
</tr>
<tr>
<td>a-ls</td>
<td>17</td>
<td>15</td>
<td>33</td>
<td>25</td>
<td>1366</td>
<td>517</td>
</tr>
<tr>
<td>d-ls</td>
<td>10</td>
<td>3</td>
<td>13</td>
<td>1198</td>
<td>922</td>
<td>573</td>
</tr>
<tr>
<td>m-ls</td>
<td>12</td>
<td>6</td>
<td>23</td>
<td>1210</td>
<td>732</td>
<td>365</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FDR</th>
<th>a</th>
<th>a-ls</th>
<th>d-ls</th>
<th>m-ls</th>
<th>tot</th>
<th>orcl</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDR</td>
<td>19</td>
<td>15</td>
<td>29</td>
<td>25</td>
<td>1325</td>
<td>1412</td>
</tr>
<tr>
<td>a</td>
<td>6</td>
<td>9</td>
<td>22</td>
<td>22</td>
<td>1271</td>
<td>1100</td>
</tr>
<tr>
<td>a-ls</td>
<td>17</td>
<td>15</td>
<td>33</td>
<td>25</td>
<td>1366</td>
<td>517</td>
</tr>
<tr>
<td>d-ls</td>
<td>10</td>
<td>3</td>
<td>13</td>
<td>1198</td>
<td>922</td>
<td>573</td>
</tr>
<tr>
<td>m-ls</td>
<td>12</td>
<td>6</td>
<td>23</td>
<td>1210</td>
<td>732</td>
<td>365</td>
</tr>
</tbody>
</table>

Table 1: Domain comparison of coverage for A* (left) with h^max (top) and M&S (bottom), and lazy greedy search (right) with h^FF, without (top) and with (bottom) preferred operators. A value in row x and column y denotes the number of domains where x is better than y. It is bold if this is higher than the value in y/x. Column “tot” shows total coverage and “orcl” shows the oracle, i.e., per-task maximized, coverage over our algorithms (thus excluding FDR).
performance of the a-ls reformulations in terms of expanded nodes, but also the effectiveness of d-ls thanks to the synergy between merge and shrink reformulations. In terms of search and total time, the overhead of a-ls is not too large so this reformulation pays off in many cases over the baseline even despite the overhead caused by spending up to 900s in preprocessing. As happened with \(h^{\max} \), merge reformulations increase the computational cost of the heuristic, so they do not pay off over a-ls except in cases where the reduction is very significant.

Conclusion

In this work, we use the M&S framework for task reformulation and analyze its advantages over reformulations in FDR. Our results show a large potential of state space reductions, that sometimes can solve entire domains without any search.

The framework has even more potential by integrating new reformulation methods like subsumed transition pruning (Torralba and Kissmann 2015), or graph factorization (Wehrle, Sievers, and Helmert 2016). Our results also show that not all reformulations are always helpful. Thus, to materialize all this potential, methods to automatically select the best reformulation method for each domain are also of great interest (Gerevini, Saetti, and Vallati 2009; Fuentetaja et al. 2018).

References

