
Beyond Cost-to-go Estimates in Situated Temporal Planning

Andrew Coles,2 Shahaf S. Shperberg,1 Erez Karpas, 4

Solomon E. Shimony1 Wheeler Ruml,3
1Ben-Gurion University, Israel; 2King’s College London, UK;

3University of New Hampshire, USA; 4Technion, Israel;
andrew.coles@kcl.ac.uk, shperbsh@post.bgu.ac.il, karpase@technion.ac.il

shimony@cs.bgu.ac.il, ruml@cs.unh.edu

Abstract

Heuristic search research often deals with finding algorithms
for offline planning which aim to minimize the number of
expanded nodes or planning time. In online planning, algo-
rithms for real-time search or deadline-aware search have
been considered before. However, in this paper, we are inter-
ested in the problem of situated temporal planning in which
an agent’s plan can depend on exogenous events in the ex-
ternal world, and thus it becomes important to take the pas-
sage of time into account during the planning process. Previ-
ous work on situated temporal planning has proposed simple
pruning strategies, as well as complex schemes for a simpli-
fied version of the associated metareasoning problem. In this
paper, we propose a simple metareasoning technique, called
the crude greedy scheme, that can be applied in a situated
temporal planner. Our empirical evaluation shows that the
crude greedy scheme outperforms standard heuristic search
based on cost-to-go estimates.

Introduction
For many years, research in heuristic search has focused on
the objective of minimizing the number of nodes expanded
during search (e.g (Dechter and Pearl 1985)). While this is
the right objective under various scenarios, there are vari-
ous scenarios where it is not. For example, if we still want
an optimal plan but want to minimize search time, selective
max (Domshlak, Karpas, and Markovitch 2012) or Rational
Lazy A˚ (Karpas et al. 2018) can be used. Other work has
dealt with finding a boundedly suboptimal plan as quickly as
possible (Thayer et al. 2012), or with finding any solution as
quickly as possible (Wilt and Ruml 2015). Departing from
this paradigm even more, in motion planning the setting is
that edge-cost evaluations are the most expensive operation,
requiring different search algorithms (Mandalika, Salzman,
and Srinivasa 2018; Haghtalab et al. 2018).

While the settings and objectives mentioned above are
quite different from each other, they are all forms of offline
planning. Addressing online planning raises a new set of ob-
jectives and scenarios. For example, in real-time search, an
agent must interleave planning and execution, requiring still
different search algorithms (Koenig and Sun 2009; Sharon,
Felner, and Sturtevant 2014; Cserna, Ruml, and Frank 2017;
Cserna et al. 2018). Deadline-aware search (Dionne, Thayer,
and Ruml 2011) must find a plan within some deadline. The

BUGSY planner (Burns, Ruml, and Do 2013) attempts to
optimize the utility of a plan, which depends on both plan
quality and search time.

In this paper we are concerned with a recent setting, called
situated temporal planning (Cashmore et al. 2018). Situated
temporal planning addresses a problem where planning hap-
pens online, in the presence of external temporal constraints
such as deadlines. In situated temporal planning, a plan must
be found quickly enough that it is possible to execute that
plan after planning completes. Situated temporal planning is
inspired by the planning problem a robot faces when it has
to replan (Cashmore et al. 2019), but the problem statement
is independent of this motivation.

The first planner to address situated temporal planning
(Cashmore et al. 2018) used temporal reasoning (Dechter,
Meiri, and Pearl 1991) prune search nodes for which it is
provably too late to start execution. It also used estimates of
remaining search time (Dionne, Thayer, and Ruml 2011) to-
gether with information from the temporal relaxed planning
graph (Coles et al. 2010) to estimate whether a given search
node is likely to be timely, meaning that it is likely to lead
to a solution which will be executable when planning fin-
ishes. It also used dual open lists: one only for timely nodes,
and another one for all nodes (including nodes for which
it is likely too late to start execution). However, the plan-
ner still used standard heuristic search algorithms (GBFS or
Weighted A˚) with these open lists, while noting that this is
the wrong thing to do, and leaving for future work finding
the right search control rules.

Inspired by this problem, a recent paper (Shperberg et al.
2019) proposed a rational metareasoning (Russell and We-
fald 1991) approach for a simplified version of the problem
faced by the situated planner. The problem was simplified in
several ways: first, the paper addressed a one-shot version of
the metareasoning problem, and second, the paper assumed
distributions on the remaining search time and on the dead-
line for each node are known. The paper then formulated
the metareasoning problem as an MDP, with the objective
of maximizing the probability of finding a timely plan, and
showed that it is intractable. It also gave a greedy decision
rule, which worked well in an empirical evaluation with var-
ious types of distributions.

In this paper, we explore using such a metareasoning ap-
proach as an integrated part of a situated temporal planner.



This involves addressing the two simplifications described
above. The naive way of addressing the first simplification
— the one-shot nature of the greedy rule — is to apply it
at every expansion decision the underlying heuristic search
algorithm makes, in order to choose which node from the
open list to expand. The problem with this approach is that
the number of nodes on the open list grows very quickly
(typically exponentially), and so even a linear time metar-
easoning algorithm would incur too much overhead. Thus,
we introduce an even simpler decision rule, which we call
the crude greedy scheme, which does not require access to
the distributions, but only to their estimated means. Addi-
tionally, the crude greedy scheme allows us to compute one
number for each node, Q̂, and expand nodes with a high Q̂-
value first. This allows us to use a regular open list, although
one that is not sorted according to cost-to-go estimates, as in
standard heuristic search. In fact, as we will see, cost-to-go
estimates play no role in the ordering criterion at all.

An empirical evaluation on a set of problems from the
Robocup Logistics League (RCLL) domain (Niemueller,
Lakemeyer, and Ferrein 2015; Niemueller et al. 2016) shows
that using the crude greedy scheme in the situated temporal
planner (Cashmore et al. 2018) leads to a timely solution
of significantly more problems than using standard heuris-
tic search, even with pruning late nodes and dual open lists.
Next, we briefly survey the main results of the metareason-
ing paper (Shperberg et al. 2019), and then describe how we
derive the crude greedy decision rule, and conclude with an
empirical evaluation that demonstrates its efficacy.

The metareasoning MDP and practical
approximations

A model called AE2 (‘allocating effort when actions expire’)
that assigns processing time under the simplifying assump-
tion of n independent processes was proposed by Shperberg
et al. (2019). In order to make this paper self-contained, we
re-state the model and its properties below.

The AE2 Model
The AE2 model abstracts away from the search, and assumes
n processes (e.g., each process can be thought of as a node
on the open list) that each attempts to solve the same prob-
lem under time constraints. (For example, these may repre-
sent promising partial plans for a certain goal, implemented
as nodes on the frontier of a search tree, but as discussed
below the problems may be completely unrelated to plan-
ning.) There is a single computing thread or processor to
run all the processes, so it must be shared. When process i
terminates, it will, with probability Pi, deliver a solution or,
otherwise, indicate its failure to find one. For each process,
there is a deadline, defined in absolute wall clock time, by
which the computation must be completed in order for any
solution it finds to be valid, although that deadline may only
be known to us with uncertainty. For process i, let Diptq be
the CDF over wall clock times of the random variable denot-
ing the deadline. Note that the actual deadline for a process
is only discovered with certainty when its computation is
complete. This models the fact that, in planning, a depen-

dence on an external timed event might not become clear
until the final action in the plan is added. If a process ter-
minates with a solution before its deadline, we say that it is
timely. The processes have performance profiles described
by CDFs Miptq giving the probability that process i will
terminate given an accumulated computation time on that
process of t or less. Although some of the algorithms we
present may work with dependent random variables, we as-
sume in our analysis that all the variables are independent.
Given the Diptq, Miptq, and Pi, the objective of AE2 is to
schedule processing time over the n processes such that the
probability that at least one process finds a solution before
its deadline is maximized. This is the essential metareason-
ing problem in planning when actions expire.

The Deliberation Scheduling MDP
We now represent the AE2 problem of deliberation schedul-
ing with uncertain deadlines as a Markov decision process.
For simplicity, we initially assume that time is discrete and
the smallest unit of time is 1. Allowing continuous time is
more complex because one needs to define what is done if
some time-slice is allocated to a process i, and that process
terminates before the end of the time-slice. Discretization
avoids this complication.

We can now define our deliberation scheduling problem
as an the following MDP, with distributions represented by
their discrete probability function (pmf). Denote miptq “
Miptq ´ Mipt ´ 1q, the probability that process i com-
pletes after exactly t time units of computation time, and
diptq “ Diptq ´Dipt´ 1q, the probability that the deadline
for process i is exactly at time t. Without loss of generality,
we can assume that Pi “ 1: otherwise modify the deadline
distribution for process i to have dip´1q “ 1 ´ Pi, sim-
ulating failure of the process to find a solution at all with
probability 1 ´ Pi, and multiply all other diptq by Pi. This
simplified problem we call SEA2. We formalize the SEA2
MDP as an indefinite duration MDP with terminal states,
where we keep track of time as part of the state. (An alter-
nate definition would be as a finite-horizon MDP, given a
finite value d for the last possible deadline.)

The actions in the MDP are: assign the next time unit to
process i, denoted by ai with i P r1, ns. We allow action ai
only if process i has not already failed.

The state variables are the wall clock time T and one state
variable Ti for each process, with domain N Y tF u. Ti de-
notes the cumulative time assigned to each process i until the
current state, or that the process has completed computation
and resulted in failure to find a solution within the deadline.
We also have special terminal states SUCCESS and FAIL.
Thus the state space is:

S “ pdompT q ˆ
ą

1ďiďn

dompTiqq Y tSUCCESS, FAILu

The initial state is T “ 0 and Ti “ 0 for all 1 ď i ď n.
The transition distribution is determined by which process

i has last been scheduled (the action ai), and the Mi and Di

distributions. If all processes fail, transition into FAIL with
probability 1. If some process is successful, transition into
SUCCESS with probability 1. More precisely:



• The current time T is always incremented by 1.
• Accumulated computation time is preserved, i.e. for ac-

tion ai, Tjpt` 1q “ Tjptq for all processes j ‰ i.
• Tiptq “ F always leads to Tipt` 1q “ F .
• For action ai (assign time to process i), the probability

that process i’s computation is complete given that it has
not previously completed is P pCiq “

mipTi`1q
1´MipTiq

. If com-
pletion occurs, the respective deadline will be met with
probability 1´DipTiq. Therefore, transition probabilities
are: with probability 1´P pCiq set Tipt`1q “ Tiptq`1,
with probability P pCiqDipTiq set Tipt`1q “ F (process
i failed to meet its deadline), and otherwise (probability
P pCiqp1 ´ DipTiq) transition into SUCCESS (the value
of Ti in this case is ‘don’t care’).

• If Tipt` 1q “ F for all i, transition into FAIL.
The reward function is 0 for all states, except SUCCESS,
which has a reward of 1.

Solving the AE2 Model
It was shown in Shperberg et al. (2019) that solving the AE2
MDP is NP-hard, and it was conjectured to be even harder
(possibly even PSPACE-complete, like similar MDPs). On
the other hand, under the restriction of known deadlines and
a special condition of diminishing returns (non-decreasing
logarithm of probability of failure) that an optimal schedule
can be found in polynomial time. However, neither known
deadlines nor diminishing returns strictly hold in practice
in planning processes. Still, the algorithm for diminishing
returns provided insights that were used to create an appro-
priate greedy scheme. The greedy scheme, briefly repeated
below, is relatively easy to compute and achieved good re-
sults empirically.

Define miptq “ Miptq ´Mipt ´ 1q, the probability that
process i completes after exactly t time units of computation
time. Under an allocationAi “ p0, tq in which all processing
time starting from time 0 until time t is allocated to process
i, the success distribution for process i is:

fiptq “ PS ipAi “ p0, tqq “ Pi

t
ÿ

t1“0

mipt
1qp1´Dipt

1qq (1)

Define the most effective computation time for process i un-
der this assumption to be:

ei “ argmin
t

logp1´ fiptqq

t
(2)

The latter is justified by observing that the term´logp1´
fiptqq behaves like utility, as it is monotonically increasing
with the probability of finding a timely plan in process i;
and on the other hand it behaves additively with the terms
for other processes. That is, if we could start all processes at
time 0 and run them for time t, and if all the random vari-
ables were jointly independent, then indeed maximizing the
sum of the ´logp1´ fiptqq terms results in maximum prob-
ability of a timely plan.

However, since not all processes can start at time 0, the
intuition from the diminishing returns optimization is thus

to prefer the process i that has the best utility per time unit.
i.e. such that ´logp1 ´ fiptqq{peiq is greatest. Still, allocat-
ing time now to process i delays other processes, so it is also
important to allocate the time now to a process that has a
deadline as early as possible, as this is most critical. Shper-
berg et al. (2019) therefore suggested the following greedy
algorithm: Whenever assigning computation time, allocate
td units of computation time to process i that maximizes:

Qpiq “
α

ErDis
´
logp1´ fipeiqq

ei
(3)

where α and td are positive empirically determined param-
eters, and ErDis is the expectation of the random variable
that has the CDF Di, which we use as a proxy for ‘deadline
of process i’. (This is a slight abuse of notation in the interest
of conciseness, as ErDis could be taken to mean the expec-
tation of the CDF, which is not what we want here.) The
α parameter trades off between preferring earlier expected
deadlines (large α) and better performance slopes (small α).

Improved Greedy Scheme
Using the proxy ErDis in the value Qpiq is reasonable, but
somewhat ad-hoc. It also encounters problems if ErDis is
zero or even near-zero. A more disciplined scheme can in-
deed use the utility per time unit as in Qpiq, but the first
term should be better justified theoretically. The reason for
including the deadline in Qpiq is in order to give preference
to processes with an early deadline, because deferring their
processing may cause them to be unable to complete before
their deadline (even if they would have been timely had they
been scheduled for processing immediately). Therefore, in-
stead of the first term it makes sense to provide a measure
of the ”utility damage” to a process i due to delaying its
processing start time from time 0 to time td. This can be
computed exactly, as follows. Define a ‘generalized’ f 1i , the
probability of process i finding a timely plan given a con-
tiguous computation time t starting at time td, as follows:

f 1ipt, tdq “ PS ipAi “ ptd, tqq “ Pi

t
ÿ

t1“0

mipt
1qp1´Dipt

1`tdqq

(4)
Note that this is the same as f , except that processing starts
at time td, which is the same as saying that the deadline dis-
tribution is advanced by td (and indeed, fiptq “ f 1ipt, 0q).

Assuming that the time we wish to assign to process
i is ei, before the delay we can achieve a utility of:
´logp1´fipeiqq, and after delay of td can achieve´logp1´
f 1ipei, tdqq. The difference between the former and the latter
values is the ‘damage’ caused by the delay. Thus, our im-
proved greedy scheme is to assign td time units to the pro-
cess that maximizes:

Q1piq “ αrlogp1´f 1ipei, tdqq´logp1´fipeiqqs´
logp1´ fipeiqq

ei
(5)

Observe that the first term is proportional to the logarithm
of:

1´ f 1ipei, tdq

1´ fipeiq
(6)



Integrating the greedy scheme into a planner
In order to actually use the greedy scheme in a planner, sev-
eral issues must be handled. Foremost is the issue of obtain-
ing the distributions, which is non-trivial. Second, although
the greedy scheme is quite efficient, it is not quite efficient
enough for making decisions about node expansions, which
must be done in essentially negligible time. Hence, we con-
sider a crude version of the greedy scheme below.

Crude version of the greedy scheme

Crude Greedy with α “
Id h ´104 ´1 0 0.1 1 104

1 3.61 0.45 0.47 0.45 0.85 0.45 0.59
2 13.45 1.91 1.81 1.78 2.52 1.77 x
3 x 1.75 1.74 1.61 2.24 1.65 5.14
4 x 1.03 1.04 1 1.41 1.02 1.19
5 9.42 0.59 0.51 0.57 0.73 0.49 0.4
6 - - - - - - -
7 x 10.89 9.74 9.63 17.55 9.97 x
8 x x 3.57 3.77 5.98 3.88 2.04
9 x 2.36 2.46 2.5 3.16 2.4 2.27
10 0.66 0.37 0.37 0.38 0.49 0.38 0.36
11 0.28 0.24 0.24 0.25 0.31 0.27 9.05
12 0.31 0.25 0.3 0.24 0.34 0.24 0.17
13 0.9 0.44 0.45 0.46 0.55 0.45 0.43
14 11.88 1.55 1.64 1.6 2.11 1.59 1.19
15 1.54 x x x x x 0.59
16 x 2.33 2.27 2.29 3.56 2.29 1.71
17 x 1.59 1.55 1.54 2.52 1.59 3.93
18 x 2.27 2.27 2.35 4.34 2.29 x
19 x 1.61 1.6 1.62 2.73 1.6 6.6
20 - - - - - - -
21 x x x x x x 1.71
22 0.76 0.43 0.43 0.41 0.42 0.48 1.37
23 x 2.06 2.33 1.99 2.04 2.36 1.78
24 14.67 1.55 1.61 1.49 1.63 1.92 0.52
25 0.57 0.31 0.32 0.28 0.28 0.35 0.46
26 4 x x x x x x
27 x 1.92 1.88 1.75 1.72 1.82 x
28 x 0.52 0.74 0.49 0.47 0.47 0.48
29 50.03 x 1.21 1.13 1.13 1.23 0.56
30 - - - - - - -
31 2.48 x x x x x 0.96
32 x 1.74 1.79 1.56 1.91 1.74 1.59
33 x x x x x x x
34 3.37 0.54 0.63 0.54 0.27 0.59 0.26
35 2.73 x x x x 0.34 0.23
36 10.18 0.75 0.76 0.62 0.57 0.87 0.71
37 - - - - - - -
38 - - - - - - -
39 1.09 0.54 0.65 0.48 0.49 0.52 0.49
40 - - - - - - -
41 1.28 0.27 0.28 0.27 0.52 0.28 0.24
42 1.32 x x x x x 0.42
SOLVED 21 27 29 29 29 30 30

Table 1: Planning Time on RCLL Instances

Consider Equation 3 defining Qpiq. The estimate for
ErDis in the first term can use any current estimate of the
deadline time. For the second term in Qpiq, we can approx-
imate ei by the expected time to return a solution. We use

estimate both of these quantities as described by Cashmore
et al. (2018). We now briefly review these estimates, but re-
fer the interested reader to the original paper.

To estimate the current deadline ErDis, we use the tem-
poral relaxed planning graph (TRPG) (Coles et al. 2010).
Specifically, we compute the slack of the chosen relaxed
plan, that is, how much we can delay execution of the en-
tire plan (the actions leading to the current node together
with the actions in the relaxed plan). Note that, because the
relaxed plan is not guaranteed to be optimal, this is not nec-
essarily an admissible estimate.

To estimate the remaining search time ei, we use an idea
from Deadline Aware Search (Dionne, Thayer, and Ruml
2011). We estimate the ‘distance from solution’ (i.e. esti-
mation of number of expansions from the current node, also
based on the relaxed), and divide it by the ‘progress rate’
(i.e. the reciprocal of the time difference between the time
a node is expanded and the time its parent was expanded,
averaged over multiple nodes).

The numerator logp1 ´ fipeiqq is more problematic, as
it requires fi, which uses the complete distribution. Note
that this term is negative, and we want it to be as large as
possible in absolute value. The simplest crude approxima-
tion is a constant logp1 ´ fipeiqq, but that is an oversim-
plification. Note that if the most effective computation time
ei is greater than ErDis then in fact we are not likely to
find a solution in time in process i. For simplicity, we thus
use ´logp1 ´ fipeiqq « maxp0, βpErDis ´ eiqq for some
parameter β as a first approximation. The idea here is that
ErDis ´ ei is an estimate of the slack (spare time) we have
in completing the computation before the deadline. We are
then assuming that the negative logarithm of the probability
of not completing in time is approximately proportional to
the slack. This slack is also already estimated by the situ-
ated temporal planner, based on the partial plan to the cur-
rent node and the temporal relaxed planning graph from it
(Cashmore et al. 2018).

Note that once we plug this into Equation 3, the β can be
absorbed into the α parameter. An additional issue is that in
a planner, since ErDis is relative to the time now, this value
keeps decreasing and may approach 0. This may cause the
α

ErDis
term to grow without bound. To fix this, we bound the

denominator away from 0 to the time t10, the time required
for 10 node expansions.

In summary, for our crude greedy approach, we expand
next the node with the highest value of

Q̂piq “
maxp0, ErDis ´ eiq

ei
`

α

maxpErDis, t10q
(7)

This crude version of the greedy scheme has two advan-
tages: it does not require the complete distributions Di and
Mi, and is more computationally efficient as it does not have
to compute the summation in the equation for fi. This comes
at the cost of a potential oversimplification that may cause
schedule quality to excessively degrade. An additional prob-
lem is that the original greedy scheme itself using theErDis

was only a first-order approximation, and in fact distribu-
tions can be devised where it fails badly.



Empirical Results
To evaluate the crude greedy scheme, we implemented it
on top of the situated temporal planner of Cashmore et
al. (2018), which itself is implemented on top of OPTIC
(Benton, Coles, and Coles 2012). We ran the planner us-
ing the crude greedy scheme, with different values of α,
and compared it to the original situated temporal planner,
which sorts its open lists based on cost-to-go estimates (de-
noted h below). Both planners used exactly the same prun-
ing method for nodes which are guaranteed to be too late,
and the same dual open list mechanism for preferring nodes
which are likely to be timely.

We compared the results of the different planners
on instances of the Robocup Logistic League Challenge
(Niemueller, Lakemeyer, and Ferrein 2015; Niemueller et
al. 2016), a domain that involves robots moving workpieces
between different workstations. The goal is to manufacture
and deliver an order within some time window, and thus sit-
uated temporal planning is very natural here. Table 1 shows
the planning time for the baseline planner (h) and the plan-
ner using the crude greedy scheme with different values of
α. In the table, ‘x’ means ‘failed to find a plan in time to sat-
isfy the deadline(s)’. As these results show, the crude greedy
scheme solves significantly more problems than the baseline
for any value of α. This provides support for a metareason-
ing approach to allocating search effort in situated planning.
It also suggests that, for situated temporal planning, cost-
to-go estimates are not the right primary source of heuristic
guidance.

Conclusion
In this paper, we have provided the first practical metarea-
soning approach for situated temporal planning. We showed
empirically that this approach outperforms standard heuris-
tic search based on cost-to-go estimates. Nevertheless, the
temporal relaxed planning graph (Coles et al. 2010) serves
an important purpose here, allowing us to estimate both re-
maining planning time and the deadline for a node. Thus, we
believe our results suggest that cost-to-go estimates are not
as important for situated temporal planning as they are for
minimizing the number of expanded nodes or planning time
as in classical heuristic search.

The metareasoning scheme we provided is a crude version
of the greedy scheme of Shperberg et al. (2019). We intro-
duced approximations in order to make the metareasoning
sufficiently fast and in order to utilize only readily available
information generated during the search. We also proposed
a more refined and better theoretically justified version of
the algorithm (‘improved greedy’), but making the improved
version applicable in the planner is a non-trivial challenge
that forms part of our future research.

Ongoing Work: Crude version of the improved
greedy scheme
The improved greedy scheme is better justified, but has an
additional term where we need the complete distribution
(f 1pt, tdq is needed, rather than just the expectation ErDis).

We would like to replace this distribution with a small num-
ber of parameters than can be easier to obtain. Basically the
same considerations apply here as well, except that the the
term involving f 1i requires access to the full distributionsmi,
Di. Given specific distribution types, it may be possible to
compute this term as a function of ErDis and ei. However,
this part of the work is still in progress and at present we are
not sure what parameters we can obtain during the search
that would support the improved scheme.

Acknowledgements
Partially supported by ISF grant #844/17, and by the Frankel
center for CS at BGU. Project also funded by the European
Union’s Horizon 2020 Research and Innovation programme
under Grant Agreement No. 821988 (ADE).

References
Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal
planning with preferences and time-dependent continuous
costs. In ICAPS.
Burns, E.; Ruml, W.; and Do, M. B. 2013. Heuristic search
when time matters. J. Artif. Intell. Res. 47:697–740.
Cashmore, M.; Coles, A.; Cserna, B.; Karpas, E.; Maga-
zzeni, D.; and Ruml, W. 2018. Temporal planning while
the clock ticks. In ICAPS, 39–46.
Cashmore, M.; Coles, A.; Cserna, B.; Karpas, E.; Maga-
zzeni, D.; and Ruml, W. 2019. Replanning for situated
robots. In ICAPS.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-chaining partial-order planning. In Proceedings of
the 20th International Conference on Automated Planning
and Scheduling (ICAPS), 42–49.
Cserna, B.; Doyle, W. J.; Ramsdell, J. S.; and Ruml, W.
2018. Avoiding dead ends in real-time heuristic search. In
Proceedings of the Thirty-Second AAAI Conference on Ar-
tificial Intelligence, (AAAI-18), the 30th innovative Applica-
tions of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial Intelli-
gence (EAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018, 1306–1313.
Cserna, B.; Ruml, W.; and Frank, J. 2017. Planning time
to think: Metareasoning for on-line planning with durative
actions. In Proceedings of the Twenty-Seventh International
Conference on Automated Planning and Scheduling, ICAPS
2017, Pittsburgh, Pennsylvania, USA, June 18-23, 2017.,
56–60.
Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of a*. J. ACM 32(3):505–536.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49(1-3):61–95.
Dionne, A. J.; Thayer, J. T.; and Ruml, W. 2011. Deadline-
aware search using on-line measures of behavior. In
Proceedings of the Symposium on Combinatorial Search
(SoCS).



Domshlak, C.; Karpas, E.; and Markovitch, S. 2012. Online
speedup learning for optimal planning. J. Artif. Intell. Res.
44:709–755.
Haghtalab, N.; Mackenzie, S.; Procaccia, A. D.; Salzman,
O.; and Srinivasa, S. S. 2018. The provable virtue of lazi-
ness in motion planning. In Proceedings of the Twenty-
Eighth International Conference on Automated Planning
and Scheduling, ICAPS 2018, Delft, The Netherlands, June
24-29, 2018., 106–113.
Karpas, E.; Betzalel, O.; Shimony, S. E.; Tolpin, D.; and Fel-
ner, A. 2018. Rational deployment of multiple heuristics in
optimal state-space search. Artif. Intell. 256:181–210.
Koenig, S., and Sun, X. 2009. Comparing real-time and in-
cremental heuristic search for real-time situated agents. Au-
tonomous Agents and Multi-Agent Systems 18(3):313–341.
Mandalika, A.; Salzman, O.; and Srinivasa, S. 2018.
Lazy receding horizon a* for efficient path planning in
graphs with expensive-to-evaluate edges. In Proceedings of
the Twenty-Eighth International Conference on Automated
Planning and Scheduling, ICAPS 2018, Delft, The Nether-
lands, June 24-29, 2018., 476–484.
Niemueller, T.; Karpas, E.; Vaquero, T.; and Timmons, E.
2016. Planning Competition for Logistics Robots in Simu-
lation. In ICAPS Workshop on Planning and Robotics (Plan-
Rob).
Niemueller, T.; Lakemeyer, G.; and Ferrein, A. 2015. The
RoboCup Logistics League as a Benchmark for Planning in
Robotics. In WS on Planning and Robotics (PlanRob) at Int.
Conf. on Aut. Planning and Scheduling (ICAPS).
Russell, S. J., and Wefald, E. 1991. Principles of metarea-
soning. Artificial Intelligence 49(1-3):361–395.
Sharon, G.; Felner, A.; and Sturtevant, N. R. 2014. Expo-
nential deepening a* for real-time agent-centered search. In
Proceedings of the Twenty-Eighth AAAI Conference on Arti-
ficial Intelligence, July 27 -31, 2014, Québec City, Québec,
Canada., 871–877.
Shperberg, S. S.; Coles, A.; Cserna, B.; Karpas, E.; Ruml,
W.; and Shimony, S. E. 2019. Allocating planning effort
when actions expire. In Proceedings of the The Thirty-Third
AAAI Conference on Artificial Intelligence (AAAI). (to ap-
pear).
Thayer, J. T.; Stern, R.; Felner, A.; and Ruml, W. 2012.
Faster bounded-cost search using inadmissible estimates. In
Proceedings of the 22nd International Conference on Auto-
mated Planning and Scheduling, (ICAPS).
Wilt, C. M., and Ruml, W. 2015. Speedy versus greedy
search. In Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015, 4331–4338.


