
Automatic Differentiation of Parallelised
Convolutional Neural Networks - Lessons from

Adjoint PDE Solvers

Jan Hückelheim
Department of Earth Science and Engineering

Imperial College London
London, UK

j.hueckelheim@imperial.ac.uk

Paul Hovland
Mathematics and Computer Science

Argonne National Laboratory
Lemont, IL

hovland@mcs.anl.gov

Abstract

Convolutional Neural Networks often consist of several layers whose data access
patterns closely resemble that of structured-mesh solvers for partial differential
equation (PDE) solvers. Past work by us and others showed that the reverse-mode
automatic differentiation of such solvers is challenging if the forward model uses
shared-memory parallelisation. This is because communication between threads
happens implicitly through shared memory locations, and is not always detectable
at compile-time. This work presents an overview of past results on the relationship
between data access in the forward and reverse computations, and methods to
transform shared-memory-parallel forward models into equally scalable reverse
models, with a case study on multi-core CPUs and Intel XeonPhi processors.

1 Introduction

Automatic Differentiation (AD) in reverse-mode has been successfully used to compute adjoints
in applications as diverse as engineering, trading, weather forecasting, or climate science. These
applications have in common a need for computational efficiency and scalability on parallel computing
systems. With the stall in achievable processor clock speeds in the last decade, many-core shared-
memory parallelism and vectorisation have become increasingly important.

Shared-memory parallelism is posing unique challenges for AD tools. Unlike parallelism using
message passing (MPI), which has a long history of support in the AD community [4] and has good
AD tool support, shared-memory parallelism (e.g. using OpenMP) is less well supported. One reason
is that data dependencies between threads are not explicit in the source code of a program. For
example, programs may contain parallel loops where each iteration reads from, and writes to, a shared
array at some computed index. Depending on whether these indices overlap between iterations, this
loop can be either trivial or impossible to parallelise, or may require a certain partial ordering of
iterations. Furthermore, a parallel forward model does not imply that the reverse model can be run in
parallel, and an AD tool must therefore fully understand the data dependencies.

In this work, we demonstrate the close relationship between convolution layers found in neural
networks, and stencil computations in structured-mesh partial differential equation solvers in Section 2.
We then illustrate in Section 3 how back-propagation or reverse-differentiation change the data flow,
and the effect of this on parallelisation. Section 4 summarises results on the reverse-differentiation of
shared-memory parallel code, and presents a small case study, before we conclude with a discussion
in Section 5.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

temperature update

temperature field

stencilwindow

input image

features

Figure 1: Analogy of PDE stencil updates and convolutional layers.

2 Convolution vs. PDE solving

Partial Differential Equations (PDE) are a model for many problems in science and industry. A simple
example is the heat equation, which describes for a given point in space and time the relationship
between spatial temperature variations, and the speed at which heat flows to change the temperature
over time. A PDE solver applied to this problem is a forward model of heat conduction that can be
used e.g. to determine the performance of a processor heat sink. A reverse model of this can be used
e.g. to automatically find optimal heat sink shapes [2].

The forward model can be implemented by discretising the domain, i.e. by choosing a resolution in
space and time and a representation of the state at each of these discrete points. Following this, a
standard technique is to advance the solution in time by computing the new value at some spatial
location as a function (often a weighted sum) of the old values within some area surrounding that
location. The structure of this computation closely resembles that of a layer in a Convolutional Neural
Network (CNN) with unit stride. This similarity is illustrated in Figure 1.

The reverse model can be implemented in CNNs or PDE solvers by using automatic differentiation.
CNN models are trained (i.e. there weights are adjusted) using back-propagation. Although most
applications of PDE solvers use reverse-differentiation to determine the sensitivity to program inputs
(e.g. the shape of the heat sink), there are cases where reverse-differentiation is used to determine the
finite difference weights and in a sense "train" the model, e.g. [9].

3 Data Flow Reversal: Pulling vs. Pushing

Back-propagation or reverse-differentiation leads to data flow reversal [7]. This concept is known in
the CNN literature, for example as pulling and pushing [8]. A forward model that is implemented by
pulling all the required data from surrounding indices to compute one new value naturally leads to a
reverse model that pushes data to all indices that influenced the forward value. This has consequences
for the parallelisation. As an example, consider the equation

y1 = w1 · x1 + w2 · x2 (1)
y2 = w3 · x1 + w4 · x2, (2)

which could be implemented in a program such that (1) and (2) are computed concurrently in a
parallel loop. Each iteration would compute the final result of its own index in y, and would pull the
required data from various locations in x.

Applying AD to such a forward loop would result in a reverse loop where the first iteration computes

x̄1+ = w1 · ȳ1
x̄2+ = w2 · ȳ1,

and the second iteration computes

x̄1+ = w1 · ȳ2
x̄2+ = w2 · ȳ2.

2

x1 x2
x1 y1

y1 y2 x1 x2

x2 y2 x1 y1

x1 x2

x2 y2

primal
adjoint

conventional
adjoint

improved

Figure 2: Data dependencies in a stencil computation forward model (left), conventional reverse
model derived by AD (middle), and ideal reverse stencil model (right). The solid lines and dotted
lines show the application of two stencils / windows, and the aim is to perform both in parallel.
Variables with a bar on top represent derivative variables in the reverse model.

1 2 4 8 16
0.5

1

2

4

8

16

forward
reverse
ideal

sp
e
e
d
u
p

1 4 16 60 240
0.25

1

4

16

60

240

CPU KNC

Figure 3: Scalability of an OpenMP-parallel forward stencil, and an equally parallelised reverse
stencil created with transposed forward-mode automatic differentiation.

The reverse loop is thus not trivially parallel, since both iterations write to both indices in x̄. However,
it is possible to re-organise this code by placing all statements that affect a given index in the output
vector into one iteration, resulting in a parallel reverse computation. In this re-organised loop, the
first iteration computes

x̄1+ = w1 · ȳ1 + w1 · ȳ2,
while the second iteration can simultaneously update

x̄2+ = w2 · ȳ1 + w2 · ȳ2.
This transformation is the idea behind transposed forward-mode automatic differentiation, see
Figure 2 for an illustration. However, not every code can be reorganised in this fashion, and only a
subset of those can easily be handled by an AD tool.

4 Shared-memory parallelisation and AD

The reorganised, parallel reverse model in Section 3 is an example for a stencil computation that can
be reorganised such that the reverse model is also a stencil computation, as formalised in [5]. In other
words, a forward model that is implemented by pulling data can yield a reverse model that also pulls
data, and this can in some cases be automated in an AD tool. The prerequisite for this is that the
forward stencil is reflexive, that is, if some index i in the output is influenced by another index j in
the input, then the index j in the output must also be influenced by index i in the input.

Applying this method to a stencil stencil solver running on two multi-core CPUs and a Intel XeonPhi
(KNC) resulted in a scalability that matched that of the forward model. This is shown in Figure 3.
The rest of this section gives an overview of other past results regarding the application of AD to
shared-memory parallel codes using OpenMP.

Exclusive Read Property. A comprehensive study on the automatic differentiation of pragma-based
parallelisation [1] shows that a parallel forward model only leads to a trivially parallel
reverse model if the forward model satisfies the exclusive read property. In essence, this
means that the set of memory locations that the threads read from do not overlap between
synchronisation barriers. For instance, a non-overlapping pooling layer or a convolutional

3

layer with a stride greater than the window size satisfy this property, and naturally lead to a
reverse model that can be executed in parallel.

Symmetric Updates. Some PDE solvers implement neither pulling nor pushing. For example, a
convolution with window size 3 could be implemented as a loop where each iteration reads
from and writes to the same two indices in the input and output arrays. This leads to forward
and reverse models that can be parallelised using the same strategy [6].

Critical sections: The reverse model could be parallelised by an AD tool by placing all updates to
shared variables into a critical section, or by using atomic updates. This conservative step
guarantees a correct result, but only leads to reasonable performance if the computation is
expensive and there are few updates to shared variables.

Reduction pragmas: The reverse model could also be parallelised using an OpenMP reduction
pragma for shared variables [3]. However, this is often implemented in OpenMP runtimes
by creating a private copy on each thread, thus multiplying the memory footprint with the
number of threads.

5 Discussion

Parallelism can be expressed in many languages, such as OpenMP, CUDA, OpenCL, or vector
intrinsics. This is a challenge for AD tools, especially since the data flow of reverse and forward
models can be radically different. Languages and hardware are evolving fast, which is not only a
challenge, but in the case of e.g. collision-avoiding vector instructions in AVX-512 also an opportunity
to generate more efficient parallel reverse models. This makes it important for AD tool developers to
focus their efforts on the things that are most useful to potential users.

It is often beneficial to exploit the structure of the problem instead of brute-force applying AD tools.
This leads to the question how to exploit high-level knowledge of the problem structure, while still
using AD. This requires identification and formalisation of program properties that are helpful to AD
tools. A close collaboration between users and developers of AD tools is essential for this.

References
[1] M. Förster, Algorithmic differentiation of pragma-defined parallel regions: Differentiating

computer programs containing OpenMP, Ph.D. diss., RWTH Aachen, 2014.

[2] A. Gersborg-Hansen, M.P. Bendsøe, and O. Sigmund, Topology optimization of heat conduction
problems using the finite volume method, Structural and Multidisciplinary Optimization 31 (2006),
pp. 251–259, Available at https://doi.org/10.1007/s00158-005-0584-3.

[3] R. Giering, T. Kaminski, and T. Slawig, Generating efficient derivative code with taf: adjoint
and tangent linear euler flow around an airfoil, Future generation computer systems 21 (2005),
pp. 1345–1355.

[4] P.D. Hovland, Automatic differentiation of parallel programs, Ph.D. diss., University of Illinois
at Urbana-Champaign, 1997.

[5] J. Hückelheim, P. Hovland, M. Strout, and J.D. Müller, Parallelisable adjoint stencil computations
using transposed forward-mode algorithmic differentiation, 2017. in review.

[6] J. Hückelheim, P.D. Hovland, M.M. Strout, and J.D. Müller, Reverse-mode algorithmic dif-
ferentiation of an OpenMP-parallel compressible flow solver, International Journal for High
Performance Computing Applications (2017).

[7] U. Naumann, The art of differentiating computer programs: an introduction to algorithmic
differentiation, Vol. 24, SIAM, 2012.

[8] P.Y. Simard, D. Steinkraus, J.C. Platt, et al., Best practices for convolutional neural networks
applied to visual document analysis., in .

[9] G. Yao, D. Wu, and H.A. Debens, Adaptive finite difference for seismic wavefield modelling
in acoustic media 6 (2016), pp. 30302 EP –, Available at http://dx.doi.org/10.1038/
srep30302.

4

https://doi.org/10.1007/s00158-005-0584-3
http://dx.doi.org/10.1038/srep30302
http://dx.doi.org/10.1038/srep30302

	Introduction
	Convolution vs. PDE solving
	Data Flow Reversal: Pulling vs. Pushing
	Shared-memory parallelisation and AD
	Discussion

