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Abstract

Voice Assistants (VAs) such as Amazon Alexa or Google Assistant rely on wake-
word detection to respond to people’s commands, which could potentially be
vulnerable to audio adversarial examples. In this work, we target our attack
on the wake-word detection system. Our goal is to jam the model with some
inconspicuous background music to deactivate the VAs while our audio adversary
is present. We implemented an emulated wake-word detection system of Amazon
Alexa based on recent publications. We validated our models against the real
Alexa in terms of wake-word detection accuracy. Then we computed our audio
adversaries with consideration of expectation over transform and we implemented
our audio adversary with a differentiable synthesizer. Next we verified our audio
adversaries digitally on hundreds of samples of utterances collected from the real
world. Our experiments show that we can effectively reduce the recognition F1
score of our emulated model from 93.4% to 11.0%. Finally, we tested our audio
adversary over the air, and verified it works effectively against Alexa, reducing
its F1 score from 92.5% to 11.0%.1 To the best of our knowledge, this is the first
real-world adversarial attack against a commercial grade VA wake-word detection
system.

1 Introduction

Adversarial attacks on machine learning systems are a topic of growing importance. As machine
learning becomes ever more prevalent in all aspects of modern life, concerns about safety tend to
gain prominence as well. Recent demonstrations of the ease with which machine learning systems
can be “fooled” have caused a strong impact in the field and in the general media. Systems that use
voice and audio such as Amazon Alexa, Google Assistant, and Microsoft Cortana are growing in
popularity. The hidden risk of those advancements is that those systems are potentially vulnerable to
adversarial attacks from an ill-intended third-party. Despite the recent growth in consumer presence
of audio-based artificial intelligence products, attacks on audio and speech systems have received
much less attention than the image and language domains so far.

Despite a number of recent works attempting to create adversarial examples against Automatic
Speech Recognition (ASR) systems [Carlini and Wagner, 2018, Schonherr et al., 2018, Qin et al.,
2019], we believe robust playable-over-the-air real-time audio adversaries against commercial ASR

1Our code and demo videos are included in the supplementary material, and can be accessed at https:
//www.junchengbillyli.com/AdversarialMusic

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.
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systems still do not exist. There exists no adversary that can be played from a different speaker rather
than the source. Moreover, as consumers facing products, Voice Assistants (VAs) such as Amazon
Alexa and Google Assistant are well-maintained by their infrastructure teams. It is revealed that
these teams retrain and update ASR models very frequently on their cloud back-end, making a robust
audio adversary that can consistently work against these ASR systems almost impossible to craft
Hoffmeister [2019]. Attackers would not only lack knowledge of the backend models’ parameters
and gradients, but would also struggle to keep up with the ever-evolving models.

However, all the existing VAs rely solely on wake-word detection to respond to people’s commands,
which could potentially make them vulnerable to audio adversarial examples. In this work, rather than
directly attacking the general ASR models, we target our attack on the wake-word detection system.
Wake-word detection models always have to be stored and executed on-board within smart-home
hardware, which is usually very limited in terms of computing power due to form factors. It is also
revealed that updates to the wake-word models are much more infrequent and difficult compared
with the backend ASR models Hoffmeister [2019]. Thus, our proposed attack could be particularly
more damaging. Our goal is to jam the model so as to deactivate the VAs while our audio adversary
is present. In security term, this is a type of denial-of-service (DoS) attack. Specifically, we create a
parametric attack that resembles a piece of background music, making the attack inconspicuous to
humans.

We reimplemented the wake-word detection system used in Amazon Alexa based on their latest
publications on the architecture [Wu et al., 2018]. We leveraged a large amount of open-sourced
speech data to train our wake-word model, testing and making sure it has on par performance
compared with the real Alexa. We collected 100 samples of "Alexa" utterances from 10 people and
augmented the data set by varying the volume, tempo and speed. We created a synthetic data set
using publicly available data sets as background noise and negative speech examples. This collected
database is used to validate our emulated model and be compared with the real Alexa.

After successfully training a high-performance emulated wake-word model, we synthesized guitar-
like musics to craft our audio perturbations. Projected Gradient Descent (PGD) is used here to
maximize the effect of our attack while keeping the parameters of our adversarial music within
realistic boundaries. During the training of our audio perturbation, we considered expectation over
transforms [Athalye et al., 2018] including psychoacoustic masking and room impulse responses.
Finally, we tested our perturbation over the air against our emulated model in parallel with the real
Amazon Echo and verified that our perturbation works effectively against both of them in real world.
Specifically, the recognition F1 score of our emulated model was reduced from 93.4% to 11.0%,
and the F1 score of the real Alexa was also brought down from 92.5% to 11.0%. Our adversarial
music poses a real threat against commercial grade VAs, leading to potential safety concerns such as
distraction in driving and malicious manipulations of smart devices, and thus, our finding calls for
future speech researches looking into defenses against potential risks and general robustness.

2 Background and Related Works

Most current adversarial attacks work by trying to find a way to modify a given input (hopefully by a
very small amount) in such a way that the machine learning system’s proper functioning is disrupted.
A classic example is to take an image classifier and modify an input with a very small perturbation
(difficult for human to tell apart from the original image) that still changes the output classification
to a completely distinct (and incorrect) one. To achieve such a goal, the general idea behind many
of the attack algorithms is to optimize an objective that involves maximizing the likelihood of the
intended (incorrect) behavior, while being constrained to a small perturbation. For differentiable
systems such as deep networks, which are the current state-of-the-art for many classification tasks,
utilizing gradient-based methods is a common approach. We describe such methods and their relation
to our work in more depth in Section. 3.5. In this work, our target of attack is wake-word detection
systems.

Adversarial attacks were initially introduced for images [Szegedy et al., 2013] and have been studied
the most in the domain of computer vision [Nguyen et al., 2015, Kurakin et al., 2016, Moosavi-
Dezfooli et al., 2016, Elsayed et al., 2018, Li et al., 2019]. Following successful demonstrations in
the vision domain, adversarial attacks were also successfully applied to natural language processing
[Papernot et al., 2016, Ebrahimi et al., 2018, Reddy and Knight, 2016, Iyyer et al., 2018, Naik et al.,
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2018]. This trend gives rise to defensive systems such as Cisse et al. [2017], Wong and Kolter [2018],
and thus provides a guideline to the community about how to build robust machine learning models.

Attacks on audio and speech systems have received much less attention so far. As recently as last
year, Zhang et al. [2017] pioneered a proof-of-concept that proved the feasibility of real-world attacks
on speech recognition models. This work however, had a larger focus on the hardware part of the
Automatic Speech Recognition (ASR) system, instead of its machine learning component. Until very
recently, there was not much work done on exploring adversarial perturbation on speech recognition
models. Carlini et al. [2016] was the first to demonstrate that attack against HMM models are possible.
They claimed to effectively attack based on the inversion of feature extractions. This work was
preliminary since it only showcased a limited number of discrete voice commands, and the majority
of perturbations are not able to be played over the air. As a follow-up work, Carlini and Wagner
[2018], Qin et al. [2019] showcased that curated white-box attacks based on adversarial perturbation
can easily fool the Mozilla speech recognition system. Again, their attacks would only work in
with their special setups and are very brittle in the real world. Meanwhile, Schonherr et al. [2018]
attempted to leverage psycho-acoustic hiding to improve the chance of success of playable attacks.
They claimed to have verified their attacks against the Kaldi ASR system, whereas the real-world
success rate was still not satisfying, and the adversary itself cannot be played from a different source.
Unfortunately, state-of-the-art audio adversaries can only work digitally against the specific model
they were trained against, but cannot work robustly over the air against state-of-the-art commercial
grade ASR systems. We verified all these adversaries mentioned above not effective against Alexa
or Siri. Alexa and Siri can still transcribe correctly with the presence of these audio perturbations.
We took a different approach that did not involve facing the ASR models deployed in commercial
products directly. Our proposed attack targets at the more manageable but equally critical wake-word
detection system, and effectively demonstrates that it can be playable over the air.

Here are our main contributions in this work compared with previous works:

1. We create a parametric threat model in audio domain that allows us to disguise our adver-
sarial attack as a piece of music playable over the air in the physical space.

2. Our adversarial attack is a “gray-box” attack2 that leverages the domain transferability of
our perturbation. This is a lot more challenging than previous works on white-box attack
where attackers have perfect information about the model.

3. Our adversarial attack is jointly optimizing the attack nature while fitting the threat model
to the perturbation achievable by the microphone hearing response of Amazon Alexa. Our
attack budget is very limited compared with previous works, which makes this challenging.

4. Our adversarial attack demonstrated its effect in the real world under separate audio source
settings, which is the first real-time “gray-box” adversarial attack against commercial grade
Voice Assist’s wake-word detection system to our knowledge. 3

3 Synthesizing Adversarial Music against Alexa

This section contains the main methodological contributions of our paper: the algorithmic and
practical pipeline for synthesizing our adversarial music. To begin, we will first describe the training
setup and the performance of our emulated wake-word detection model. We then describe the general
threat model we consider in this work. Unlike past works which often considered Lp norm bounded
perturbations on the entire spectrum, we require a threat model that can generate a piece of audible
music. Next, we describe the approach we used to make our threat model robust over the air. Finally,
we describe how we optimized the parameters of our threat model to synthesize a robust over-the-air
attack.

3.1 Emulate the Wake-word Detection Model

Wake-word detection is the first important step before any interactions with distant speech recognition.
Due to the compacted space of embedded platforms and the need for quick reflection time, models of

2We avoid using the term “black-box” here since we admit that the gradients of the real Alexa model can be
expected to be similar to those of models of Panchapagesan et al. [2016]

3Our demo video is included in the supplementary material
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Figure 1: Emulated Wake-word model
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Figure 2: Detection Error Tradeoff Curve. The
curve of Alexa model is shown in a flat line as its
False Alarm Rate is not published

wake-word detection are usually truncated and vulnerable to attacks. Thus, we target our attack at the
wake-word detection function.

Since the Alexa model is a black-box to us, the only way to attack it is either to estimate its gradients,
or to emulate its architecture and later transfer the white-box attack against the emulated model to its
original model. Estimating its gradient using first order optimization techniques would be extremely
computationally expensive [Ilyas et al., 2018], making it difficult if not impossible to implement.
Luckily, the architecture of Amazon Alexa was published in Panchapagesan et al. [2016], Kumatani
et al. [2017], Guo et al. [2018], allowing us to emulate the model as if it is a white-box attack. We
implemented the time-delayed bottleneck highway networks with Discrete Fourier Transform (DFT)
features as shown in Figure. 1. The architecture is following the details in Guo et al. [2018], which is
the most up-to-date information on the model architecture.

The architecture of the emulated model is shown in Figure. 1. The model is a two-level architecture
which uses the highway block as the basic building block. Specifically, our architecture contains
a 4-layer highway block as a feature extractor, a linear layer acting as the bottleneck, a temporal
context window that concatenates features from adjacent frames, and a 6-layer highway block for
classification.

The training data for wake-word detection systems is very limited, so our model is first pre-trained
with several large corpora [Cieri et al., 2004, Godfrey et al., 1992, Rousseau et al., 2012] to train a
general acoustic model. Then it is adapted to the wake-word detection model by using a small amount
of wake-word detection training data. The emulated model could detect the wake-word “Alexa" by
recognizing the corresponding phonemes of AX, L, EH, K, S and AX.

We trained the model as a binary classification problem over a time sequence, distinguishing between
wake-words and non wake-words. The performance is evaluated over a reserved test set. Care has
been taken to ensure that augmented copies of the same raw audio sample will not occur in the train
and test set simultaneously. Common performance metrics are listed in Table. 1. Given that our
emulated model’s architecture is very similar to the Alexa model, the gradients of the two models
should also share great similarities. We believe that the white-box attack computed by gradient based
attacks against our emulated model would be effective against Alexa’s original model. Figure. 3.1
shows the Detection Error Tradeoff (DET) in the similar style as Guo et al. [2018]. We note that
our performance is not exactly the same as Alexa model due to the lack of training data, but our
performance is in the same order of magnitude. Thus, we believe we should have a high fidelity
emulation of the Alexa wake-word detection model.

3.2 Adversarial Music Synthesizer (Threat Model)

To perform the adversarial attack on the audio domain, we introduce a parametric model to define
a realistic construction of our adversary δθ parameterized by θ. We use the Karplus-Strong algo-
rithm Jaffe and Smith [1983] to synthesis guitar-timbre sounds. The goal is to generate a sequence of
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Figure 3: String instruments with the one-zero low-pass filter approximation. The synthesis process
first generates a short excitation D-length waveform. It is then fed into the filter iteratively to generate
the sound.

L guitar notes {(fri, di, voli)}Li=1, with given Beats Per Minute (BPM) bpm, Sampling Frequency
frs, where fri is the frequency pitch of the ith note, di is the note duration, and voli is the note
volume. In this work, we update the θ = {(fri, voli)}Li=1 of all notes’ frequency fr and volume vol,
while fixing the notes’ duration {di}Li=1.

The Karplus-Strong algorithm is an example of digital waveguide synthesis to simulate string
instruments physically. It mimics the dampening effects of a real guitar string as it vibrates by taking
the decaying average of two consecutive samples: y[n] = γ(y[n−D] + y[n−D + 1])/2, where γ
is the decay factor, y is the output wave, D is the sampling phase delay. This is similar to a one-zero
low-pass filter with a transfer function H(z) = (1 + z−1)/2 [Smith, 1983], as shown in Figure. 3.

When a guitar string is plucked, the string vibrates and emits sound. To simulate this, the Karplus-
Strong algorithm consists of two phases, as shown in Figure. 3:

Plucking the string: The string is “plucked” by a random initial displacement and initial velocity
distribution y[0 : D − 1] ∼ N (0, β), where β is the displacement factor. The plucking time, i.e. the
sampling phase delay D for the note frequency fr is calculated using D = frs/fr.

The resulting vibrations: The pluck causes a wave-like displacement over time with a decaying
sound. The decay factor depends on the note frequency fr and the delay period nD = d× fr/frs.
It is calculated as: γ = (4/log(fr))1/nD . The volume of the output of a note is adjusted by
voutput = pv × vol using a frequency-specific volume factor pv = 1 + 0.8× (log(fr)− 3)/5.5×
cos(π/5.3(log(fr) − 3)) [Woodhouse, 2004]. Jaffe and Smith [1983] suggested using a linear
interpolation to obtain a fractional delay to generate a better result:

y[n] = γvoutput(ω × y[n−D] + (1− ω)× y[n−D − 1])/2, (1)

where, ω ∈ (0, 1) is the weight factor. Overall, the Karplus-Strong algorithm is shown in algorithm. 1.

Algorithm 1: Karplus-Strong algorithm
1 Simulate the plucking phase of each note i by initialize yi[0 : D − 1] ∼ N (0, β);
2 for i = 1, ..., L do

for n = D, ..., di do
yi[n] = γvoutput(ω × yi[n−D] + (1− ω)× yi[n−D − 1])/2;

3 Return y;

The resulting synthesizing function π(x; θ) is a differentiable function of part of the parameters θ
value is a continuous function of the parameters: the frequency f and the volume vol of each note
(We fix the note duration d). Therefore, we can implement the perturbation model within an automatic
differentiation toolkit (we implement it with the PyTorch library), a feature that will be exploited to
both fit the parametric perturbation model to real data, and to construct real-world adversarial attacks.
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3.3 Psychoacoustic Effect

Our ultimate task is to deceive the voice assistant with minimal impact to human hearing, and it is
natural to leverage the psychoacoustic effect of human hearing. The principles of the psychoacoustic
model are similar to what used in the compression process of audio files, e.g. compress the lossless
file format "wav" to the lossy file format "mp3". In this process, the information carried by the
audio file is actually altered while human ear could not tell the differences between these two
sounds. Specifically, a louder signal (the “masker") can make other signals at nearby frequencies
(the “maskees") imperceptible [Mitchell, 2004]. In this work, we adopted the same setup as Qin et al.
[2019]. When we add an perturbation δ, the normalized power spectral density (PSD) estimate of the
perturbation p̄δ(k) is under the frequency masking threshold of the original audio ηx(k),

p̄δ(k) = 92−max
k

px(k) + pδ(k) (2)

where pδ(k) = 10 log10 | 1N sδ(k)|2, px(k) = 10 log10 | 1N sx(k)|2 are power spectral density estima-
tion of the perturbation and the original audio input. sx(k) is the kth bin of the spectrum of frame x.
This results in the loss function term:

Lη(x, δ) =
1

bN2 c+ 1

bN2 c∑
k=0

max {p̄δ(k)− ηx(k), 0} (3)

where N is the predefined window size and bxc outputs the greatest integer no larger than x.

3.4 Expectation Over Transform

When using the voice assistant in a room, the real sound caught by the microphone includes both
the original sound spoken by human and the reflected sound. The "room impulse response" function
explained the transform of the original audio and the audio caught by the microphone. Therefore, to
make our adversarial attack effective in the physical domain, i.e. attack the voice assistant over the
air, it is necessary to consider the room impulse response in our work. Here, we use the classic Image
Source Method introduced in Allen and Berkley [1979], Scheibler et al. [2018] to create the room
impulse response r based on the room configurations (dimension, source location, reverberation time):
t(x) = x ∗ r, where x denotes clean audio and ∗ denotes convolution operation. The transformation
function t follows a chosen distribution T over different room configurations.

3.5 Projected Gradient Descent and Loss Formulation

Originally, wake-word detection problem is formulated as a minimization of Ex,y∼D[L(f(x), y)]
where L is the loss function, f is the classifier mapping from input x to label y, andD is the data distri-
bution. We evaluate the quality of our classifier based on the loss, and a smaller loss usually indicates
a better classifier. In this work, since we are interested in attack, we form max

δ
[Ex,y∼D[L(f(x′), y)]],

where x′ = x + δ is our perturbed audio. In a completely differentiable system, an immediately
obvious initial approach to this would be to use gradient ascent in order to search for an x′ that maxi-
mizes this loss. However, for this maximization to be interesting both practically and theoretically,
we need x′ to be close to the original datapoint x, according to some measure. It is thus common
to define a perturbation set C(x) that constrains x′, such that the maximization problem becomes
max

x′∈C(x)
[Ex,y∼D[L(f(x′), y)]]. The set C(x) is usually defined as a ball of small radius (of either

`∞, `2 or `1) around x.

Since we have to solve such a constrained optimization problem, we cannot simply apply the gradient
descent method to maximize the loss, as this could take us out of the constrained region. One of the
most common methods utilized to circumvent this issue is called Projected Gradient Descent (PGD).
To actually implement gradient descent methods, instead of maximizing the aforementioned loss L,
we will invert the sign and minimize the negative loss, i.e., min

x′∈C(x)
[−l(x, δ, y)].

In our case, we attack the voice assistant via a parametric threat model and considering psychoacoustic
effect, as illustrated in Section. 3.3 and Section. 3.2. The loss function of attack thus can be rewritten
as:

max l(x, δθ, y) = Ex,y∼D[Lwake(f(x+ δθ), y)− α · Lη(x, δθ)] (4)
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Figure 4: Physical Testing Illustration
Figure 5: A sample adversarial music

where Lwake is the original loss of the emulated model for wake-word detection, and α is the balancing
parameter. δθ is our adversarial music defined in Section. 3.2. In addition, we consider the room
impulse response defined in Section. 3.4, which would be the attack in physical world over the air.
We simulated our testing environments using the parameters shown in Table. 2 to transform t(x) our
digital adversary to compensate for the room impulse responses. We want to optimize our δ by tuning
θ to maximize this loss to synthesize our adversary:

max l(x, δθ, y) = Et∈T ,x,y∼D[Lwake(f(t(x+ δθ), y))− α · Lη(x, δθ)] (5)

4 Experiments and Results

Datasets

We collected 100 positive speech samples (speaking "Alexa") from 10 peoples (4 males and 6 females;
4 native speakers of English, 6 non-native speakers of English). Each person provided 10 utterances,
under the requirement of varying their tone and pitch as much as possible. We further augmented the
data to 20x by varying the speed, tempo and the volume of the utterance, resulting in 2000 samples.
We used LJ speech dataset [Ito, 2017] for background noise and negative speech examples (speak
anything but "Alexa"). We created a synthetic data set by randomly adding positive and negative
speech examples onto a 10s background noise and created binary labels accordingly. While "hearing"
positive speech examples, we set label values as 1.

Training and Testing the Adversarial Music

We followed the methodology described in Section. 3.5, using the loss function defined by Eq. 5
and the parametric method illustrated in Section. 3.2, we optimized the parameters of the music to
maximize our attack. We used the emulated model developed in Section. 3.1 to estimate the gradient
and maximizes the classification loss following Eq. 5. When using PGD to train, we restricted
the frequency to 27.5Hz ∼ 4186Hz in the 88 notes space, and restricted the volume from 0 dBA
∼ 100 dBA. Other parameters are defined in the code, we fixed some parameters to speed up the
training. The trained perturbations are directly added on top of the clean signals to perform our
digital evaluation. Our physical experiments are conducted at a home environment which can be
seen in the video attached in the supplementary material, and the setup is shown in Figure. 4. The
adversarial music is played by a MacBook Pro (15-inch, 2018) speaker4 The tester stands dt away
from the Amazon Echo or the computer running our emulated model, and the adversary is placed
da away from the Echo. The angle between the two lines is ϕ. We tested against the model for 100
samples with and without the audio adversary. We used a decibel meter to ensure that our adversary
is never louder than the wake-word command. Our human spoken wake-word command is measured
to be 70 dBA on average. We experimented with adversaries being played at from 40 dBA and 70
dBA (measured by the decibel meter) with the background reference noise at 20 dBA, and we also

4We have also experimented with Alienware MX 18R2 speakers and Logitech Z506 speakers, MacBook Pro
speakers generated the best results. Since we are not comparing different speakers in this paper, we report the
results from the MacBook Pro speakers.
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experimented with 2 different testers (a male and a female). We also experimented with the influence
of timing offset toffset on the performance of the adversarial music. 5

Models Attack Digital / Physical Precision Recall F1 Score # Samples

Emulated Model No Digital 0.97 0.94 0.955 4000
Emulated Model No Physical 0.96 0.91 0.934 100
Alexa No Physical 0.93 0.92 0.925 100
Emulated Model Yes Digital 0.14 0.11 0.117 4000
Emulated Model Yes Physical 0.12 0.09 0.110 100
Alexa Yes Physical 0.11 0.10 0.110 100

Table 1: Performance of the models with and without attacks in digital and physical testing environ-
ments given the number of testing samples

The performance metrics of the emulated model on adversary examples are shown in Table .1. An
example of modified adversarial attack example is shown in Figure .5. As we can see, our attack
is effective against both the emulated model and the real Alexa model in both digital and physical
tests. Especially, the precision score takes a heavier hit by the adversary compared with the recall
score. We also noticed that False Positives are relatively uncommon, this might be due to the fact that
we are running an untargeted attack against the wake-word detection, and our adversaries are not
encouraging the model to predict a specific target label. Overall, our experiments showcased that
audio adversaries masked as a piece of music can be played over the air, and disable a commercial
grade wake-word detection system.

Test Against Alexa ϕ = 0◦ ϕ = 90◦ ϕ = 180◦

dt = 4.2ft 7.2ft 10.2ft 4.2ft 7.2ft 10.2ft 4.2ft 7.2ft 10.2ft
da = 4.7ft, 70dBA 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10
da = 6.2ft, 70dBA 1/10 0/10 0/10 1/10 0/10 0/10 1/10 2/10 1/10
da = 7.7ft, 70dBA 2/10 0/10 0/10 3/10 1/10 1/10 3/10 3/10 1/10
da = 4.7ft, 60dBA 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10
da = 6.2ft, 60dBA 1/10 1/10 0/10 3/10 1/10 0/10 2/10 2/10 0/10
da = 7.7ft, 60dBA 2/10 1/10 0/10 3/10 2/10 1/10 4/10 3/10 1/10
da = 4.7ft, 50dBA 1/10 2/10 1/10 2/10 2/10 2/10 2/10 2/10 1/10
da = 6.2ft, 50dBA 2/10 3/10 2/10 3/10 3/10 2/10 2/10 3/10 2/10
da = 7.7ft, 50dBA 2/10 3/10 2/10 3/10 2/10 3/10 4/10 3/10 3/10
da = 4.7ft, 40dBA 3/10 4/10 3/10 4/10 3/10 4/10 4/10 4/10 4/10
da = 6.2ft, 40dBA 3/10 4/10 4/10 4/10 4/10 4/10 4/10 4/10 4/10
da = 7.7ft, 40dBA 3/10 4/10 4/10 5/10 5/10 4/10 5/10 4/10 5/10

Table 2: Times of the real Amazon Alexa being able to respond to the wake-word under the influence
of our adversarial music with different settings. (The female and male tester each tests 5 utterances.)
The testing set up is illustrated in Figure. 4, and it is also showed in the demo video.

In our physical experiments against the real Alexa, we measured the performance of our audio
perturbation under several different physical settings shown in Table. 2. As we can observe, our
model successfully attacked against Alexa in most cases. The distance da between Alexa and the
attacker is critical for a successful attack: a shorter distance da generally leads to a more effective
adversary, while the number of successful attacks declines when distance dt is shorter. The adversary
effectively fooled Alexa at most volume levels. The success rate increased as the volume of the
adversarial music increased from 40 dBA to 70 dBA. We also observed it would not be effective
being played under 40 dBA. We also experimented with different starting time of the adversary and
wake words. As is shown in Table. 3, the adversary was effective when it overlapped with the entire
length of the wake-word, while it was ineffective if the wake-word uttered first. Our adversaries
successfully demonstrated to be effective at various physical locations and angles ϕ referenced to
Alexa and the human tester, the larger ϕ the less effective our adversary would be. This is exciting
since Alexa’s 7-microphone array is supposedly to be very robust at source separation. This can

5please refer to the demo video in https://www.junchengbillyli.com/AdversarialMusic
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prove that our consideration of the room impulse responses was useful. When we remove the room
impulse transform, the adversary lost its effect.

To verify that Alexa would not be affected easily with other non-adversarial noises, we experimented
with three different baselines: random musics generated by the Karplus-Strong (KS) algorithm,
single-note sounds generated by the KS algorithm and random pieces of musics.6 (not generated by
the KS algorithm). The baseline noises are played at the same volume as our adversarial music. As
is shown in Table. 4, these three baselines could hardly fool Alexa under various testing conditions.
This demonstrated the Projected Gradient Descent (PGD) adversarial music trained using the KS
algorithm is effective.

Test Against Alexa ϕ = 0◦ ϕ = 90◦ ϕ = 180◦

dt = 4.2ft 7.2ft 10.2ft 4.2ft 7.2ft 10.2ft 4.2ft 7.2ft 10.2ft
toffset = +1s 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
toffset = −1s 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10

loop 0/10 1/10 0/10 0/10 1/10 0/10 1/10 0/10 1/10

Table 3: Times of the real Amazon Alexa being able to respond to the wake-word under the influence
of our adversarial music with different time-offset. The adversarial music was placed at da = 7.7ft
away from the Echo, and played at 70dBA. Here, toffset is +1 indicates the adversarial music is played
1 second after the wake word; loop indicates non-stop adversarial music.

Test Against Alexa ϕ = 0◦ ϕ = 90◦ ϕ = 180◦

dt = 4.2ft 7.2ft 10.2ft 4.2ft 7.2ft 10.2ft 4.2ft 7.2ft 10.2ft
Random Music 10/10 10/10 10/10 10/10 9/10 10/10 10/10 10/10 10/10
Random Notes 9/10 10/10 10/10 9/10 10/10 10/10 10/10 9/10 9/10

Real Music 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 9/10

Table 4: Times of the real Amazon Alexa being able to respond to the wake-word under the influence
of baseline noises: Random music and random single notes generated by the Karplus-Strong (KS)
algorithm, and real guitar musics which are not generated by the KS algorithm. The adversarial music
was placed at da = 7.7ft away from the Echo, and played at 70dBA.

5 Conclusion

In this work, we demonstrated a DoS attack on the wake-word detection system of Amazon Alexa
with a real-word inconspicuous adversarial background music. We first created an emulated model
for the wake-word detection on Amazon Alexa following the implementation details published in
Guo et al. [2018]. The model is the basis to design our “gray-box” attacks. We collected, augmented
and synthesized a data set for training and testing. We implemented our threat model which disguises
our attack in a sequence of inconspicuous background music notes in PyTorch. Our experiments
verified that our adversarial music is not only effective against our emulated model digitally, but
also can effectively disable Amazon Alexa’s wake-word detection function over the air. Our work
shows the potential of adversarial attack in the audio domain, specifically, against the widely applied
wake-word detection systems in voice assistants. Overall, this suggests a real concern of attack
against commercial grade machine learning algorithms, highlighting the importance of adversarial
robustness from a practical, security-based point of view.

6We picked 10 different top ranking guitar musics on Youtube.
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