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ABSTRACT

Recent advances in latent diffusion-based generative models for portrait image an-
imation, such as Hallo, have achieved impressive results in short-duration video
synthesis. In this paper, we present updates to Hallo, introducing several design
enhancements to extend its capabilities. First, we extend the method to produce
long-duration videos. To address substantial challenges such as appearance drift
and temporal artifacts, we investigate augmentation strategies within the image
space of conditional motion frames. Specifically, we introduce a patch-drop tech-
nique augmented with Gaussian noise to enhance visual consistency and temporal
coherence over long duration. Second, we achieve 4K resolution portrait video
generation. To accomplish this, we implement vector quantization of latent codes
and apply temporal alignment techniques to maintain coherence across the tempo-
ral dimension. By integrating a high-quality decoder, we realize visual synthesis
at 4K resolution. Third, we incorporate adjustable semantic textual labels for por-
trait expressions as conditional inputs. This extends beyond traditional audio cues
to improve controllability and increase the diversity of the generated content. To
the best of our knowledge, Hallo2, proposed in this paper, is the first method to
achieve 4K resolution and generate hour-long, audio-driven portrait image anima-
tions enhanced with textual prompts. We have conducted extensive experiments
to evaluate our method on publicly available datasets, including HDTF, CelebV,
and our introduced “Wild” dataset. The experimental results demonstrate that our
approach achieves state-of-the-art performance in long-duration portrait video an-
imation, successfully generating rich and controllable content at 4K resolution for
duration extending up to tens of minutes.

1 INTRODUCTION

Portrait image animation—the process of creating animated videos from a reference portrait using
various input signals such as audio Prajwal et al. (2020); Tian et al. (2024); Xu et al. (2024a); Zhang
et al. (2023), facial landmarks Wei et al. (2024); Chen et al. (2024), or textual descriptions Xu et al.
(2024b)—is a rapidly evolving field with significant potential across multiple domains. These do-
mains include high-quality film and animation production, the development of virtual assistants,
personalized customer service solutions, interactive educational content creation, and realistic char-
acter animation in the gaming industry. Consequently, the capability to generate long-duration,
high-resolution, audio-driven portrait animations, particularly those assisted by textual prompts, is
crucial for these applications. Recent technological advancements, notably in latent diffusion mod-
els, have significantly advanced this field.

Several methods utilizing latent diffusion models for portrait image animation have emerged in
recent years. For instance, VASA-1 Xu et al. (2024b) employs the DiT model Peebles & Xie
(2023) as a denoiser in the diffusion process, converting a single static image and an audio segment
into realistic conversational facial animations. Similarly, the EMO framework Tian et al. (2024)
represents the first end-to-end system capable of generating animations with high expressiveness
and realism, seamless frame transitions, and identity preservation using a U-Net-based diffusion
model Blattmann et al. (2023) with only a single reference image and audio input. Other signif-
icant advancements in this domain include AniPortrait Wei et al. (2024), EchoMimic Chen et al.
(2024), V-Express Wang et al. (2024a), Loopy Jiang et al. (2024), and CyberHost Lin et al. (2024),
each contributing to enhanced capabilities and applications of portrait image animation. Hallo Xu
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Figure 1: Demonstration of the proposed approach. This approach processes a single reference im-
age alongside an audio input lasting several minutes. Additionally, optional textual prompts may be
introduced at various intervals to modulate and refine the expressions of the portrait. The resulting
output is a high-resolution 4K video that synchronizes with the audio and is influenced by the op-
tional expression prompts, ensuring continuity throughout the extended duration of the video.

et al. (2024a), another notable contribution, introduces hierarchical audio-driven visual synthesis,
building upon previous research to achieve facial expression generation, head pose control, and per-
sonalized animation customization. In this paper, we present updates to Hallo Xu et al. (2024a) by
introducing several design enhancements to extend its capabilities.

Firstly, we extend Hallo from generating brief, second-long portrait animations to supporting du-
ration of up to tens of minutes. As illustrated in Figure 2, two primary approaches are commonly
employed for long-term video generation. The first approach involves generating audio-driven video
clips in parallel, guided by control signals, and then applying appearance and motion constraints be-
tween adjacent frames of these clips Wei et al. (2024); Chen et al. (2024). A significant limitation of
this method is the necessity to maintain minimal differences in appearance and motion across gen-
erated clips, which hampers substantial variations in lip movements, facial expressions, and poses,
often resulting in blurriness and distorted expressions and postures due to the enforced continuity
constraints. The second approach incrementally generates new video content by leveraging pre-
ceding frames as conditional information Xu et al. (2024a); Tian et al. (2024); Wang et al. (2021).
While this allows for continuous motion, it is prone to error accumulation. Distortions, deformations
relative to the reference image, noise artifacts, or motion inconsistencies in preceding frames can
propagate to subsequent frames, degrading the overall video quality.

To achieves high expressiveness, realism, and rich motion dynamics, we follow the second approach.
Our method primarily derives the appearance from the reference image, utilizing preceding gener-
ated frames solely to convey motion dynamics—including lip movements, facial expressions, and
poses. To prevent contamination of appearance information from preceding frames, we implement
a patch-drop data augmentation technique that introduces controlled corruption to the appearance
information in the conditional frames while preserving motion characteristics. This approach en-
courages that the appearance is predominantly sourced from the reference portrait image, maintain-
ing robust identity consistency throughout the animation and enabling long videos with continuous
motion. Additionally, to enhance resilience against appearance contamination, we incorporate Gaus-
sian noise as an additional data augmentation technique applied to the conditional frames, further
reinforcing fidelity to the reference image while effectively utilizing motion information.

Secondly, to achieve 4K video resolution, we extend the Vector Quantized Generative Adversarial
Network (VQGAN) Esser et al. (2021) discrete codebook space method for code sequence predic-
tion tasks into the temporal dimension. By incorporating temporal alignment into the code sequence
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Figure 2: Comparison of parallel and incremental diffusion-based generative models for long-term
portrait image animation. (a) Parallel generation. (b) Incremental generation. The parallel genera-
tion approach may lead to blurriness (c) and distorted expressions (d), due to inter-frame continuity
constraints. The incremental generation method is susceptible to error accumulation in both back-
grounds (e) and facial regions (f).

prediction network, we achieve smooth transitions in the predicted code sequences of the gener-
ated video. Upon applying the high-quality decoder, the strong consistency in both appearance and
motion allows our method to enhance the temporal coherence of high-resolution details.

Thirdly, to enhance the semantic control of long-term portrait video generation, we introduce ad-
justable semantic textual prompt for portrait expressions as conditional inputs alongside audio sig-
nals. By injecting textual prompts at various time intervals, our method can help to adjust facial
expressions and head poses, thereby rendering the animations more lifelike and expressive.

To evaluate the effectiveness of our proposed method, we conducted comprehensive experiments on
publicly available datasets, including HDTF, CelebV, and our introduced “Wild” dataset. To the best
of our knowledge, our approach is the first to achieve 4K resolution in portrait image animation for
duration extending up to ten minutes or even several hours. Furthermore, by incorporating adjustable
textual prompts that enable precise control over facial features during the generation process, our
method ensures high levels of realism and diversity in the generated animations.

2 RELATED WORK

Video Diffusion Models. Diffusion-based models have demonstrated remarkable capabilities in
generating high-quality and realistic videos from textual and image inputs. Stable Video Diffu-
sion Blattmann et al. (2023) emphasizes latent video diffusion approaches, utilizing pretraining,
fine-tuning, and curated datasets to enhance video quality. Make-A-Video Singer et al. (2022)
leverages text-to-image synthesis techniques to optimize text-to-video generation without requir-
ing paired data. MagicVideo Zhou et al. (2022a) introduces an efficient framework with a novel 3D
U-Net design, reducing computational costs. AnimateDiff Guo et al. (2023) enables animation of
personalized text-to-image models via a plug-and-play motion module. Further contributions, such
as VideoComposer Wang et al. (2024b) and VideoCrafter Chen et al. (2023a), emphasize controlla-
bility and quality in video generation. CogVideoX Yang et al. (2024) enhances text-video alignment
through expert transformers, and MagicTime Yuan et al. (2024) addresses the encoding of physical
knowledge with a metamorphic time-lapse model. Building upon these advancements, our approach
adopts superior pretrained diffusion models tailored specifically for portrait image animation, focus-
ing on long-duration and high-resolution synthesis.

Portrait Image Animation. Significant progress has been made in audio-driven talking head gen-
eration and portrait image animation, emphasizing realism and synchronization with audio inputs.
Animate Anyone Hu et al. (2023) and MagicAnimate Xu et al. (2024c) utilize reference network
and temporal attention modules to produce consistent and coherent human image animations. Lip-
SyncExpert Prajwal et al. (2020) improved lip-sync accuracy using discriminators and novel eval-
uation benchmarks. Subsequent methods like SadTalker Zhang et al. (2023) and VividTalk Sun
et al. (2023) incorporated 3D motion modeling and head pose generation to enhance expressive-
ness and temporal synchronization. DiffTalk Shen et al. (2023) and DreamTalk Ma et al. (2023)
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Figure 3: The framework of the proposed approach. The details of the proposed patch drop data
augmentation is shown on the right side. zref and zmot denote the features of the reference image
and motion frames, respectively. zt represents the latent features. caudio and ctext correspond to the
features of the audio condition and textual prompts, respectively.

improved video quality while maintaining synchronization across diverse identities. VASA-1 Xu
et al. (2024b) and AniTalker Liu et al. (2024) integrated nuanced facial expressions and univer-
sal motion representations, resulting in lifelike and synchronous animations. AniPortrait Wei et al.
(2024), EchoMimic Chen et al. (2024), V-Express Wang et al. (2024a), Loopy Jiang et al. (2024),
CyberHost Lin et al. (2024), and EMO Tian et al. (2024) have contributed to enhanced capabili-
ties, focusing on expressiveness, realism, and identity preservation. Despite these advancements,
generating long-duration, high-resolution portrait videos with consistent visual quality and temporal
coherence remains a challenge. Our method builds upon Hallo Xu et al. (2024a) to address this gap
by achieving realistic, high-resolution motion dynamics in long-term portrait image animations.

Long-Term and High-Resolution Video Generation. Recent advances in video diffusion mod-
els have significantly enhanced the generation of long-duration, high-resolution videos. Frame-
works like Flexible Diffusion Modeling Harvey et al. (2022) and Gen-L-Video Harvey et al. (2022)
improve temporal coherence and enable text-driven video generation without additional training.
Methods such as SEINE Chen et al. (2023b) and StoryDiffusion Zhou et al. (2024) introduce gen-
erative transitions and semantic motion predictors for smooth scene changes and visual storytelling.
Approaches like StreamingT2V Henschel et al. (2024) and MovieDreamer Zhao et al. (2024) use
autoregressive strategies and diffusion rendering for extended narrative videos with seamless transi-
tions. In this paper, we employ patch-drop and Gaussian noise augmentation to enable long-duration
portrait image animation.

Discrete prior representations with learned dictionaries have proven effective for image restora-
tion. VQ-VAE Razavi et al. (2019) enhances VAEs by introducing discrete latent spaces via vector
quantization, addressing posterior collapse. Building on this, VQ-GAN Lee et al. (2022) combines
CNNs and Transformers to create a context-rich vocabulary of image components, achieving state-
of-the-art results. CodeFormer Zhou et al. (2022b) uses a learned discrete codebook and employs
a Transformer-based network for enhanced robustness against degradation. This paper proposes
vector quantization of latent codes with temporal alignment techniques to maintain high-resolution
coherence temporally for 4K synthesis.

3 METHOD

In this section, we introduce an extended technique for portrait image animation that effectively
addresses the challenges of generating long-duration, high-resolution videos with intricate motion
dynamics, as well as enabling audio-driven and textually prompted control. Our proposed method
derives the subject’s appearance primarily from a single reference image while utilizing preceding
generated frames as conditional inputs to capture motion information. To preserve appearance de-
tails of the reference image and prevent contamination from preceding frames, we introduce a patch
drop data augmentation technique combined with Gaussian noise injection (see Section 3.1). Addi-
tionally, we extend the VQGAN discrete codebook prediction into the temporal domain, facilitating
high-resolution video generation and enhancing temporal coherence (see Section 3.2). Furthermore,
we integrate textual conditions alongside audio signals to enable diverse control over facial ex-
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Figure 4: The illustration of the proposed high-resolution enhancement module. Two alternative
designs for extracting input latent features are demonstrated.

pressions and motions during long-term video generation (see Section 3.3). Finally, we detail the
network structure along with the training and inference strategies in Section 3.4.

3.1 LONG-DURATION ANIMATION

Patch-Drop Augmentation. To generate long-duration portrait videos that maintain consistent ap-
pearance while exhibiting rich motion dynamics, we introduce a patch drop data augmentation tech-
nique applied to the conditioning frames. The core idea is to corrupt the appearance information in
preceding frames while preserving their motion cues, thereby ensuring that the model relies primar-
ily on the reference image for appearance features and utilizes preceding frames to capture temporal
dynamics.

Let Iref denote the reference image, and let {It−1, It−2, . . . , It−N} represent the preceding N gen-
erated frames at time steps t − 1 to t − N . These frames are encoded using a pre-trained encoder
E to obtain their latent representations: zt−i = E(It−i), for i = 1, 2, . . . , N . To mitigate the in-
fluence of appearance information from preceding frames, we apply a patch drop augmentation to
each latent representation zt−i. Specifically, each latent representation is partitioned into K non-
overlapping patches of size p× p, yielding {z(k)t−i}Kk=1, where k indexes the patches. For each patch,

a binary mask M
(k)
t−i is generated as follows: M (k)

t−i = 1, if ξ(k) ≥ r; M (k)
t−i = 0, if ξ(k) < r. Here

ξ(k) ∼ U(0, 1) is a uniformly distributed random variable, and r ∈ [0, 1] is the patch drop rate
controlling the probability of retaining each patch.

The augmented latent representation z̃t−i is then constructed by applying the masks to the cor-
responding patches: z̃

(k)
t−i = M

(k)
t−i · z

(k)
t−i, for k = 1, 2, . . . ,K. This random omission of patches

effectively disrupts detailed appearance information while preserving the coarse spatial structure
necessary for modeling motion dynamics.

Gaussian Noise Augmentation. During the incremental generation process, previously generated
video frames may introduce contamination in both appearance and dynamics, such as noise in facial
regions and the background, or subtle distortions in lip movements and facial expressions. As this
process continues, these contaminations can propagate to subsequent frames, leading to the gradual
accumulation and amplification of artifacts. To mitigate this issue, we incorporate Gaussian noise
into the motion frames, enhancing the denoiser’s ability in the latent space to recover from contam-
inations in appearance and dynamics. Specifically, we introduce Gaussian noise to the augmented
latent representations: ẑt−i = z̃t−i + ηt−i,ηt−i ∼ N (0, σ2I), where σ controls the noise level,
and I denotes the identity matrix. The corrupted latent representations {ẑt−1, ẑt−2, . . . , ẑt−N} are
then used as motion condition inputs to the diffusion model.

These noise-augmented motion frames are incorporated into the diffusion process via cross-attention
mechanisms within the denoising U-Net. At each denoising step t, the model predicts the noise
component ϵθ(zt, t, c), where zt is the current noisy latent, and c represents the set of conditioning
inputs: ϵθ(zt, t, c) = ϵθ (zt, t, zref, {ẑt−i}, caudio, ctext) . Here, zref = E(Iref) is the latent representa-
tion of the reference image, and caudio, ctext are the encoded audio features and textual embeddings,
respectively. By leveraging the noise-augmented motion frames, the model effectively captures tem-
poral dynamics while mitigating the influence of accumulated artifacts. This approach encourages
that the subject’s appearance remains stable, derived from the reference image, throughout the gen-
erated video sequence.
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3.2 HIGH-RESOLUTION ENHANCEMENT

To enhance temporal coherence in high-resolution video generation, we adopt a codebook prediction
approach Zhou et al. (2022c), incorporating an introduced temporal alignment mechanism.

As illustrated in Figure 4, we propose two methods for extracting input latent features. The first
method directly uses latent features from the diffusion model. While straightforward, this approach
requires end-to-end training of the entire super-resolution module. Alternatively, the second method
processes the latent features through the diffusion model’s decoder, followed by a low-quality en-
coder that maps them into a continuous latent space. This method leverages pretrained encoder,
decoder, and codebook components, thereby simplifying the training process. Subsequently, spatial
and temporal attention mechanisms are applied to these input latent features. Code index predic-
tion is then employed to select corresponding features from the codebook, which are fed into a
high-quality decoder to generate the super-resolution video.

Specifically, given the generated video frames, we first encode them using a fixed encoder E to
obtain latent representations z ∈ RN×H×W×C , where N denotes the number of frames, while
H , W , and C represent the height, width, and number of channels, respectively. Each Transformer
block comprises a spatial self-attention layer followed by a temporal alignment layer. The operations
of the spatial self-attention layer are defined as follows. Let WQ, WK , and WV be learnable
projection matrices. Given the input z to this Transformer block, we compute the queries, keys,
and values as follows: Qself = WQz, Kself = WKz, and Vself = WV z. Subsequently, the
output of the spatial self-attention layer, denoted as Xself, is computed using the softmax function:
Xself = Softmax

(
QselfK

T
self/

√
dk

)
Vself + z, where dk is the dimensionality of the keys. Following

this, the hidden state Xself ∈ RN×(H·W )×C is reshaped into Xtemp ∈ R(H·W )×N×C to facilitate
temporal attention across frames: Xtemp = ReshapeToTemporal(Xself). In this context, let W′

Q,
W′

K , and W′
V be additional learnable projection matrices. The queries, keys, and values for the

temporal alignment layer are computed as follows: Qtemp = W′
QXtemp, Ktemp = W′

KXtemp, and
Vtemp = W′

V Xtemp. The output of the temporal attention mechanism, denoted as X̃temp, is computed
similarly: X̃temp = Softmax

(
QtempK

T
temp/

√
dk

)
Vtemp +Xtemp. Finally, X̃temp is reshaped back to

the original dimensions of z ∈ RN×H×W×C : z = ReshapeBack(X̃temp).

By integrating spatial and temporal attention mechanisms within the Transformer module, the net-
work effectively captures intra-frame and inter-frame dependencies, enhancing both temporal con-
sistency and visual fidelity in high-resolution video outputs.

3.3 TEXTUAL PROMPT CONTROL

To enable precise modulation of facial expressions and motions based on textual instructions, we
incorporate an adaptive layer normalization mechanism into the denoising U-Net architecture. Given
a text prompt, a text embedding etext is extracted using the CLIP text encoder Radford et al. (2021).
This embedding is processed through a zero-initialized multilayer perceptron (MLP) to produce
scaling (γ) and shifting (β) parameters: γ, β = MLP(etext).

The adaptive layer normalization is applied between the cross-attention layer and the audio attention
layer within the denoising U-Net. Specifically, the intermediate features Xcross from the cross-
attention layer are adjusted as follows: Xnorm = LayerNorm(Xcross),Xadapted = γ ⊙ Xnorm +
β +Xcross, where ⊙ denotes element-wise multiplication. This adaptation conditions the denoising
process on the textual input, enabling fine-grained control over the synthesized expressions and
motions in the generated video frames.

3.4 NETWORK

Network Architecture. Figure 3 illustrates the proposed approach’s architecture. The ReferenceNet
embeds the reference image zref, capturing the visual appearance of both the portrait and the cor-
responding background. To model temporal dynamics while mitigating appearance contamination
from preceding frames, the motion frames {ẑt−i} are subjected to patch dropping and Gaussian
noise augmentation. Our extended framework utilizes a denoising U-Net architecture that processes
noisy latent vectors zt at each diffusion timestep t. The embedding of the input audio caudio is de-
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Method FID↓ FVD↓ Sync-C↑ Sync-D↓ E-FID↓
Audio2Head 41.753 246.041 8.051 7.117 10.190

SadTalker 21.924 293.084 7.399 7.812 6.881
EchoMimic 47.331 532.733 5.930 9.143 11.051
AniPortrait 26.241 361.978 3.912 10.264 11.253

Hallo 16.748 366.066 7.268 7.714 7.081
Ours 16.616 239.517 7.379 7.697 6.702

Real video - - 8.377 6.809 -

Table 1: The quantitative comparisons with existed
portrait image animation approaches on the HDTF
dataset. Our evaluation focuses on generated videos
with a duration of 4 minutes, maintaining consistent
settings across subsequent quantitative experiments.

Figure 5: FID metrics of different methods
as inference time increases.
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Figure 6: The qualitative comparison with exited approaches on HDTF data-set.

rived from a 12-layer wav2vec network Schneider et al. (2019), while the textual prompt embedding
ctext is obtained through CLIP Radford et al. (2021). By synthesizing these diverse conditioning
inputs via cross-attention layers within the denoising U-Net Blattmann et al. (2023), the model gen-
erates frames that maintain visual coherence with the reference image while dynamically exhibiting
nuanced and expressive lip motions and facial expressions. Finally, the high-resolution enhance-
ment module employs vector quantization of latent codes in conjunction with temporal alignment
techniques to produce final videos at 4K resolution.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Implementation. All experiments were conducted on a GPU server equipped with 8 NVIDIA A100
GPUs. The training process was executed in two stages: the first stage comprised 30,000 steps
with a step size of 4, targeting a video resolution of 512 × 512 pixels. The second stage involved
28,000 steps with a batch size of 4, initializing the motion module with weights from Animatediff.
Approximately 160 hours of video data were utilized across both stages, with a learning rate set at
1e-5. For the super-resolution component, training for temporal alignment was extended to 550,000
steps, leveraging initial weights from CodeFormer and a learning rate of 1e-4, using the VFHQ
dataset as the super-resolution training data. Each instance in the second stage generated 16 video
frames, integrating latents from the motion module with the first 4 ground truth frames, designated
as motion frames. During inference, the output video resolution is increased to a maximum of 4096
× 4096 pixels.
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Method FID↓ FVD↓ Sync-C↑ Sync-D↓ E-FID↓
Audio2Head 50.449 448.695 6.269 8.325 38.981

SadTalker 24.600 380.866 6.384 8.169 44.596
EchoMimic 50.994 854.826 5.082 9.675 35.806
AniPortrait 24.301 344.000 3.975 10.171 41.307

Hallo 28.186 571.991 6.610 8.181 36.793
Ours 24.072 360.192 6.760 8.156 33.316

Real video - - 7.088 7.726 -

Table 2: The quantitative comparisons with
existed approaches on the proposed “Wild”
data-set.

Patch size Drop rate FID↓ FVD↓ Sync-C↑ Sync-D↓
1 0.50 39.642 513.314 6.687 8.515
1 0.25 38.518 491.338 6.766 8.387
2 0.20 38.477 492.216 6.762 8.413
4 0.30 37.756 498.957 6.754 8.371
16 0.25 44.172 756.517 6.431 8.517

Table 3: The quantitative comparison of different
settings of patch drop augmentation. The statistics
are obtained on the CelebV dataset.

Figure 7: The qualitative comparison with existed approaches on the proposed “Wild” data-set.

Regarding textual control, we employed the vision-language model MiniCPM Hu et al. (2024) to
generate textual prompts. These prompts were refined using Llama 1.5, which extracted expression
and emotion descriptions from the original captions. The final textual prompt was formatted as
{{human}{expression}}. During training, we randomly dropped the textual prompt condition with
a probability of 0.05. During inference, the classifier-free guidance (CFG) scale was uniformly set
to 3.5 for the textual prompt, the reference image, and the audio. When comparing against other
baseline methods, we used null textual prompt as the condition.

Baseline Approaches. We evaluate our framework against leading state-of-the-art techniques, in-
cluding both non-diffusion and diffusion-based models. Non-diffusion models, such as Audio2Head
and SadTalker, are compared with diffusion-based counterparts like EchoMimic, AniPortrait, and
Hallo. Notably, EchoMimic and AniPortrait employ a parallel generation approach for long-duration
outputs, while Hallo utilizes an incremental formulation. Unlike previous studies that focused on
short-duration videos of only a few seconds, our evaluation is conducted on generated videos lasting
4 minutes, using looped audio from the benchmark dataset as the driving audio. To ensure a fair com-
parison, we have excluded the high-resolution enhancement module, maintaining the same output
video resolution (512 × 512 pixels) as the existed approaches across all quantitative comparisons.

4.2 COMPARISON WITH STATE-OF-THE-ART

Comparison on HDTF Dataset. Table 1 and Figure 6 present quantitative and qualitative com-
parisons on the HDTF dataset. Our framework achieves the lowest FID of 16.616 and an E-FID
of 6.702, demonstrating superior fidelity and perceptual quality. Additionally, our synchroniza-
tion metrics, Sync-C (7.379) and Sync-D (7.697), further validate the effectiveness of our method.
As illustrated in Figure 5, the extended inference duration significantly impacts FID metrics in
existing diffusion-based approaches, leading to notable declines compared to their short-duration
performance. In terms of lip and expression motion synchronization, parallel methods such as
EchoMimic and AniPortrait exhibit marked deterioration. In contrast, our extended approach con-
sistently demonstrates superior and stable performance across image and video quality, as well as
motion synchronization, even as inference time increases.
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Gaussian noise Patch drop FID↓ FVD↓ Sync-C↑ Sync-D↓
82.715 1088.158 6.683 8.420

✓ 78.283 984.876 6.701 8.415
✓ 38.518 491.338 6.766 8.387

✓ ✓ 37.944 477.412 6.928 8.307

Table 4: Ablation study of the patch drop and
Gaussian noise augmentation on the CelebV
data-set.

Reference Image Motion Frames FID↓ FVD↓ Sync-C↑ Sync-D↓
82.715 1088.158 6.683 8.420

✓ 98.374 1276.453 6.584 8.512
✓ ✓ 68.471 594.434 6.735 8.394

✓ 38.518 491.338 6.766 8.387

Table 5: Analysis of different combinations of
patch augmentations applied to the reference
image and motion frames.

Figure 8: Effectiveness of Gaussian noise augmentation: (a) No augmentation is used for motion
frames. (b) Gaussian noise augmentation is introduced to the motion frames.

Figure 9: Different combinations of patch augmentation for the reference image and motion frames
are as follows: (a) No patch-drop augmentation is used for either the reference or motion frames. (b)
Patch-drop augmentation is introduced only to the reference image. (c) Patch-drop augmentation is
added to both the reference image and motion frames. (d) Patch-drop augmentation is applied only
to the motion frames.

Comparison on the Proposed “Wild” Dataset. Table 2 and Figure 7 offers additional quantitative
and qualitative comparison results of the introduced “Wild” dataset. Our method achieves an FID
of 24.072 and an E-FID of 33.316, both indicative of high image quality. We also register a Sync-C
score of 6.760 and a Sync-D of 8.156, alongside the highest FVD of 360.192, demonstrating superior
coherent video structure.

4.3 ABLATION STUDIES AND DISCUSSION

Different Patch Drop Sizes and Rate. Table 3 presents a comparative analysis of varying patch
sizes and drop rate applied to motion frames. Our results indicate that using patch sizes of 1–4 pixels
with appropriate patch drop augmentation ratios of 20%–30% yields comparable performance on lip
sync metrics (Sync-C and Sync-D) and image and video quality metrics (FID and FVD). Too large
patch size or too large drop rate not only destroys the appearance details of motion frames, but also
damages the facial motion of motion frames and reduces the quality of the generated video, resulting
in a high FID and FVD scores.

Effectiveness of Augmentation Strategies. Table 4 evaluate different augmentation strategies.
Gaussian noise alone results in a high FID of 82.715 and FVD of 1088.158, indicating subopti-
mal quality. As shown in Figure 8, without Gaussian noise augmentation, errors tend to accumulate
in the background over time. In contrast, applying this augmentation strengthens the model’s ability
to suppress these errors, resulting in a clearer background. The patch drop strategy significantly
improves these metrics, reducing FID to 38.518 and FVD to 491.338, as it effectively suppresses
artifacts in portrait appearances, illustrated in Figure 9. Notably, the combined strategy further en-
hances performance, achieving the lowest FID of 37.944 and FVD of 477.412, alongside the highest
Sync-C score of 6.928. Thus, the combined augmentation method proves to be the most effective in
generating high-quality motion frames.

To assess the effectiveness of patch augmentation, we apply it to the reference and motion im-
ages, as presented in Table 5 and Figure 9. Our experiments demonstrate that without the proposed
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Figure 10: Comparison of the portrait image ani-
mation results with and without high-resolution en-
hancement.

Method LPIPS↓ FID↓ FVD↓ MUSIQ↑
MagVITv2 0.2647 91.46 425.68 0.6841
ESRGAN 0.2532 88.78 418.06 0.7033

Ours w/ HRE 0.2310 66.92 360.71 0.7187

Table 6: Quantitative evaluations of
the super-resolution results from different
methods. HRE represents the proposed
high-resolution enhancement.

Figure 11: Comparison of portrait animation before and after applying the textual prompts.

augmentation, the generated portraits (Figure 9(a)) exhibit numerous artifacts. Augmenting only
the reference image contaminates its identity features (see Figure 9(b)) because noise accumulates
across the motion frames. Similarly, applying augmentation to both the reference image and motion
frames introduces noise into the portraits (Figure 9(c)) due to the compromised reference image.
To address this issue, we exclusively augment the motion frames, aiming for them to provide only
facial motion while the reference image supplies the identity appearance. This approach as shown
in Figure 9(d) preserves the identity appearance of the reference image while effectively capturing
the facial motion.

Effectiveness of High-Resolution Enhancement. The effectiveness of high-resolution enhance-
ment techniques is illustrated in Figure 10, which demonstrates improved animation quality via
video super-resolution. We compare the proposed super-resolution method with previous models,
specifically ESRGAN Wang et al. (2018) and MagVITv2 Yu et al. (2023). The corresponding statis-
tics are provided in Table 6. The results indicate that although the introduced super-resolution ap-
proaches enhance visual details measured by MUSIQ, our proposed high-resolution enhancement
(HRE) achieves superior video quality, as evidenced by better FVD scores. This improvement is due
to the incorporation of the temporal alignment module, which enhances temporal coherence.

Effectiveness of Textual Prompt. The integration of textual prompts into our portrait image an-
imation framework significantly enhances the control over generated animations, as illustrated in
Figure 11. The comparative analysis demonstrates that textual prompts facilitate precise manipu-
lation of facial expressions and emotional nuances, allowing for a more tailored animation output.
By providing explicit instructions regarding desired emotional states, the model exhibits improved
responsiveness in generating animations that align closely with the specified prompts.

5 CONCLUSION

This paper presents advancements in portrait image animation through the enhanced capabilities of
the Hallo framework. By extending animation durations to tens of minutes while maintaining high-
resolution 4K output, our approach addresses significant limitations of existing methods. Specif-
ically, innovative data augmentation techniques, including patch-drop and Gaussian noise, ensure
robust identity consistency and reduce appearance contamination. Furthermore, we implement vec-
tor quantization of latent codes and employ temporal alignment techniques to achieve temporally
consistent 4K videos. Additionally, the integration of audio-driven signals with adjustable seman-
tic textual prompts enables precise control over facial expressions and motion dynamics, resulting
in lifelike and expressive animations. Comprehensive experiments conducted on publicly available
datasets validate the effectiveness of our method, representing a significant contribution to the field
of long-duration, high-resolution portrait image animation.
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