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Abstract

A number of recent methods to understand neural
networks have focused on quantifying the role of
individual features. One such method, NetDissect
identifies interpretable features of a model using
the Broden dataset of visual semantic labels (col-
ors, materials, textures, objects and scenes). Given
the recent rise of a number of action recognition
datasets, we propose extending the Broden dataset
to include actions to better analyze learned action
models. We describe the annotation process, re-
sults from interpreting action recognition models
on the extended Broden dataset and examine in-
terpretable feature paths to help us understand the
conceptual hierarchy used to classify an action.

1. Introduction

The success of Deep convolutional neural networks (DNNs)
is partly due to their ability to learn hidden representations
that capture the important factors of variation in the data.
Previous works have visualized the units of deep convolu-
tional networks by sampling image patches that maximize
the activation of each feature (Zhou et al., 2016a) or by gen-
erating images that maximize each feature activation. Such
visualizations show that individual features act as visual
concept detectors. Features at lower layers detect concrete
patterns such as textures or shapes while features at higher
layers detect more semantically meaningful concepts such
as dog heads or bicycle wheels. One tool for network inter-
pretability (NetDissect) (Bau et al., 2017; Zhou et al., 2018)
uses the Broden dataset (consists of objects, scenes, object
parts, textures and materials) to evaluate individual units.

Recently, DNNs have shown significant progress in ac-
tion recognition with the introduction of large-scale video
datasets. However, while NetDissect with the Broden dataset
is appropriate for networks trained on object or scene recog-
nition, it does not include the ability to detect learned action
concepts.

In this paper, we propose extending the Broden dataset to
include actions so that we can more appropriately interpret
action recognition networks. We describe our annotation
process to collect images across action classes and select

Sample videos Example frames from a few videos to show intra-
class action variation

Action Regions Spatial localization of actions in single frames for
network interpretation

Action Interpretation Identifying interpretable action features

regions of importance for identifying each action. We then
show results using our Action Region dataset together with
the existing Broden set to identify interpretable action fea-
tures in deep networks trained for action recognition. The
Action Region dataset presented, and the code for integrat-
ing with NetDissect, will be made available online.

2. Identifying Action Features

To better analyze action models, we extend the Broden
dataset to include actions. This is done by first building an
image segmentation dataset for actions.

2.1. Annotation

We begin by collecting bounding box annotations via Ama-
zon Mechanical Turk (AMT) for actions in images selected
from videos, for which we use the Moments in time dataset
(Monfort et al., 2019). We extract a single frame from the
center of 500 randomly selected videos for each of the 339
action classes from the dataset and present a binary annota-
tion task to the workers on AMT asking if an action from
the source videos label set is visible in the frame shown.
This binary interface is very similar to that used for col-
lecting the action labels for the Moments in Time dataset
(Monfort et al., 2019) with the main difference being the
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use of images rather than video. We run this task for at least
2 rounds of annotation to verify that the action is visible in
each frame. We then take the set of verified action-frame
pairs and pass them to a separate annotation interface on
AMT that asks the workers to select the regions most impor-
tant in the image for identifying the action. Multiple regions
can be selected for an image as in the jogging example in
Figure 3 and the workers are allowed to skip an image if
there are no useful regions for detecting the action (i.e. the
action is not visible in the image).

We run this region selection task through multiple rounds
and only consider overlapping regions from the different
rounds as most important for detecting the actions. After
this stage the regions selected are cropped from the original
images and passed through the binary annotation task previ-
ously described for a final verification that the actions are
present and recognizable in the selected regions. After our
complete annotation process our total set of verified images
with segmented action regions consists of 23,244 images
from 210 different classes. Figure 3 displays some examples
of the selected regions collected through this process.

(a) Cracked (IoU 0.1)
Figure 2: Example of the same feature (290) evaluated using the
(a) original Broden dataset and (b) the proposed Broden+Action
dataset.

(b) Typing (IoU 0.34)

2.2. Action region dataset

To integrate our new action region dataset into the NetDis-
sect framework, we first consider each selected region to
be a mask on the segmented area of the image relating to
the action. This is similar to part, material and object masks
used for other segmentation datasets (Zhou et al., 2016b;
Chen et al., 2014; Mottaghi et al., 2014; Bell et al., 2013).
With the data formatted in this manner we extend the Broden
dataset to include our action segmentations and extract the
set of interpretable action features detected via NetDissect.
This process allows us to identify not just object, scene, tex-
ture and color concepts learned by our models, but actions
as well. In Section 3 we show some of the key results from
interpreting action networks in this way.

3. Experiments

To score and quantify the unit interpretability of a network
we follow the same procedure as outlined in (Bau et al.,
2017). All experiments use a ResNet50 network (He et al.,
2016) trained on the Moments in time dataset (Monfort et al.,
2019) for classification performance. We analyze features
from the outputs of the residual blocks (referred to as blockl,

Interpretable
Category Concepts Features
Broden 108 850
Action Regions 141 1971
Broden+Action Regions 193 1978

Table 1: Comparison of the number of concepts and interpretable
features identified by NetDissect given the Broden dataset, the
Action Region dataset and the combined dataset on block 4 of a
ResNet50 trained for action recognition.

block2, block3 and block4 corresponding to conv2, conv3,
conv4 and conv5) of the network.

3.1. Action Dissection

Using the approach described in Section 2 we are able to
identify 141 action concepts learned in 1971 different fea-
tures out of 2048 (Figure 4) units in the final convolutional
layer (block4) of a Resnet50 network trained on the Mo-
ments in Time dataset. Figure 5 highlights some of the
learned concepts. Interestingly the network seems to be rec-
ognizing the pattern of a person standing behind a podium
as preaching which is definitely a common correlation in
our dataset. Similarly, the network associates crawling with
babies as many of our videos of crawling typically depict
babies crawling. These are the types of data and class bi-
ases that are useful to identify via network interpretation
that may have gone unnoticed without the ability to identify
action concepts.

Table 1 highlights the fact that including actions in the Bro-
den dataset helps to interpret a much larger portion of the
features in block 4 of a ResNet50 trained for action recogni-
tion. With the original Broden set (no actions) NetDissect
identified 108 concepts in 850/2048 features. Adding ac-
tions to the Broden set allowed us to identify 1978/2048
features that can be interpreted for 193 different concepts
including 141 actions. This large jump in the number of
interpretable features makes sense for the final block of
a model trained for action classification and suggests that
excluding action concepts misses a large amount of useful
information each feature represents. Combining the origi-
nal Broden set with the proposed Action Regions results in
identifying a much larger number of concepts, 193 concepts
in 1978/2048 features (96.5% of the features). The results
from the combined set highlight that some of the features
previously interpreted by the original Broden set as object or
texture concepts are closely aligned with actions. For exam-
ple, unit 13 was classified using the Broden set as learning
the concept "potted plant" with an IoU of 0.06, but if we in-
clude action concepts the unit is found to be more correlated
with the action "gardening" with an IoU of 0.15. Similarly,
unit 290 was identified by Broden as learning the texture
concept "cracked" with an IoU of 0.1 and including actions
we found a greater association with the action "typing" with
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Figure 3: Visualization of labelled regions
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Figure 4: Graph of learned concepts ordered by the number of features associated with each coilcept.
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Figure 5: Visualization of different features that are interpretated as learning the same action concept. Many features that share
the same action interpretation seem to learn different representations of the same action.
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Figure 6: ResNet block-wise interpretability Visualize how dif-
ferent semantic concepts - objects, scenes and actions emerge
across residual blocks of the ResNet50 network.

an IoU of 0.34. Features for identifying the ridges between
the keys in the keyboards commonly found in actions of
"typing" were correctly activating for the texture "cracked",
however we can see from Figure 2 that the feature is more
correlated with the action "typing".

3.2. Block-wise Interpretability

To understand how individual units evolve over residual
blocks we evaluate the interpretability of features from dif-
ferent blocks of a resnet50 network trained for action recog-
nition on the Moments in Time dataset (Monfort et al., 2019)
in terms of objects, scenes, actions and textures. We observe
that action features mainly emerge in the last convolutional
block (block 4) of the model. It is interesting to note that
object and scene features are learned even if the model is not
explicitly trained to recognize objects or scenes suggesting
that object and scene recognition aids action classification.

3.3. Interpretable feature relationships

Examining these interpretable features and how they con-
tribute to a networks output allows us to build a better under-
standing of how our models will function when presented
with different data. For example, we can consider a fea-
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Figure 7: Example activation of a feature interpreted to have
learned the scene '""highway''.

(@ (b)
Figure 8: An image incorrectly classified as "juggling" (a) with the
CAM of the model showing a stong activation on the purse (b).

ture in the final residual block of the network that has been
interpreted as a "highway" scene feature (Figure 7. If we
activate only this unit by setting its values to 1 and all other
feature (including bias) values to 0 and examine the output
we can identify which action classes are using the fact that
a video may take place on a "highway". In this case the
action classes that achieve the highest output are "hitchhik-
ing", "towing", "swerving", "riding", and "driving". These
interpretable feature-class relationships make sense as all of
these actions are likely to occur near a "highway".

Similarly, we can examine the relationships between differ-
ent interpretable features at different layers in the network
to help us understand the concept hierarchy the model is
using to make a decision. Understanding this process can be
very useful in diagnosing why a network makes a mistakes
in its output. For example, if we pass the image in Figure
8a through our action recognition model we get a top pre-
diction of "juggling". Of course the image does not depict
the action "juggling". To diagnose why the network was in-
correct we performed the inverse of the operation described
in the previous paragraph and iteratively set the value of
each feature in block4 of the model to 1, and the others to
0, compared the resulting outputs for the action "juggling"
and identified the interpretable features that contributed the
most to the mistake (i.e. resulted in the highest output for
"juggling"). Unfortunately, in this case the top 5 features
that contribute to the class "juggling" are also interpreted
as "juggling" features and none of these features share a
significant correlation with any other concept in the Broden
dataset.

To address this we ran the same process again on block3 by
considering the features in block4 as the output and com-

pared the activations of the "juggling" features. This step
was much more informative on how the model arrived at its
mistake. We found that the interpretable concepts in block3
that that contributed the most to the "juggling" features in
block4 were the scene "ball pit", the textures "polka dotted"
and "dotted" and the color "white". We can see that the
woman in the image is holding a red and white polka-dotted
purse and running Class Activation Mapping (CAM) (Zhou
et al., 2016a) on the image confirms that the area around
the purse is an area of interest for the model (Figure 8b).
We were thus able to identify the hierarchical concept path
within the network that led to the misclassification.

4. Conclusion

We introduced Action Regions to the Broden dataset to allow
for NetDissect to identify action concepts learned by inter-
pretable features in networks trained for action recognition.
We showed the resulting increase in identifying interpretable
features and learned concepts and highlighted some interest-
ing examples. Future work will focus on expanding feature
interpretation for spatio-temporal networks trained for video
understanding.
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