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ABSTRACT

A fundamental problem faced by object recognition systems is that objects and
their features can appear in different locations, scales and orientations. Current
deep learning methods attempt to achieve invariance to local translations via pool-
ing, discarding the locations of features in the process. Other approaches explic-
itly learn transformed versions of the same feature, leading to representations that
quickly explode in size. Instead of discarding the rich and useful information
about feature transformations to achieve invariance, we argue that models should
learn object features conjointly with their transformations to achieve equivariance.
We propose a new model of unsupervised learning based on sparse coding that
can learn object features jointly with their affine transformations directly from
images. Results based on learning from natural images indicate that our approach
matches the reconstruction quality of traditional sparse coding but with signifi-
cantly fewer degrees of freedom while simultaneously learning transformations
from data. These results open the door to scaling up unsupervised learning to
allow deep feature+transformation learning in a manner consistent with the ven-
tral+dorsal stream architecture of the primate visual cortex.

1 INTRODUCTION

A challenging problem in computer vision is the reliable recognition of objects under a wide range
of transformations. Approaches such as deep learning that have achieved success in recent years
usually require large amounts of labeled data, whereas the human brain has evolved to solve the
problem using an almost unsupervised approach to learning object representations. During early
development, the brain builds an internal representation of objects from unlabeled images that can
be used in a wide range of tasks.

Much of the complexity in learning efficient and general-purpose representations comes from the
fact that objects can appear in different poses, at different scales, locations, orientations and lighting
conditions. Models have to account for these transformed versions of objects and their features. Cur-
rent successful approaches to recognition use pooling to allow limited invariance to two-dimensional
translations (Ranzato et al. (2007)). At the same time pooling discards information about the loca-
tion of the detected features. This can be problematic because scaling to large numbers of objects
requires modeling objects in terms of parts and their relative pose, requiring the pose information to
be retained.

Previous unsupervised learning techniques such as sparse coding (Olshausen & Field (1997)) can
learn features similar to the ones in the visual cortex but these models have to explicitly learn large
numbers of transformed versions of the same feature and as such, quickly succumb to combinatorial
explosion, preventing hierarchical learning. Other approaches focus on computing invariant object
signatures (Anselmi et al. (2013; 2016)), but are completely oblivious to pose information.

Ideally, we want a model that allows object features and their relative transformations to be si-
multaneously learned, endowing itself with a combinatorial explanatory capacity by being able
to apply learned object features with object-specific transformations across large numbers of ob-
jects. The goal of modeling transformations in images is two-fold: (a) to facilitate the learning of
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pose-invariant sparse feature representations, and (b) to allow the use of pose information of object
features in object representation and recognition.

We propose a new model of sparse coding called transformational sparse coding that exploits a tree
structure to account for large affine transformations. We apply our model to natural images. We
show that our model can extract pose information from the data while matching the reconstruction
quality of traditional sparse coding with significantly fewer degrees of freedom. Our approach to
unsupervised learning is consistent with the concept of “capsules” first introduced by Hinton et al.
(2011), and more generally, with the dorsal-ventral (features+transformations) architecture observed
in the primate visual cortex.

2 TRANSFORMATIONAL SPARSE CODING

2.1 TRANSFORMATION MODEL

Sparse coding (Olshausen & Field (1997)) models each image I as a sparse combination of features:

I ' Fw s.t. w is sparse

Sparsity is usually enforced by the appropriate penalty. A typical choice is S1(w) = ‖w‖1. We can
enhance sparse coding with affine transformations by transforming features before combining them.
The vectorized input image I is then modeled as:

I =

K∑
k=1

wkT (xk)Fk

where wk, Fk denote the k-th weight specific to the image and the k-th feature respectively and
T (xk) is a feature and image specific transformation.

In modeling image transformations we follow the approach of Rao & Ruderman (1999) and Miao &
Rao (2007). We consider the 2D general affine transformations. These include rigid motions such as
vertical and horizontal translations and rotations, as well as scaling, parallel hyperbolic deformations
along the X/Y axis and hyperbolic deformations along the diagonals. A discussion on why these
are good candidates for inclusion in a model of visual perception can be found in Dodwell (1983).
Figure 5 in Appendix A shows the effects of each transformation.

Any subset of these transformations forms a Lie group with the corresponding number of dimensions
(6 for the full set). Any transformation in this group can be expressed as the matrix exponential of a
weighted combination of matrices (the group generators) that describe the behaviour of infinitesimal
transformations around the identity:

T (x) = e
∑

j xjGj

For images of M pixels, T (x) is a matrix of size M ×M . Note that the generator matrices and
the features used are common across all images. The feature weights and transformation parameters
can be inferred (and the features learned) by gradient descent on the regularized MSE objective:

L(w, x, F ) =
1

N

N∑
i=1

∥∥∥∥∥Ii −
K∑
k=1

wikT (xik)Fk

∥∥∥∥∥
2

2

+ λwS1(w) + λF ‖F‖22

Although this model ties sparse coding with transformations elegantly, learning large transforma-
tions with it is intractable. The error surface of the loss function is highly non-convex with many
shallow local minima. Figures 1(a),1(b),1(c) show the surface of L as a function of horizontal and
vertical translation, horizontal translation and rotation and vertical translation and rotation parame-
ters. The model tends to settle for small transformations around the identity. Due to the size of the
parameters that we need to maintain, a random restart approach would be infeasible.

2.2 TRANSFORMATION TREES

We introduce Transformational Sparse Coding Trees to circumvent this problem using hierarchies
of transformed features. The main idea is to gradually marginalize over an increasing range of
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(d) (e) (f)

Figure 1: Normalized reconstruction error for individual vs. batch 8 × 8 natural image patches.
(a),(b),(c) show the surface of the reconstruction error for horizontal and vertical translations, hor-
izontal translations and rotation, vertical translations and rotations for an individual data point and
feature. (d),(e),(f) show the same, averaged over a batch of 2000 data points. The error is normalized
between 0 and 1 for comparison. The global minimum in the range is marked in red. In the batch
case, averaging makes the error surface smoother and learning easier.

transformations. Each node in the tree represents a feature derived as a transformed version of its
parent, with the root being the template of the feature. The leaves are equivalent to a set of sparse
basis features and are combined to reconstruct the input as described above. A version of the model
using a forest of trees of depth one (flat trees), is given by:

I '
V∑
v=1

∑
b∼ch(v)

wbUb

where Ub = T (xv→b)Fv and ch(v) the children of root v. The feature Ub is a leaf, derived from
the root feature Fv via the fixed (across all data-points) transformation T (xv→b). Deeper trees can
be built accordingly (Section 3.3). A small example of a tree learned from natural image patches is
shown in Figure 2.

There are multiple advantages to such a hierarchical organization of sparse features. Some transfor-
mations are more common in data than others. Each path in the tree corresponds to a transformation
that is common across images. Such a path can be viewed as a “transformation feature” learned
from the data. Each additional node in the tree “costs” a fixed set of new parameters equal in size to
the dimensions of the underlying Lie group (six in our case). At the same time the node contributes
a whole new feature to the sparse code. Averaging over many data points, smoothens the surface
of the error function and makes larger transformations more accessible to optimization. Figures
1(d),1(e),1(f) show the error surface averaged over a batch of 2000 patches.

For every leaf that is activated, the root template represents the identity of the feature and the trans-
formation associated with the path to the root, the pose. In other words the tree is an equivariant
representation of the feature over the parameter region defined by the set of paths to the leaves, very
similar to the concept of a capsule introduced by Hinton et al. (2011). In fact, every increasing
subtree corresponds to a capsule of increasing size.
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(a)

Figure 2: Example of a tree learned from natural image patches. The leaves correspond to rigid
transformations of the root.

2.3 LEARNING

The reconstruction mean squared-error (MSE) for a forest of flat trees is given by:

LMSE(w, x, F ) =
1

N

N∑
i=1

∥∥∥∥∥∥Ii −
V∑
v=1

∑
b∼ch(v)

wibT (xv→b)Fv

∥∥∥∥∥∥
2

2

Increasing the feature magnitudes and decreasing the weights will result in a decrease in loss. We
constraint the root feature magnitudes to be of unit `2 norm. Consider different, transformed, ver-
sions of the same root template. For every such version there is a set of tree parameters that com-
pensates for the intrinsic transformation of the root and results in the same leaves. To make the
solution unique we directly penalize the transformation parameter magnitudes. Since scaling and
parallel deformation can also change the magnitude of the filter, we penalize them more to keep
features/leaves close to unit norm. The full loss function of the model is:

L(w, x, F ) = LMSE(w, x, F ) + λwS1(w) +

6∑
j=1

λjX[j]

s.t.
∀v, ‖Fv‖2 = 1

where X[j] is the vector of the collective parameters for generator Gj .

Lee et al. (2007) use an alternating optimization approach to sparse coding. First the weights are
inferred using the feature sign algorithm and then the features are learned using a Lagrange dual
approach. We use the same approach for the weights. Then we optimize the transformation param-
eters using gradient descent. The root features can be optimized using the analytical solution and
projecting to unit norm.

The matrix exponential gradient ∂L
∂x can be computed using the following formula (Ortiz et al.

(2001)):
∂eA(t)

∂t
=

∫ 1

0

eαA(t) ∂A(t)

∂t
e(1−α)A(t)dα

The formula can be interpreted as:
Eα∼U(0,1) [D(α)]

where D(α) = eαA(t) ∂A(t)
∂t e(1−α)A(t). For our experiments we approximated the gradient by draw-

ing a few samples 1 {α̃s}Ss=1 and computingEα̃ [D(α̃)]. This can be regarded as a stochastic version
of the approach used by Culpepper & Olshausen (2009).

Some features might get initialized near shallow local optima (i.e. close to the borders or outside the
receptive field). These features eventually become under-used by the model. We periodically check

1In practice even a single sample works well. The computation over samples is easily parallelizable.
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for under-used features and re-initialize their transformation parameters 2. For re-initialization we
select another feature in the same tree at random with probability proportional to the fraction of data
points that used it in that batch. We then reset the transformation parameters at random, with small
variance and centered around the chosen filter’s parameters.

3 EXPERIMENTS

3.1 LEARNING REPRESENTATIONS

We apply transformational sparse coding (TSC) with forests of flat trees to natural image patches.
Our approach allows us to learn features resembling those of traditional sparse coding. Apart from
reconstructing the input, the model also extracts transformation parameters from the data. Figure
3 shows a reconstruction example. Figure 4 shows the root features learned from 10 × 10 natural
image patches using a forest of size 8 with branching factor 8, equipped with the full six-dimensional
group. The forest has a total of 64 features. Figure 4(a) shows the features corresponding to the roots.
Figure 4(b) shows the corresponding leaves. Each row contains features derived from the same root.
More examples of learned features are shown in Figures 7, 8, 9 and 10 in Appendix ??.

(a)

Figure 3: Reconstruction example. The root features are transformed and combined with different
weights to reconstruct (bottom right) the 8× 8 natural image patch in the top right corner.

3.2 COMPARISON WITH SPARSE CODING

Even though derivative features have to be explicitly constructed for inference, the degrees of free-
dom of our model are significantly lower than that of traditional sparse coding. Specifically:

dfTSC = (# of roots)× (# of pixels− 1 + branching factor× group dimension)
whereas:

dfSC = # of features× (# of pixels− 1)
Note that the group dimension is equal to 3 for rigid motions and 6 for general 2D affine transfor-
mations.

We compare transformational sparse coding forests of various layouts and choices for λw with tra-
ditional sparse coding on 10 × 10 natural image patches. Some transformations change the feature
magnitudes and therefore the sparsity pattern of the weights. To make the comparison clearer, for
each choice of layout and penalty coefficient, we run sparse coding, constraining the feature mag-
nitudes to be equal to the average feature magnitude of our model. The results are shown in Table
1. The reconstruction error of our model is close to that of sparse coding, albeit with slightly less
sparse solutions, even though it has significantly fewer degrees of freedom. Our model extracts pose
information in the form of group parameters.

2A feature is under-used when the total number of data-points using it in a batch drops close to zero.
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(a)

(b)

Figure 4: Learned features for 8 trees with a branching factor of 8. (a) Features corresponding to the
roots. (b) Features/Leaves: Each row corresponds to leaves/transformations of the same root.

Table 1: Comparison of transformational sparse coding (TSC) with sparse coding (SC) for 10× 10
natural image patches. We compare the error (MSE) and the degrees of freedom (df ) over 40000
data points. “Sparsity” is the average number of non-zero weights. λw is the penalty coefficient for
the weights and controls the sparseness of the solution.

TSC SC
λw Layout MSE Sparsity dfTSC MSE Sparsity dfSC # of features dfSC

dfTSC

0.4 1× 64 2.13 13.3 447 1.71 12.3 6336 64 14.17
0.5 1× 128 2.28 12.1 867 1.96 10.3 12672 128 14.62
0.4 8× 8 1.89 13.3 1176 1.72 12.5 6336 64 5.38
0.4 4× 16 1.91 13.3 780 1.69 12.3 6336 64 8.12
0.5 8× 8 2.36 10.4 1176 2.15 9.9 6336 64 5.38
0.5 4× 16 2.38 11 780 2.12 10.0 6336 64 8.12
0.4 16× 16 1.66 14.3 3120 1.56 13.2 25344 256 8.12
0.4 8× 32 1.67 14.6 2328 1.56 13.2 25344 256 10.88

3.3 DEEPER TREES

We can define deeper trees by associating a set of transformation parameters with each branch.
These correspond to additive contributions to the complete transformation that yields the leaf when
applied to the root:

Ii '
V∑
v=1

∑
b∼ch(v)

wibT (xP )Fv

where xP =
∑
e∈path(b,v) xe. Optimizing deeper trees is more demanding due to the increased

number of parameters. Their advantage is that they lend structure to model. The parameters cor-
responding to the subtree of an internal node tend to explore the parameter subspace close to the
transformation defined by that internal node. In tasks where it is disadvantageous to marginal-
ize completely over transformations, equivariant representations corresponding to intermediate tree
layers can be used. An example of such structure is shown in Figure 6 in Appendix B.
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4 RELATED WORK

Sohl-Dickstein et al. (2010) present a model for fitting Lie groups to video data. Their approach only
works for estimating a global transformation between consecutive video frames. They only support
transformations of a single kind (ie only rotations). Different such single-parameter transformations
have to be chained together to produce the global one. The corresponding transformation parameters
also have to be inferred and stored in memory and cannot be directly converted to parameters of a
single transformation. Kokiopoulou & Frossard (2009) present an approach to optimally estimating
transformations between pairs of images. They support rigid motions and isotropic scaling. Culpep-
per & Olshausen (2009) focus on learning the group operators and transformation parameters from
pairs of images, but do not learn features from data. Our model supports all six transformations
and learns object parts and their individual transformations. In contrast with those approaches, our
model learns object parts jointly with their transformations within the same image. Our model uti-
lizes the full, six-dimensional, general affine Lie group and captures the pose of each object part in
the form of a single set of six transformation parameters.

Grimes & Rao (2005) propose a bilinear model that combines sparse coding with transformations.
The model accounts for global transformations that apply to the entire image region. Our model
accounts for individual transformations of image parts. Rao & Ballard (1998) propose a model that
captures small image transformations with Lie groups using a first-order Taylor approximation. Our
model estimates larger transformations of image parts using the full exponential model. Rao &
Ruderman (1999) and Miao & Rao (2007) use a first-order Taylor approximation to learn the group
operators and the transformation parameters for small transformations.

The work closest to ours is that of Hinton et al. (2011) on capsules. A capsule learns to recognize its
template (feature) over a wide range of poses. The pose is computed by a neural network (encoder).
The decoder, resembling a computer graphics engine combines the capsule templates in different
poses to reconstruct the image. Each transformational sparse coding tree can be thought of as cap-
sule. The template corresponds to the root. The tree learns to “recognize” transformed versions
of that template. Our work arrives at the concept of a capsule from a sparse coding perspective.
A major difference is that our approach allows us to reuse each feature multiple times in different,
transformed versions for each data point.

Gens & Domingos (2014) propose a convolutional network that captures symmetries in the data
by modeling symmetry groups. Experiments with rigid motions or various affine transformations
show reduced sample complexity. Cohen & Welling (2016) propose a convolutional network that can
handle translations, reflections and rotations of 90 degrees. Dieleman et al. (2016) propose a network
that handles translations and rotations. All the above are supervised learning models and apart from
the first can handle a limited set of transformations. Our model is completely unsupervised, extends
sparse coding and can handle all transformations given by the first order differential equation:

∂I(θ)

∂θ
= AI(θ)

as described by Rao & Ruderman (1999).

5 CONCLUSION

In this paper, we proposed a sparse coding based model that learns object features jointly with their
transformations, from data. Naively extending sparse coding for data-point specific transformations
makes inference intractable. We introduce a new technique that circumvents this issue by using a
tree structure that represents common transformations in data. We show that our approach can learn
interesting features from natural image patches with performance comparable to that of traditional
sparse coding.

Investigating the properties of deeper trees, learning the tree structure dynamically from the data and
extending our model into a hierarchy are subjects of ongoing research.
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APPENDIX

A GENERATOR EFFECTS

Figure 5 presents the effects of each individual transformation of the six that are supported by our
model. The template is a square 5(a).

B DEEPER TREES AND STRUCTURE

Figure 6 presents an example of structure learned by deeper trees. This example consists of vertical
and horizontal lines. Each image patch is either blank, contains one vertical or one horizontal line
or both. A patch is blank with probability 1

9 , contains exactly one line with probability 2
3 or two

lines with probability 2
9 . Each line is then generated at one of eight positions at random. Fitting two

binary trees results in some continuity in the features, whereas flat trees provide no such structure.

C LEARNED FEATURES
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 5: Effects of each individual transformation on the template (a): (b) horizontal translation,
(c) vertical translation, (d) rotation, (e) scaling, (f) parallel hyperbolic deformation along the X/Y
axis, (g) hyperbolic deformation along the diagonals. To compute the generators, we used the sinc
interpolation function.
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(a)

(b)

(c)

Figure 6: Features learned for the double-line example: (a) Input, (b) features learned by a forest
of two flat trees of size eight, (c) features learned by two binary trees of the same size. For (c)
the leaves have been reordered with subtree permutations to reveal the order. Each subtree learns
features corresponding to an area of the input.
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(a)

(b)

Figure 7: Learned features for 16 trees with branching factor 16. Each row corresponds to
leaves/transformations of the same root.
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(a)

(b)

Figure 8: Learned features for 8 trees with branching factor 32. Each row corresponds to
leaves/transformations of the same root.

(a)

(b)

Figure 9: Learned features for 4 trees with branching factor 16. Each row corresponds to
leaves/transformations of the same root.
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(a)

(b)

Figure 10: Learned features for 1 tree with branching factor 64. All features are transformations of
the same root.
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