
Under review as a conference paper at ICLR 2020

UTILITY ANALYSIS OF NETWORK ARCHITECTURES
FOR 3D POINT CLOUD PROCESSING

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we diagnose deep neural networks for 3D point cloud processing
to explore the utility of different network architectures. We propose a number
of hypotheses on the effects of specific network architectures on the representa-
tion capacity of DNNs. In order to prove the hypotheses, we design five metrics
to diagnose various types of DNNs from the following perspectives, information
discarding, information concentration, rotation robustness, adversarial robustness,
and neighborhood inconsistency. We conduct comparative studies based on such
metrics to verify the hypotheses, which may shed new lights on the architec-
tural design of neural networks. Experiments demonstrate the effectiveness of
our method. The code will be released when this paper is accepted.

1 INTRODUCTION

Recently, a series of works use the deep neural network (DNN) for 3D point cloud processing
and have achieved superior performance in various 3D tasks. However, traditional studies usually
design network architectures based on empiricism. There does not exist a rigorous and quantitative
analysis about the utility of specific network architectures for 3D point cloud processing. Exploring
and verifying the utility of each specific intermediate-layer architecture from the perspective of a
DNN’s representation capacity still present significant challenges for state-of-the-art algorithms.

In this study, we aim to bridge the gap between the intermediate-layer network architecture and its
utility. Therefore, we propose a few hypotheses of the utility of specific network architectures. Ta-
ble 1 lists the hypotheses to be verified in this study, towards three kinds of utilities, i.e. rotation
robustness, adversarial robustness, and neighborhood inconsistency. We design and conduct com-
parative studies to verify the hypotheses. Finally, we obtain some new insights into the utility of
specific network architectures as follows.

• The specific architecture in (Wu et al., 2019), which uses the local density information to reweight
features (Figure 1 (a)), improves adversarial robustness (Table 1 (a)).
• Another specific architecture in (Wu et al., 2019), which uses local 3D coordinates’ information
to reweight features (Figure 1 (b)), improves rotation robustness (Table 1 (b)).
• The specific architecture in (Qi et al., 2017b; Liu et al., 2018), which extracts multi-scale features
(Figure 1 (c)), improves adversarial robustness and neighborhood consistency (Table 1 (c)). Neigh-
borhood consistency measures whether a DNN assigns similar attention to neighboring points.
• The specific architecture in (Jiang et al., 2018), which encodes the information of different
orientations (Figure 1 (d)), improves rotation robustness (Table 1 (d)).

More specifically, in order to verify the above hypotheses, we design the following five evaluation
metrics and conduct a number of comparative experiments to quantify the utility of different network
architectures.
1. Information discarding and 2. information concentration: Information discarding measures
how much information of an input point cloud is forgotten during the computation of a specific
intermediate-layer feature. From the perspective of information propagation, the forward propa-
gation through layers can be regarded as a hierarchical process of discarding input information
(Shwartz-Ziv & Tishby, 2017). Ideally, the DNN is supposed to discard information that is not
related to the task. Let us take the task of object classification for example. The information of

1

Under review as a conference paper at ICLR 2020

Architectures Rotation
robustness

Adversarial
robustness

Neighborhood
inconsistency

(a) Modules of using information of local density to reweight features. – X –
(b) Modules of using information of local coordinates to reweight features. X – –
(c) Modules of concatenating multi-scale features. – X X
(d) Modules of computing orientation-aware features. X – –

Table 1: Illustration of the verified utilities of specific architectures. Blank regions correspond to
utilities that have not been examined, instead of indicating non-existence of the utilities. Please see
Figure 1 for architectural details.

foreground points is usually supposed to be related to the task, while that of background points is
not related to the task and is discarded.
To this end, we further propose information concentration to measure the gap between the informa-
tion related to the task and the information not related to the task. Information concentration can be
used to evaluate a DNN’s ability to focus on points related to the task.
3. Rotation robustness: Rotation robustness measures whether a DNN will use the same logic to
recognize the same object when a point cloud has been rotated by a random angle. In other words,
if two point clouds have the same global shape but different orientations, the DNN is supposed to
select the same regions/points to compute the intermediate-layer feature. Unlike images with rich
color information, point clouds usually only use spatial contexts for classification. Therefore, a
well-trained DNN is supposed to have rotation robustness.
4. Adversarial robustness: A reliable DNN should be robust to adversarial attacks.
5. Neighborhood inconsistency: Neighborhood inconsistency measures whether adjacent points
have similar importance in the computation of an intermediate-layer feature. Adjacent points usually
have similar shape contexts, so they are supposed to have similar importance. Therefore, ideally, a
well-trained DNN should have a low value of neighborhood inconsistency.

Contributions of our study are summarized as follows. We propose a few hypotheses on the utility
of specific network architectures. Then, we design five metrics to conduct comparative studies for
verifying these hypotheses, which provide a new insightful understanding of architectural utility.

2 RELATED WORK

3D Point Cloud Processing: Recently, a number of approaches use DNNs for 3D point cloud
processing and have exhibited superior performance in various 3D tasks (Qi et al., 2017a; Su et al.,
2018; Valsesia et al., 2018; Yu et al., 2018; Yang et al., 2018; Gadelha et al., 2018; Wang et al.,
2018a; Komarichev et al., 2019; Shi et al., 2019). PointNet (Qi et al., 2017a) was a pioneer in this
direction, which used a max pooling layer to aggregate all individual point features into a global
feature. However, such architecture fell short of capturing local features. PointNet++ (Qi et al.,
2017b) hierarchically used PointNet as a local descriptor to extract contextual information. Some
studies (Wu et al., 2019; Jiang et al., 2018; Wang et al., 2018b; Komarichev et al., 2019) further
improved the networks’ ability to capture local geometric features. Other researches focused on
the correlations between different regions of the 3D point cloud (Liu et al., 2018) or interaction
between points (Zhao et al., 2019a). In comparison, our study focuses on the utility analysis of
intermediate-layer network architectures for point cloud processing.
Visualization or diagnosis of representations: The visualization of visual patterns corresponding
to a feature map or the network output is the most intuitive way of interpreting DNNs (Zeiler &
Fergus, 2014; Mahendran & Vedaldi, 2015; Dosovitskiy & Brox, 2016; Zhou et al., 2014), such
as gradient-based methods (Fong & Vedaldi, 2018; Selvaraju et al., 2017), and the estimation of
the saliency map (Ribeiro et al., 2016; Lundberg & Lee, 2017; Kindermans et al., 2017; Qi et al.,
2017a; Zheng et al., 2019). In comparison, our study aims to explore the utility of intermediate-layer
network architectures by diagnosing the information-processing logic of DNNs.
Quantitative evaluation of representations: Recently, some studies quantified the representation
similarity to help understand the neural networks (Gotmare et al., 2018; Kornblith et al., 2019; Mor-
cos et al., 2018; Raghu et al., 2017). The method (Li et al., 2019) quantitated the importance of
different feature dimensions to guide model compression. Other studies evaluated the representa-
tions via quantifying the information they contain. The information-bottleneck theory (Tishby et al.,
2000; Shwartz-Ziv & Tishby, 2017; Cheng et al., 2018) explained the trade-off between the infor-
mation compression and the discrimination power of features in a neural network. Achille & Soatto

2

Under review as a conference paper at ICLR 2020

(2018) designed an information Dropout layer and quantified the information transmitted through
it. Ma et al. (2019) presented a method to quantify the layer-wise information discarding of DNNs
and defined two model-agnostic and task-agnostic metrics of the input information. Inspired by (Ma
et al., 2019), we propose five metrics to diagnose feature representations of different DNNs and
finally explore the utility of different network architectures.

3 METRICS TO DIAGNOSE NETWORKS

3.1 PRELIMINARY: ENTROPY-BASED INFORMATION DISCARDING QUANTIFICATION

We extend the method of (Ma et al., 2019) as the technical foundation. Based on which, a number of
metrics are designed to diagnose the DNN. The method quantifies the discarding of the input infor-
mation during the layerwise forward propagation by computing the entropy of the input information
given the specific feature of an intermediate layer. Given a point cloud X, let f = h(X) denote the
feature of a specific intermediate layer. It is assumed that f and f ′ represent the same object concept1

when f ′ satisfies ‖f ′ − f‖2 < ε, where feature f ′ = h(X ′), X ′ = X + δ. δ denotes a random noise.
The conditional entropy of the input information given a specific feature, which represents a specific
object concept, is computed, i.e. calculating entropy H(X ′), s.t. ‖f ′ − f‖2 < ε. It is assumed that
X ′ follows a Gaussian distribution X ′ ∼ N (X,Σ = diag[σ2

1 , σ
2
2 , . . .]), where Σ can be regarded as

the maximum perturbation added to X following the maximum-entropy principle, which subjects to
a specific concept. Considering the assumption of independent and identically distributed variables
of each dimension of X ′, the overall entropy H(X ′) can be decomposed into point-wise entropies.

max
σ=[σ1,σ2,...]>

H(X ′), s.t.
∥∥h(X ′)− f

∥∥2
< ε, where H(X ′) =

∑
i

Hi, (1)

where Hi = log σi + 1
2

log(2πe) denotes the entropy of the i-th point, which quantifies how much
information of the i-th point can be discarded, when the feature h(X ′) is required to represent the
concept of the target object.

3.2 FIVE METRICS

Metric 1, information discarding: The information discarding is defined asH(X ′) in Equation (1).
The information discarding is measured at the point level, i.e. Hi, which quantifies how much
information of the i-th point is discarded during the computation of an intermediate-layer feature.
The point with a lower value of Hi is regarded more important in the computation of the feature.

Metric 2, information concentration: The information concentration is based on the metric of in-
formation discarding. The information concentration is used to analyze a DNN’s ability to maintain
the input information related to the task, and discard redundant information unrelated to the task.
For example, in the task of object classification, the background points are usually supposed not
to be related to the task and are therefore more likely to be discarded by the DNN. Let Λforeground

denote the set of points in the foreground object in the point cloud X, and let Λbackground denote
the set of points in the background. Information concentration can be implemented as the relative
background information discarding w.r.t. foreground information discarding.

Ei∈Λbackground [Hi]− Ei∈Λforeground [Hi]. (2)

A higher value of information concentration indicates that the DNN concentrates more on the fore-
ground information during the computation of the feature.

Metric 3, rotation robustness: The rotation robustness is proposed to measure whether a DNN uses
similar subsets of two point clouds to compute the intermediate-layer feature, if the two point clouds
have the same shape but different orientations. Let Xθ1 and Xθ2 denote the point clouds that have
the same global shape but different orientations θ1 and θ2. To quantify the similarity of the attention
on the two point clouds, we compute the Jensen-Shannon divergence between the distributions of
the perturbed inputs X̂θ1 = Xθ1 +δ1 and X̂θ2 = Xθ2 +δ2. X̂θ1 and X̂θ2 denote the perturbed inputs,
which are computed to measure information discarding in Equation (1). I.e. we measure whether
the DNN ignores similar sets of points to compute features of the two point clouds.

JSD(X̂θ1 ||X̂θ2), s.t. ||h(X̂θ1)− h(Xθ1)|| < ε, ||h(X̂θ2)− h(Xθ2)|| < ε, (3)

1In this study, the concept of an object is referred to as a small range of features that represent the same
object instance.

3

Under review as a conference paper at ICLR 2020

x

z(d)

Architecture 1

Architecture 2

(c)

(b)

(a)

Fi'M
LP

reweight

WH1

M
LP

Fi

reweight

Fi'

Fi

WH2

Architecture 3

Fi(scale1)

Fi(scale3)

g

g

fi

fi,(scale1)

fi,(scale3)

concat

g fi,(scale2)

x-axis

information

encoding

fioe
y

three-scale

local regions

Fi(scale2)

find 8-nearest points

in 8 different orientation

g feature extraction

y-axis

information

encoding

z-axis

information

encoding

Architecture 4

density

vector

local

coordinates

Figure 1: Illustration of the specific intermediate-layer architectures. Please see texts in Sec-
tion 4.1, as well as Appendix C for architectural details.

where JSD(X̂θ1 ||X̂θ2) measures the dissimilarity between information distributions over the two
point clouds.

The rotation non-robustness is defined as the average of the dissimilarity of attention on any two
point clouds with different orientations, i.e. E∀θ1,θ2 [JSD(X̂θ1 ||X̂θ2)]. Note that we do not directly
compare the attention on features, because there is no mechanism to ensure that dimensions of Xθ1

and Xθ2 are semantically aligned. In this study, we use the method in Hershey & Olsen (2007) to
approximate the Jensen-Shannon divergence.

Metric 4, adversarial robustness: We use the method in (Szegedy et al., 2013) to perform adver-
sarial attacks. The objective is

min‖ε‖22, s.t. C(X + ε) = l̂ 6= l∗, (4)

where C(·) is the predicted label; l∗ is the correct label of X; l̂ is a target incorrect label. In this
study, we perform adversarial attacks against all incorrect classes. We use the average of ‖ε‖2 over
all incorrect classes to measure the adversarial robustness.

Metric 5, neighborhood inconsistency: The neighborhood inconsistency is proposed to evalu-
ate a DNN’s ability to assign similar attention to neighboring points during the computation of an
intermediate-layer feature, i.e. a well-trained DNN should have a low value of neighborhood incon-
sistency. Ideally, for a DNN, except for special points (e.g. those on the edge), most neighboring
points in a small region of a point cloud usually have similar shape contexts, so they are supposed to
make similar contributions to the classification and receive similar attention. Let N(i) denote a set
of K nearest neighboring points of the i-th point. We define the neighborhood inconsistency as the
difference between the maximum and minimum point-wise information discarding within N(i).

Ei[max
j∈N(i)

Hj − min
j∈N(i)

Hj]. (5)

4 HYPOTHESES AND COMPARATIVE STUDY

4.1 INTRODUCTION OF SPECIFIC ARCHITECTURES

• Notation: Let xi ∈ R3 denote the i-th point, i = 1, 2, . . . , n; let N(i) denote a set of K nearest
points of xi; let Fi ∈ Rd×K denote intermediate-layer features that correspond to neighboring points
in N(i), where each column of Fi represents the feature of a specific point in N(i).

• Architecture 1, features reweighted by the information of the local density: Architecture 1
focuses on the use of the local density information to reweight features (Wu et al., 2019). As shown
in Figure 1 (a), for each point xi, Architecture 1 uses the local density w.r.t. neighboring points of
xi to compute WH1 ∈ RK , which reweights intermediate-layer features Fi.

F′i = Fi diag[WH1], where WH1 = MLP (density(N(i))), (6)
where diag[WH1] transforms the vector WH1 into a diagonal matrix; density(N(i)) is a density
vector w.r.t. points in N(i); the MLP is a two-layer perceptron network.

• Architecture 2, features reweighted by the information of local coordinates: As shown
in Figure 1 (b), for each point xi, Architecture 2 uses the information of local 3D coordinates to
compute WH2 ∈ RM×K to reweight intermediate-layer features Fi.

F′i = Fi(W
H2)>, where WH2 = MLP ({xj |j ∈ N(i)}), (7)

4

Under review as a conference paper at ICLR 2020

where the MLP is a single-layer perceptron network.

• Architecture 3, multi-scale features: Architecture 3 focuses on the use of multi-scale
contextual information (Qi et al., 2017b; Liu et al., 2018). As illustrated in Figure 1 (c),
{Fscale=K1

i , ...,Fscale=KT
i } denote features that are extracted using contexts of xi at different scales,

Fscale=Kt
i ∈ Rd×Kt . Each specific context w.r.t. xi is composed of Kt nearest neighboring points

around xi. Then, fupper
i,(scale=Kt) ∈ RD in the upper layer is computed using Fscale=Kt

i . Architecture 3
concatenates these multi-scale features to obtain fupper

i .

fupper
i = concat

fupper
i,(scale=K1)

fupper
i,(scale=K2)

...
fupper
i,(scale=KT)

 , where fupper
i,(scale=Kt) = g(Fscale=Kt

i), (8)

where concat indicates the concatenation operator; g(·) is a function for feature extraction (Qi et al.,
2017a). Please see Appendix B for details about this function.

• Architecture 4, orientation-aware features: Architecture 4 focuses on the use of orientation
information (Jiang et al., 2018). As illustrated in Figure 1 (d), for each point xi, Foe

i ∈ Rd×O denotes
the feature of xi, which encodes the information of various orientations, where O is the number of
orientations. Architecture 4 uses Foe

i to compute the orientation-aware feature foe
i ∈ Rd.

foe
i = Convoe(Foe

i), (9)

where Convoe is a special convolution operator. Please see (Jiang et al., 2018) or Appendix C.4 for
details about this operator and the computation of foe

i .

4.2 FOUR HYPOTHESES AND COMPARATIVE STUDY DESIGN

Hypothesis 1: Architecture 1 designed by (Wu et al., 2019), as shown in Figure 1 (a), increases
the adversarial robustness.

This hypothesis is proposed based on the observation that PointConv (Wu et al., 2019) has good per-
formance in adversarial robustness, which may stem from Architecture 1. To verify this hypothesis,
we design comparative studies on PointConv, PointNet++ (Qi et al., 2017b), and Point2Sequence
(Liu et al., 2018). For each network, we construct two versions for comparison, i.e. one with Archi-
tecture 1 and the other without Architecture 1.

PointConv w/ and w/o Architecture 1: To obtain the PointConv without Architecture 1, we re-
move all the modules of Architecture 1 from the original network (see the footnote2), which are
located behind the 2-nd, 5-th, 8-th, 11-th, and 14-th nonlinear transformation layers. Please see
Appendix D.2 for the global architectures of different versions of PointConv.

fupper
i = MLP (Fi) diag[WH1] =⇒ fupper

i = MLP (Fi), (10)

where fupper
i is the feature in the upper layer; diag[WH1] transforms the vectorWH1 into a diagonal

matrix.

PointNet++ w/ and w/o Architecture 1: To obtain the PointNet++ with Architecture 1, we add
three modules of Architecture 1, which are located behind the 3-rd, 6-th, and 9-th nonlinear trans-
formation layers. Please see Appendix D.1 for the global architectures of different versions of
PointNet++.

fupper
i = MLP (Fi) =⇒ fupper

i = MLP (Fi) diag[WH1]. (11)

Point2Sequence w/ and w/o Architecture 1: To obtain the Point2Sequence with Architecture
1, we add the module of Architecture 1 behind the last nonlinear transformation layer, as shown
in Equation (11). Please see Appendix D.3 for the global architectures of different versions of
Point2Sequence.

Hypothesis 2: Architecture 2 designed by (Wu et al., 2019), as shown in Figure 1 (b), increases
the rotation robustness.

2The PointConv for classification is revised from the code for segmentation released by (Wu et al., 2019).

5

Under review as a conference paper at ICLR 2020

This hypothesis is proposed based on the observation that PointConv (Wu et al., 2019) has good
performance in rotation robustness, which may stem from Architecture 2. To verify this hypothesis,
we design comparative studies on PointConv, PointNet++, and Point2Sequence.

PointConv w/ and w/o Architecture 2: To obtain the PointConv without Architecture 2, we remove
all the modules of Architecture 2, which are located before the 3-rd, 6-th, 9-th, 12-th, and 15-th
nonlinear transformation layers. Please see Appendix D.2 for the global architectures of different
versions of PointConv.

fupper
i = MLP (Fi)(W

H2)> =⇒ fupper
i = MLP (Fi). (12)

PointNet++ w/ and w/o Architecture 2: Just like Hypothesis 1, to obtain the PointNet++ with
Architecture 2, we add three modules of Architecture 2, which are located behind the 3-rd, 6-th,
and 9-th nonlinear transformation layers. Please see Appendix D.1 for the global architectures of
different versions of PointNet++.

fupper
i = MLP (Fi) =⇒ fupper

i = MLP (Fi)(W
H2)>. (13)

Point2Sequence w/ and w/o Architecture 2: Just like Hypothesis 1, to obtain the Point2Sequence
with Architecture 2, we add the module of Architecture 2 behind the last nonlinear transformation
layer, as shown in Equation (13). Please see Appendix D.3 for the global architectures of different
versions of Point2Sequence.

Hypothesis 3: Architecture 3 designed by (Qi et al., 2017b), as shown in Figure 1 (c), increases
the adversarial robustness and the neighborhood consistency.

This hypothesis is proposed inspired by (Qi et al., 2017b; Liu et al., 2018), which encode multi-scale
contextual information. To verify this hypothesis, we design the following comparative studies on
Point2Sequence and PointNet++.

PointNet++ w/ and w/o Architecture 3: To obtain the PointNet++ with Architecture 3, we use the
multi-scale version of PointNet++ (Qi et al., 2017b), which extracts features at three scales.

Point2Sequence w/ and w/o Architecture 3: To obtain different versions of Point2Sequence,
we use three networks as follows. The baseline network of Point2Sequence con-
catenates features of 4 different scales to compute the feature in the upper layer,
{fupper
i,(scale=K1), f

upper
i,(scale=K2), f

upper
i,(scale=K3), f

upper
i,(scale=K4)}. In this study, we set K1 = 128, K2 = 64,

K3 = 32, and K4 = 16. The first network for comparison extracts three different scale features,
{fupper
i,(scale=K1), f

upper
i,(scale=K2), f

upper
i,(scale=K3)}, and the second one extracts two different scale features,

{fupper
i,(scale=K1), f

upper
i,(scale=K2)}.

Hypothesis 4: Architecture 4 designed by (Jiang et al., 2018), as shown in Figure 1 (d), in-
creases the rotation robustness.

This hypothesis is proposed based on the observation that PointSIFT (Jiang et al., 2018) performs
well in rotation robustness, which may stem from Architecture 4. Because Architecture 4 ensures
that features contain information from various orientations. To verify this hypothesis, we design
comparative studies on PointSIFT, PointNet++, and Point2Sequence as follows.

PointSIFT w/ and w/o Architecture 4: To get the PointSIFT without Architecture 4, we remove
all the modules of Architecture 4 from the original network (see the footnote3), which are located
before the 1-st, 3-rd, 5-th, and 7-th nonlinear transformation layers. Please see Appendix D.4 for the
global architectures of different versions of PointSIFT.
PointNet++ w/ and w/o Architecture 4: To obtain the PointNet++ with Architecture 4, we add the
module of Architecture 4 before the 7-th nonlinear transformation layer.
Point2Sequence w/ and w/o Architecture 4: To obtain the Point2Sequence with Architecture 4,
we add the module of Architecture 4 before the 14-th nonlinear transformation layer.

3The PointSIFT for classification is revised from the code for segmentation released by (Jiang et al., 2018).

6

Under review as a conference paper at ICLR 2020

Table 2: Quantification of the representation capacity of different
DNNs on the ModelNet40 dataset.

Models Information
discarding

Information
concentration

Rotation
non-robustness

Adversarial
robustness

Neighborhood
inconsistency

PointNet -8128.10 1.043 8.409 1.994 2.946
PointNet++ -8578.97 1.116 5.000 2.504 3.451
PointConv -8720.98 0.380 3.918 2.878 3.735
DGCNN -9165.82 1.042 4.383 2.421 1.445

PointSIFT -8391.08 0.032 4.747 2.839 2.387
Point2Sequence -8145.27 1.141 5.786 2.526 3.655

(a) @ ModelNet40 (b) @ ModelNet40In
fo

rm
at

io
n

di
sc

ar
di

ng

DGCNN
Point2Sequence
PointSIFT

PointNet
PointNet++
PointConv

In
fo

rm
at

io
n

co
nc

en
tra

tio
n

Figure 2: Comparisons of layer-
wise information discarding and
layerwise information concentra-
tion between DNNs.

Table 3: Comparisons of the rotation non-robustness between DNNs trained using the ModelNet40,
ShapeNet, and 3D MNIST datasets. The column of ∆ denotes the increase of the rotation robustness
of the network with the specific architecture w.r.t. the network without the specific architecture.
∆ > 0 indicates that the corresponding hypothesis has been verified. Experimental results show that
Architecture 2 and Architecture 4 improved the rotation robustness, i.e. reporting relatively lower
values of rotation non-robustness. Please see Appendix F (Table 14) for the classification accuracy
of these DNNs.

Architecture Model ModelNet40 ShapeNet 3D MNIST
w/ w/o ∆ w/ w/o ∆ w/ w/o ∆

Architecture 2
PointConv 3.918 3.954 0.036 4.250 2.703 -1.547 5.140 6.221 1.081
PointNet++ 2.658 5.000 2.342 4.186 6.709 2.523 5.256 6.754 1.498

Point2Sequence 4.020 5.786 1.766 2.821 5.222 2.401 4.590 7.410 2.820

Architecture 4
PointSIFT 4.747 7.090 2.343 4.598 5.118 0.520 7.851 6.154 -1.697

PointNet++ 5.505 5.000 -0.505 6.152 6.709 0.557 5.298 6.754 1.456
Point2Sequence 2.917 5.786 2.869 2.909 5.222 2.313 5.942 7.410 1.468

5 EXPERIMENTS

To demonstrate the broad applicability of our method, we applied our method to diagnose six widely
used DNNs, including PointNet, PointNet++, PointConv, DGCNN, PointSIFT, and Point2Sequence.
These DNNs were trained using three benchmark datasets, including the ModelNet40 dataset (Wu
et al., 2015), the ShapeNet4 dataset (Chang et al., 2015), the 3D MNIST5 dataset. In sum, we
conducted four comparative experiments. The first experiment was to analyze DNNs using the pro-
posed five metrics. The remaining three experiments were conducted to verify the effects of different
network architectures on DNNs’ rotation robustness, adversarial robustness, and neighborhood in-
consistency, respectively.

Implementation details: To analyze the information concentration of DNNs, we generated a new
dataset that contained both the foreground objects and the background, since most widely used
benchmark datasets for point cloud classification only contain foreground objects. Specifically, for
each sample (i.e. the foreground object) in the ModelNet40, we used the following three steps to
generate the background. First, we randomly sampled a set of 500 points from point clouds, which
had different labels from the foreground object. Second, we resized this set of points to the density
of the foreground object. Finally, we randomly located it around the foreground object. The dataset
will be released when this paper is accepted.

The entropy-based method (Ma et al., 2019) quantified the layerwise information discarding. This
method assumed the feature space of the concept of a specific object satisfied ‖f ′ − f‖2 < ε, where
f = h(X), f ′ = h(X ′), X ′ = X + δ. δ denotes a random noise. For point cloud processing, each
dimension of the intermediate-layer feature is computed using the context of a specific point xi.
However, adding noise to a point cloud will change the context of each point. In order to extend the
entropy-based method to point cloud processing, we selected the same set of points as the contexts
w.r.t. xi and x′i, so as to generate a convincing evaluation. Please see Appendix E for details.

Experiment 1, quantifying the representation capacity of DNNs: As shown in Table 2, we mea-
sured information discarding, information concentration, rotation robustness, and neighborhood in-
consistency of the representation of the fully connected layer close to the network output, which had
512 hidden units. We measured adversarial robustness by performing adversarial attacks over all

4The ShapeNet dataset for classification is converted from the ShapeNet part segmentation dataset.
5 https://www.kaggle.com/daavoo/3d-mnist/version/13

7

Under review as a conference paper at ICLR 2020

Table 4: Comparisons of the adversarial robustness between DNNs trained using the ModelNet40,
ShapeNet, and 3D MNIST datasets. The column of ∆ denotes the increase of the adversarial robust-
ness of the network with the specific architecture w.r.t. the network without the specific architecture.
∆ > 0 indicates that the corresponding hypothesis has been verified. Experimental results show
that Architecture 1 and Architecture 3 improved the adversarial robustness. Please see Appendix F
(Table 15) for the classification accuracy of these DNNs.

Architecture Model ModelNet40 ShapeNet 3D MNIST
w/ w/o ∆ w/ w/o ∆ w/ w/o ∆

Architecture 1
PointConv 2.878 2.629 0.249 2.407 2.271 0.136 2.737 2.530 0.207
PointNet++ 2.519 2.504 0.015 2.496 2.437 0.059 2.427 2.352 0.075

Point2Sequence 2.544 2.526 0.018 2.500 2.520 -0.020 2.475 2.468 0.007

Architecture 3
PointNet++ 3.010 2.504 0.506 2.987 2.437 0.550 2.604 2.352 0.252

Point2Sequence (4 scales vs. 3 scales) 2.526 2.521 0.005 2.520 2.514 0.006 2.468 2.479 -0.011
Point2Sequence (4 scales vs. 2 scales) 2.513 0.013 2.488 0.032 2.460 0.008

Table 5: Comparisons of the neighborhood inconsistency between DNNs trained using the Model-
Net40, ShapeNet, and 3D MNIST datasets. The column of ∆ denotes the increase of the neighbor-
hood consistency of the network with the specific architecture w.r.t. the network without the specific
architecture. ∆ > 0 indicates that the corresponding hypothesis has been verified. Experimental
results show that Architecture 3 increased the neighborhood consistency, i.e. reporting relatively
lower values of neighborhood inconsistency. Please see Appendix F (Table 15) for the classification
accuracy of these DNNs.

Model ModelNet40 ShapeNet 3D MNIST
w/ w/o ∆ w/ w/o ∆ w/ w/o ∆

PointNet++ 3.149 3.451 0.302 3.321 3.346 0.025 3.496 3.519 0.023
Point2Sequence (4 scales vs. 3 scales) 3.655 4.182 0.527 3.091 3.179 0.088 3.226 3.411 0.185
Point2Sequence (4 scales vs. 2 scales) 4.253 0.598 3.199 0.108 3.537 0.311

incorrect classes. Figure 2 compares layerwise information discarding and layerwise information
concentration of different layers in different DNNs. We found that PointNet and Point2Sequence
had relatively higher values of information discarding. PointConv and PointSIFT discarded more
information of points in the background. PointConv, DGCNN, and PointSIFT performed well in
rotation robustness. PointConv, PointSIFT, and Point2Sequence exhibited higher adversarial robust-
ness. DGCNN and PointSIFT exhibited lower neighborhood inconsistency.

Experiment 2, verifying the effects on rotation robustness: For the computation of rotation ro-
bustness, during the training and testing phases, each point cloud was rotated by random angles.
Table 3 shows that Architecture 2 and Architecture 4 improved the rotation robustness.

Experiment 3, verifying the effects on adversarial robustness: Table 4 shows that both Architec-
ture 1 and Architecture 3 improved the adversarial robustness. For Architecture 3, we found that the
adversarial robustness increased with the scale number of features.

Experiment 4, verifying the effects on neighborhood inconsistency: For the computation of
neighborhood inconsistency, we used k-NN search to select 16 neighbors for each point. Table 5
shows that networks with Architecture 3 usually had lower neighborhood inconsistency than those
without Architecture 3. Besides, DNNs, which extracted features from contexts of more scales,
usually exhibited lower neighborhood inconsistency.

6 CONCLUSION

In this paper, we have verified a few hypotheses of the utility of four specific network architec-
tures for 3D point cloud processing. Comparative studies are conducted to prove the utility of the
specific architectures, including rotation robustness, adversarial robustness, and neighborhood in-
consistency. In preliminary experiments, we have verified that Architecture 2 and Architecture 4
mainly improve the rotation robustness; Architecture 1 and Architecture 3 have positive effects on
adversarial robustness; Architecture 3 usually alleviates the neighborhood inconsistency.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Alessandro Achille and Stefano Soatto. Information dropout: Learning optimal representations
through noisy computation. IEEE transactions on pattern analysis and machine intelligence, 40
(12):2897–2905, 2018.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In
Advances in neural information processing systems, pp. 2172–2180, 2016.

Hao Cheng, Dongze Lian, Shenghua Gao, and Yanlin Geng. Evaluating capability of deep neural
networks for image classification via information plane. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pp. 168–182, 2018.

Alexey Dosovitskiy and Thomas Brox. Inverting visual representations with convolutional networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4829–
4837, 2016.

Ruth Fong and Andrea Vedaldi. Net2vec: Quantifying and explaining how concepts are encoded by
filters in deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 8730–8738, 2018.

Vincent Fortuin, Matthias Hüser, Francesco Locatello, Heiko Strathmann, and Gunnar Rätsch.
Som-vae: Interpretable discrete representation learning on time series. arXiv preprint
arXiv:1806.02199, 2018.

Matheus Gadelha, Rui Wang, and Subhransu Maji. Multiresolution tree networks for 3d point cloud
processing. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 103–
118, 2018.

Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. A closer look
at deep learning heuristics: Learning rate restarts, warmup and distillation. arXiv preprint
arXiv:1810.13243, 2018.

John R Hershey and Peder A Olsen. Approximating the kullback leibler divergence between gaus-
sian mixture models. In 2007 IEEE International Conference on Acoustics, Speech and Signal
Processing-ICASSP’07, volume 4, pp. IV–317. IEEE, 2007.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. ICLR, 2(5):6, 2017.

Mingyang Jiang, Yiran Wu, Tianqi Zhao, Zelin Zhao, and Cewu Lu. Pointsift: A sift-like network
module for 3d point cloud semantic segmentation. arXiv preprint arXiv:1807.00652, 2018.

Pieter-Jan Kindermans, Kristof T Schütt, Maximilian Alber, Klaus-Robert Müller, Dumitru Erhan,
Been Kim, and Sven Dähne. Learning how to explain neural networks: Patternnet and patternat-
tribution. arXiv preprint arXiv:1705.05598, 2017.

Artem Komarichev, Zichun Zhong, and Jing Hua. A-cnn: Annularly convolutional neural networks
on point clouds. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. arXiv preprint arXiv:1905.00414, 2019.

Yuchao Li, Shaohui Lin, Baochang Zhang, Jianzhuang Liu, David Doermann, Yongjian Wu, Feiyue
Huang, and Rongrong Ji. Exploiting kernel sparsity and entropy for interpretable cnn compres-
sion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
2800–2809, 2019.

9

Under review as a conference paper at ICLR 2020

Xinhai Liu, Zhizhong Han, Yu-Shen Liu, and Matthias Zwicker. Point2sequence: Learning the
shape representation of 3d point clouds with an attention-based sequence to sequence network.
arXiv preprint arXiv:1811.02565, 2018.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Advances
in Neural Information Processing Systems, pp. 4765–4774, 2017.

Haotian Ma, Yinqing Zhang, Fan Zhou, and Quanshi Zhang. Quantifying layerwise information
discarding of neural networks. arXiv preprint arXiv:1906.04109, 2019.

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by inverting
them. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
5188–5196, 2015.

Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural
networks with canonical correlation. In Advances in Neural Information Processing Systems, pp.
5727–5736, 2018.

Alex Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra, and Danilo J Rezende. To-
wards interpretable reinforcement learning using attention augmented agents. arXiv preprint
arXiv:1906.02500, 2019.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 652–660, 2017a.

Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning
on point sets in a metric space. In Advances in Neural Information Processing Systems, pp.
5099–5108, 2017b.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vector
canonical correlation analysis for deep learning dynamics and interpretability. In Advances in
Neural Information Processing Systems, pp. 6076–6085, 2017.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust you?: Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144. ACM, 2016.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In
Advances in neural information processing systems, pp. 3856–3866, 2017.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626,
2017.

Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointrcnn: 3d object proposal generation and
detection from point cloud. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 770–779, 2019.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via informa-
tion. arXiv preprint arXiv:1703.00810, 2017.

Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang,
and Jan Kautz. Splatnet: Sparse lattice networks for point cloud processing. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2530–2539, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint physics/0004057, 2000.

10

Under review as a conference paper at ICLR 2020

Diego Valsesia, Giulia Fracastoro, and Enrico Magli. Learning localized generative models for 3d
point clouds via graph convolution. 2018.

Joel Vaughan, Agus Sudjianto, Erind Brahimi, Jie Chen, and Vijayan N Nair. Explainable neural
networks based on additive index models. arXiv preprint arXiv:1806.01933, 2018.

Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neumann. Sgpn: Similarity group proposal
network for 3d point cloud instance segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2569–2578, 2018a.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. arXiv preprint arXiv:1801.07829, 2018b.

Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convolutional networks on 3d point
clouds. In Proceedings of the IEEE Conferenc e on Computer Vision and Pattern Recognition,
pp. 9621–9630, 2019.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1912–1920, 2015.

Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Point cloud auto-encoder via
deep grid deformation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 206–215, 2018.

Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. Pu-net: Point cloud
upsampling network. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2790–2799, 2018.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pp. 818–833. Springer, 2014.

Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable convolutional neural networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8827–
8836, 2018.

Hengshuang Zhao, Li Jiang, Chi-Wing Fu, and Jiaya Jia. Pointweb: Enhancing local neighborhood
features for point cloud processing. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019a.

Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico Tombari. 3d point capsule networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1009–
1018, 2019b.

Tianhang Zheng, Changyou Chen, Junsong Yuan, Bo Li, and Kui Ren. Pointcloud saliency maps.
arXiv preprint arXiv:1812.01687, 2019.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Object detectors
emerge in deep scene cnns. arXiv preprint arXiv:1412.6856, 2014.

11

Under review as a conference paper at ICLR 2020

A OVERVIEW

This Appendix provides more details about comparative studies in the main paper and includes more
implementation details about experiments. In Section B, we introduce a special element-wise max
operator widely used in point cloud processing. In Section C, we briefly introduce DNNs used in
comparative studies. In Section D, we show details about different versions of DNNs for compari-
son. In Section E, we show implementation details about extending the entropy-based method (Ma
et al., 2019) to point cloud processing. In Section F, we compare the accuracy of different versions
of DNNs. In Section G, we supplement related work about learning interpretable representations.

B A SPECIAL ELEMENT-WISE MAX OPERATOR IN POINT CLOUD PROCESSING

In point cloud processing, a special element-wise max operator is widely used for aggregating a set
of neighboring points’ features into a local feature. As shown in Figure 3, given a set of K nearest
neighboring points of xi, N(i), let Fi ∈ Rd×K denote intermediate-layer features that correspond
to the set of neighboring points in N(i) w.r.t. the point xi. Each specific column of Fi represents
the feature of a specific point in N(i). The process of extracting the feature in the upper layer, i.e.
fupper
i , can be formulated as follows, which is the local feature of N(i).

fupper
i = g(Fi) = MAX

i=1,...,K
(MLP (Fi)), (14)

where MLP is an MLP network with a few layers; MLP (Fi) ∈ RD×K ; MAX is an element-wise
max operator as follows. Let F′i = MLP (Fi).

MAX
i=1,...,K

(F′i) = MAX
i=1,...,K

f
′
11 · · · f ′1K
...

. . .
...

f ′D1 · · · f ′DK

 define
=====< max

k=1,...,K
f ′1k, . . . , max

k=1,...,K
f ′Dk >

> (15)

C INTRODUCTION OF DNNS USED IN COMPARATIVE STUDIES

For a better understanding of different versions of DNNs in the next section, we briefly intro-
duce DNNs used in comparative studies, including PointNet++, PointConv, Point2Sequence, and
PointSIFT.

C.1 POINTNET++

PointNet++ (Qi et al., 2017b) is a hierarchical structure composed of a number of set abstraction
modules (SA module). For each SA module, a set of points is processed and abstracted to produce a
new set with fewer elements. An SA module includes four parts: the Sampling layer, the Grouping
layer, the MLP, and the Maxpooling layer. Given a set of N input points, the Sampling layer uses
the farthest point sampling algorithm to select a subset of points from the input points, which defines
the centroids of local regions, {xi}, i = 1, . . . , N ′. Then, for each selected point, the Grouping layer
constructs a local region by using ball query search to find K neighboring points within a radius r.
For each local region N(i) centered at xi, Fi ∈ Rd×K denotes the intermediate-layer features that
correspond to points in N(i). The MLP transforms Fi into higher dimension features F′i ∈ RD×K ,
where D > d. Finally, the Maxpooling layer encodes F′i into a local feature fupper

i , which will be
fed to the upper SA module. Please see Appendix B for details about the Maxpooling layer.

In this study, the baseline network of PointNet++ is composed of three SA modules and a few fully
connected layers. Please see Table 6 (left column) for details about the network architecture.

C.2 POINTCONV

PointConv (Wu et al., 2019) has a similar architecture with PointNet++, i.e. hierarchically
using a few blocks to extract contextual information. In this study, the baseline network of
PointConv is composed of five blocks. Each block is constructed as [Sample layer→Group
layer→MLP→Architecture 1→Architecture 2→Conv layer].

12

Under review as a conference paper at ICLR 2020

M
LP

f1
f2

fK

KxD

f1'

f2'

fK'

1xD

fiupper

Local feature extraction

Kxd

max
pool

Fi

Figure 3: Illustration of the special max pooling operator. Fi denotes features correspond to
points in neighborhood N(i) w.r.t. point xi. Each column of Fi represents the feature of a specific
point in N(i).

The Sampling layer uses the farthest point sampling algorithm to select a subset of points from
the input points, which defines the centroids of local regions. Then, for each selected point, the
Grouping layer constructs a local region by using k-NN search to find K neighboring points. For
each local region, the MLP transforms features of points in the local region into higher dimension
features. Different from PointNet++, PointConv uses the information of density (i.e. Architecture 1)
and local 3D coordinates (i.e. Architecture 2) to reweight the features learned by the MLP. Finally,
a 1 × 1 convolution is used to compute the output feature of each local region. Please see Table 8
(left column) for details about the network architecture.

C.3 POINT2SEQUENCE

Point2Sequence (Liu et al., 2018) is composed of five parts: (a) multi-scale area establishment, (b)
area feature extraction, (c) encoder-decoder feature aggregation, (d) local region feature aggregation,
and (e) shape classification, where parts (a) and (b) makes up Architecture 3 in our study.

Specifically, given a point cloud X = {xi}, i = 1, 2, ..., N , Point2Sequence first uses the farthest
point sampling algorithm to select N ′ points from the input point cloud, X′ = {x′j}, j = 1, 2, ..., N ′,
to define the centroids of local regions {N(j)}, j = 1, 2, ...N ′. For each local region N(j), T
different scale areas {A(j)1, ...,A(j)t, ...,A(j)T } are established by using k-NN search to select
[K1, ...,Kt, ...,KT] nearest points of x′j . In this way, multi-scale areas are established. Then,
Point2Sequence extracts a feature fupper

j,scale=Kt
∈ Rd for each scale area A(j)t by the MLP and the

Maxpooling layer introduced in Appendix C.1. Therefore, for each local region N(j), a feature se-
quence fupper

j = {fupper
j,scale=K1

, ..., fupper
j,scale=Kt

, ..., fupper
j,scale=KT

} is acquired. Then, fupper
j is aggregated

into a d-dimensional feature rj by the encoder-decoder feature aggregation part. The sequence
encoder-decoder structure used here is an LSTM network, where an attention mechanism is pro-
posed to highlight the importance of different area scales (please see (Liu et al., 2018) for details).
Then, a 1024-dimensional global feature is aggregated from the features rj of all local regions by
the local region feature aggregation part. Finally, the global feature is used for shape classification.
Please see Table 9 for details about the network architecture.

C.4 POINTSIFT

PointSIFT (Jiang et al., 2018) adopts the similar hierarchical structure as PointNet++, which is
composed of a number of SA modules. The difference is that PointSIFT uses a special orientation
encoding unit, i.e., Architecture 4, to learn an orientation-aware feature for each point.

Architecture 4 is a point-wise local feature descriptor that encodes information of eight orientations.
Unlike the unordered operator, e.g. max pooling, which discards all inputs except for the maximum,
Architecture 4 is an ordered operator, which could be more informative.

Architecture 4 first selects 8-nearest points of xi from eight octants partitioned by the ordering
of three coordinates. Since distant points provide little information for the description of local
patterns, when no point exists within searching radius r in some octant, xi will be duplicated as the
nearest neighbor of itself. Then, Architecture 4 processes features of 8-nearest neighboring points,
Foe

i ∈ Rd×2×2×2, which reside in a 2× 2× 2 cube for local pattern description centering at xi (as
shown in Figure 1 (d)), the three dimensions 2 × 2 × 2 correspond to three axes. An orientation-

13

Under review as a conference paper at ICLR 2020

Table 6: Different versions of PointNet++, including the original one, the one with Architecture
1, the one with Architecture 2, and the one with Architecture 4. Sample (N) indicates the Sample
layer, which selects a subset of N points from the input point cloud. Group (r,K) indicates the
Group layer, which uses the ball query search to find K neighboring points around each sampled
point within a radius r. Group (all) means constructing a region with all the input points. MLP
[u1, . . . , ul] indicates the MLP with l layers, where ui is the number of hidden units of the i-th layer.
Architecture 4 [d] indicates Architecture 4, which outputs d-dimensional features.

Pointnet++ Pointnet++ with Architecture 1 Pointnet++ with Architecture 2 Pointnet++ with Architecture 4
Sample (512) Sample (512) Sample (512) Sample (512)

Group (0.2,32) Group (0.2,32) Group (0.2,32) Group (0.2,32)
MLP [64,64,128] MLP [64,64,128] MLP [64,64,128] MLP [64,64,128]

Maxpooling Architecture 1 Architecture 2 Maxpooling
Sample (128) Maxpooling Maxpooling Sample (128)

Group (0.4,64) Sample (128) Sample (128) Group (0.4,64)
MLP [128,128,256] Group (0.4,64) Group (0.4,64) MLP [128,128,256]

Maxpooling MLP [128,128,256] MLP [128,128,256] Maxpooling
Sample (1) Architecture 1 Architecture 2 Architecture 4 [256]
Group (all) Maxpooling Maxpooling Sample (1)

MLP [256,512,1024] Sample (1) Sample (1) Group (all)
Maxpooling Group (all) Group (all) MLP [256,512,1024]

FC [512,256,40] MLP [256,512,1024] MLP [256,512,1024] Maxpooling
Softmax Architecture 1 Architecture 2 FC [512,256,40]

Maxpooling Maxpooling Softmax
FC [512,256,40] FC [512,256,40]

Softmax Softmax

encoding convolution, i.e. Convoe, which is a three-stage operator, is used to convolve the 2×2×2
cube along x, y, and z axis. The three-stage convolution Convoe is formulated as:

fx−axis
i = ReLU(Conv(Wx,F

oe
i))) ∈ Rd×2×2×1

f
(x,y)−axis
i = ReLU(Conv(Wy, f

x−axis
i)) ∈ Rd×2×1×1

foe
i = f

(x,y,z)−axis
i = ReLU(Conv(Wz, f

(x,y)−axis
i)) ∈ Rd×1×1×1

(16)

where Wx ∈ Rd×1×1×2, Wy ∈ Rd×1×2×1, and Wz ∈ Rd×2×1×1 are weights of the convolution
operator.

In this way, Architecture 4 learns the orientation-aware feature foei for each point xi. Such
orientation-aware features will be fed to SA modules introduced in Appendix C.1 to extract con-
textual information.

D COMPARATIVE VERSIONS OF DNNS

D.1 POINTNET++:

In this study, we reconstructed the PointNet++ (Qi et al., 2017b) using four specific modules. Ta-
ble 6 and Table 7 compare the different versions of PointNet++, including the original one, the one
with Architecture 1 (Wu et al., 2019), the one with Architecture 2 (Wu et al., 2019), the one with
Architecture 4 (Jiang et al., 2018), and the one with Architecture 3 (Liu et al., 2018).

To obtain the PointNet++ with Architecture 1 (as shown in Table 6), we added modules of Architec-
ture 1 after all the MLPs in PointNet++, i.e. the output of the MLP was reweighted by the weights
learned by Architecture 1. Architecture 1 used in this study was an MLP with two layers, the first
layer contained 16 hidden units, and the second layer contained 1 hidden unit. This network was
designed to verify the effect of Architecture 1 on the adversarial robustness.

To obtain the PointNet++ with Architecture 2 (as shown in Table 6), we added modules of Architec-
ture 2 after all the MLPs in PointNet++, i.e. the output of the MLP was reweighted by the weights
learned by Architecture 2. Architecture 2 used in this study was an MLP with a single-layer, which
contained 32 hidden units. This network was designed to verify the effect of Architecture 2 on the
rotation robustness.

To obtain the PointNet++ with Architecture 4 (as shown in Table 6), we added the module of Archi-
tecture 4 before the last Sample layer in PointNet++. This network was designed to verify the effect
of Architecture 4 on the rotation robustness.

14

Under review as a conference paper at ICLR 2020

Table 7: The original PointNet++ and the PointNet++ with Architecture 3.
PointNet++ PointNet++ with Architecture 3

Sample (512) Sample (512)
Group (0.2,32) Group1 (0.1,16) Group2 (0.2,32) Group3 (0.4,128)

MLP [64,64,128] MLP1 [32,32,64] MLP2 [64,64,128] MLP3 [64,96,128]
Maxpooling Maxpooling Maxpooling Maxpooling

Sample (128) Multi-Scale Feature Aggregation
Group (0.4,64) Sample (128)

MLP [128,128,256] Group1 (0.2,32) Group2 (0.4,64) Group3 (0.8,128)
Maxpooling MLP1 [64,64,128] MLP2 [128,128,256] MLP3 [128,128,256]
Sample (1) Maxpooling Maxpooling Maxpooling
Group (all) Multi-Scale Feature Aggregation

MLP [256,512,1024] Sample (1)
Maxpooling Group (all)

FC [512,256,40] MLP [256,512,1024]
Softmax FC [512,256,40]

Softmax

Table 8: Different versions of PointConv, including the original one, the one without Architecture
1, the one without Architecture 2. Here Group (K) indicates the Group layer, which uses the k-NN
search to find K neighboring points around each sampled point.

PointConv PointConv without Architecture 1 PointConv without Architecture 2
Sample (1024) Sample (1024) Sample (1024)

Group (32) Group (32) Group (32)
MLP [32,32] MLP [32,32] MLP [32,32]

Architecture 1 Architecture 2 Architecture 1
Architecture 2 Conv [64] Conv [64]

Conv [64] Sample (256) Sample (256)
Sample (256) Group (32) Group (32)
Group (32) MLP [64,64] MLP [64,64]

MLP [64,64] Architecture 2 Architecture 1
Architecture 1 Conv [128] Conv [128]
Architecture 2 Sample (64) Sample (64)

Conv [128] Group (32) Group (32)
Sample (64) MLP [128,128] MLP [128,128]
Group (32) Architecture 2 Architecture 1

MLP [128,128] Conv [256] Conv [256]
Architecture 1 Sample (36) Sample (36)
Architecture 2 Group (32) Group (32)

Conv [256] MLP [256,256] MLP [256,256]
Sample (36) Architecture 2 Architecture 1
Group (32) Conv [512] Conv [512]

MLP [256,256] Sample (1) Sample (1)
Architecture 1 Group (all) Group (all)
Architecture 2 MLP [512,512] MLP [512,512]

Conv [512] Architecture 2 Architecture 1
Sample (1) Conv [1024] Conv [1024]
Group (all) FC [512,128,40] FC [512,128,40]

MLP [512,512] Softmax Softmax
Architecture 1
Architecture 2
Conv [1024]

FC [512,128,40]
Softmax

To obtain the PointNet++ with Architecture 3 (as shown in Table 7), we used the multi-scale version
of PointNet++ designed in (Qi et al., 2017b). Compared with the single-scale version of Point-
Net++ (as shown in Table 6 (left)), the multi-scale version added two blocks after the first Sample
layer, i.e. [Group1(16) → MLP1[32, 32, 64] → Maxpooling] and [Group1(128) → MLP1[64, 96, 128] →
Maxpooling], The multi-scale version added another two blocks after the second Sample layer,
i.e. [Group1(32) → MLP1[64, 64, 128] → Maxpooling] and [Group1(128) → MLP1[128, 128, 256] →
Maxpooling]. In this way, the multi-scale version of PointNet++ extracted two more scale features.

15

Under review as a conference paper at ICLR 2020

Table 9: Illustration of the original Point2Sequnence network architecture. Here Group (K) indicates
the Group layer, which uses the k-NN search to find K neighboring points around each sampled
point.

Point2Sequence
Sample (384)

Group1 (16) Group2 (32) Group3 (64) Group4 (128)
MLP1 [32,64,128] MLP2 [64,64,128] MLP3 [64,64,128] MLP4 [128,128,128]

Maxpooling Maxpooling Maxpooling Maxpooling
Multi-Scale Feature Aggregation

LSTM [128]
Sample (1)
Group (all)

MLP [256,512,1024]
Maxpooling

FC [512,256,40]
Softmax

Table 10: Illustration of the Point2Sequnence with Architecture 1.
Point2Sequence with Architecture 1

Sample (384)
Group1 (16) Group2 (32) Group3 (64) Group4 (128)

MLP1 [32,64,128] MLP2 [64,64,128] MLP3 [64,64,128] MLP4 [128,128,128]
Maxpooling Maxpooling Maxpooling Maxpooling

Multi-Scale Feature Aggregation
LSTM [128]
Sample (1)
Group (all)

MLP [256,512,1024]
Architecture 1
Maxpooling

FC [512,256,40]
Softmax

This network was used to verify the effect of Architecture 3 on the adversarial robustness and the
neighborhood inconsistency.

D.2 POINTCONV:

Table 8 compares different versions of PointConv (Wu et al., 2019), including the original one, the
one without Architecture 1 (Wu et al., 2019), and the one without Architecture 2 (Wu et al., 2019).

To obtain the PointConv without Architecture 1 (as shown in Table 8 (middle column)), we removed
all the five modules of Architecture 1 from the original PointConv architecture. This network was
designed to verify the effect of Architecture 1 on the adversarial robustness.

To obtain the PointConv without Architecture 2 (as shown in Table 8 (right column)), we removed
all the five modules of Architecture 2 from the original PointConv architecture. This network was
designed to verify the effect of Architecture 2 on the rotation robustness.

D.3 POINT2SEQUENCE:

The baseline network of Point2Sequence (as shown in Table 9) extracted features of four different
scales, i.e., for each local region centered at point xi, features were computed using the contextual
information of 16, 32, 64, and 128 nearest neighbors of xi, respectively. To obtain different ver-
sions of Point2Sequence for comparison, we removed features of specific scales. We first removed
the feature extracted by [Group1(16) → MLP1[32, 64, 128] → Maxpooling] to obtain the first version
of Point2Sequence. We then removed features extracted by [Group1(16) → MLP1[32, 64, 128] →
Maxpooling] and [Group1(32) → MLP1[64, 64, 128] → Maxpooling] to obtain the second version for
comparison. These two versions for comparison were designed to verify the effect of Architecture
3 on the adversarial robustness and the neighborhood inconsistency.

16

Under review as a conference paper at ICLR 2020

Table 11: Illustration of the Point2Sequnence with Architecture 2.
Point2Sequence with Architecture 2

Sample (384)
Group1 (16) Group2 (32) Group3 (64) Group4 (128)

MLP1 [32,64,128] MLP2 [64,64,128] MLP3 [64,64,128] MLP4 [128,128,128]
Maxpooling Maxpooling Maxpooling Maxpooling

Multi-Scale Feature Aggregation
LSTM [128]
Sample (1)
Group (all)

MLP [256,512,1024]
Architecture 2
Maxpooling

FC [512,256,40]
Softmax

Table 12: Illustration of the Point2Sequnence with Architecture 4.
Point2Sequence with Architecture 4

Sample (384)
Group1 (16) Group2 (32) Group3 (64) Group4 (128)

MLP1 [32,64,128] MLP2 [64,64,128] MLP3 [64,64,128] MLP4 [128,128,128]
Maxpooling Maxpooling Maxpooling Maxpooling

Multi-Scale Feature Aggregation
LSTM [128]

Architecture 4 [128]
Sample (1)
Group (all)

MLP [256,512,1024]
Maxpooling

FC [512,256,40]
Softmax

To obtain the Point2Sequence with Architecture 1 (as shown in Table 10), we added the module of
Architecture 1 after the last MLP, i.e. MLP [256,512,1024], in Point2Sequence. This network was
designed to verify the effect of Architecture 1 on the adversarial robustness.

To obtain the Point2Sequence with Architecture 2 (as shown in Table 11), we added the module of
Architecture 2 after the last MLP, i.e. MLP [256,512,1024], in Point2Sequence. This network was
designed to verify the effect of Architecture 2 on the rotation robustness.

To obtain the Point2Sequence with Architecture 4 (as shown in Table 12), we added the module of
Architecture 4 after the LSTM. This network was designed to verify the effect of Architecture 4 on
the rotation robustness.

D.4 POINTSIFT:

To obtain the PointSIFT without Architecture 4 (as shown in Table 13), we removed all the four
modules of Architecture 4 from the original PointSIFT. This network was designed to verify whether
Architecture 4 can improve the rotation robustness.

E FIXING THE CONTEXTS OF POINTS

In this study, we used the entropy-based method (Ma et al., 2019) to quantify the layerwise informa-
tion discarding of DNNs. This method assumed the feature space of the concept of a specific object
satisfied ‖f ′ − f‖2 < ε, where f = h(X), f ′ = h(X ′), X ′ = X + δ. δ denotes a random noise. For
image processing, changing the pixel values will not change the receptive field of an interneuron,
thereby features f and f ′ are computed using the same set of pixels (as shown in Figure 4 (a)).
However, for point cloud processing, changing the coordinates of points will change the “receptive
field” of an interneuron, i.e. features f and f ′ are computed using contexts of different set of points
(as shown in Figure 4 (b)).

17

Under review as a conference paper at ICLR 2020

Table 13: Illustration of the PointSIFT without Architecture 4. Here Group (r,K) indicates the
Group layer, which uses the ball query search to find K neighboring points around each sampled
point within a radius r.

PointSIFT PointSIFT without Architecture 4
Architecture 4 [64] Sample (1024)

Sample (1024) Group (0.1,32)
Group (0.1,32) MLP [64,128]
MLP [64,128] Maxpooling
Maxpooling Sample (256)

Architecture 4 [128] Group (0.2,32)
Sample (256) MLP [128,256]

Group (0.2,32) Maxpooling
MLP [128,256] Sample (64)

Maxpooling Group (0.4,32)
Architecture 4 [256] MLP [256,512]

Sample (64) Maxpooling
Group (0.4,32) Sample (1)
MLP [256,512] Group (all)

Maxpooling MLP [512,1024]
Architecture 4 [512] Maxpooling

Sample (1) FC [512,256,40]
Group (all) Softmax

MLP [512,1024]
Maxpooling

FC [512,256,40]
Softmax

3
2

2
2
2

2

4

2

2

2

f = h(f1, f2, ..., f9)
f ' = h(f1', f2', ..., f9')

X X'

"receptive field'' unchanged!

N(i)

N(i)

f ' f = h(f1, f2, f3, f4)
f ' = h(f1', f2', f3', f4')

N(i)

(b)

(a)

(c)

1
3

3
2

3

3
3

1
2

1

2
2

5
2

3

3
2

2
6

2
2

2

f

f '

f '
1
3

1
2

3

4
5

2
1

2

2
3

1
2

1

receptive field unchanged

"receptive field'' changed!

f = h(f1, f2, f3, f4)
f ' = h(f1', f2', f3', f5')

3
2

3

f

f

N'(i)

Figure 4: Illustration of fixed sampling and grouping. fi denotes the pixel value/point-wise
feature of pixel/point xi.

To extend the entropy-based method to point cloud processing, we selected the same set of points
as the contexts w.r.t. xi and x′i. In this way, each dimension of f and f ′ were computed based on the
same context (as shown in Figure 4 (c)). To simplify the description, here let f and f ′ denote local
features that are computed using contextual information of xi and x′i, i.e. f = h({fj |j ∈ N(i)}),
and f ′ = h({f ′j |j ∈ N′(i)}), where N(i) and N′(i) denote local regions of xi and x′i. As shown in
Figure 4 (b), changing the coordinates of points will change the “receptive field”, i.e. N′(i) 6= N(i),
f ′ and f are computed using different set of points. In order to keep the “receptive field” unchanged,
f ′ was computed as f ′ = h({f ′j |j ∈ N(i)}). In this way, features f and f ′ were computed using
information of the same set of points.

18

Under review as a conference paper at ICLR 2020

Table 14: Accuracy of different versions of DNNs on ModelNet40, ShapeNet, and 3D MNIST.
During the training and testing phases, all the point clouds were rotated by random angles. For each
specific architecture, we compared the top-1 accuracy of the network with and without the specific
architecture. Experimental results show that, in most cases, removing or adding Architecture 2 and
Architecture 4 does not have significant effects on accuracy.

Architecture Model ModelNet40 ShapeNet 3D MNIST
w/ w/o w/ w/o w/ w/o

Architecture 2
PointConv 85.94 85.33 96.07 96.59 85.20 89.10
PointNet++ 82.21 85.65 95.82 97.13 82.50 87.10

Point2Sequence 85.49 88.45 93.95 96.63 77.30 87.09

Architecture 4
PointSIFT 83.27 82.01 90.22 91.68 84.40 85.70

PointNet++ 85.98 85.64 94.40 97.13 81.30 87.10
Point2Sequence 81.20 88.45 86.46 96.63 80.60 87.09

Table 15: Accuracy of different versions of DNNs on ModelNet40, ShapeNet, and 3D MNIST.
For each specific architecture, we compared the top-1 accuracy of the network with and without the
specific architecture. Experimental results show that, in most cases, removing or adding Architecture
1 and Architecture 3 does not have significant effects on accuracy.

Architecture Model ModelNet40 ShapeNet 3D MNIST
w/ w/o w/ w/o w/ w/o

Architecture 1
PointConv 89.02 88.33 98.50 98.53 95.00 95.40
PointNet++ 90.07 89.58 98.82 98.78 96.10 95.00

Point2Sequence 90.35 92.13 98.88 98.57 99.58 93.90

Architecture 3
PointNet++ 89.50 89.58 98.43 98.78 95.60 95.00

Point2Sequence (4 scales vs. 3 scales) 92.13 91.28 98.57 98.71 93.90 94.10
Point2Sequence (4 scales vs. 2 scales) 91.00 98.74 93.00

F ACCURACY COMPARISON OF DIFFERENT VERSIONS OF DNNS

Note that this study does not aim to improve the accuracy of DNNs. This study focuses on the utility
analysis of different network architectures. Table 14 and Table 15 list the top-1 accuracy comparison
results of different versions of DNNs on three different datasets, including ModelNet40, ShapeNet,
and 3D MNIST. Experimental results show that removing or adding a specific architecture has little
effects on accuracy.

G RELATIONSHIP WITH LEARNING INTERPRETABLE REPRESENTATIONS:

Compared to the visualization or diagnosis of representations, directly learning interpretable repre-
sentations is more meaningful to improving the transparency of DNNs. In the capsule nets (Sabour
et al., 2017; Zhao et al., 2019b), meaningful capsules, which were composed of a group of neurons,
were learned to represent specific entities. Vaughan et al. (2018) learned explainability features
with additive nature. The infoGAN (Chen et al., 2016) learned disentangled representations for
generative models. The β-VAE Higgins et al. (2017) further developed a measure to quantitatively
compare the degree of disentanglement learnt by different models. Zhang et al. (2018) proposed
an interpretable CNN, where filters were mainly activated by a certain object part. Fortuin et al.
(2018) learned interpretable low-dimensional representations of time series and provided additional
explanatory insights. Mott et al. (2019) presented a soft attention mechanism for the reinforcement
learning domain, the interpretable output of which can be used by the agent to decide its action.

19

	Introduction
	Related work
	Metrics to Diagnose Networks
	Preliminary: Entropy-based information discarding quantification
	Five metrics

	Hypotheses and Comparative Study
	Introduction of specific architectures
	Four hypotheses and comparative study design

	Experiments
	Conclusion
	Overview
	A special element-wise max operator in point cloud processing
	Introduction of DNNs used in comparative studies
	PointNet++
	PointConv
	Point2Sequence
	PointSIFT

	Comparative versions of DNNs
	PointNet++:
	PointConv:
	Point2Sequence:
	PointSIFT:

	Fixing the contexts of points
	Accuracy comparison of different versions of DNNs
	Relationship with learning interpretable representations:

