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ABSTRACT

Few-shot learning trains image classifiers over datasets with few examples per
category. It poses challenges for the optimization algorithms, which typically
require many examples to fine-tune the model parameters for new categories.
Metric-learning-based approaches avoid the optimization issue by embedding the
images into a metric space and applying the nearest neighbour classifier for new
categories. In this paper, we propose to exploit the object-level relation to learn
the image relation feature, which is converted into a distance directly. For a new
category, even though its images are not seen by the model, some objects may
appear in the training images. Hence, object-level relation is useful for inferring the
relation of images from unseen categories. Consequently, our model generalizes
well for new categories without fine-tuning. Experimental results on benchmark
datasets show that our approach outperforms state-of-the-art methods.

1 INTRODUCTION

Real-world data typically follows power-law distributions, where the majority of the data categories
have only a small number of examples. For instance, to train an image classifier for food images,
one would probably crawl few images for some local dishes. Similarly, there are few images for
new products, e.g. new toys. However, state-of-the-art image classifiers, i.e. deep convolutional
neural networks (ConvNets) Krizhevsky et al. (2012), are hungry for data. The benchmark datasets
for ConvNets, including CIFAR10 and ImageNet Deng et al. (2009), usually have more than 1000
images per category. Fine-tuning ConvNets Yosinski et al. (2014) by transferring the knowledge (i.e.
parameters) learned from a big dataset could alleviate the gap, but still fails to resolve the issue. This
is because the widely used gradient-based optimization algorithms need many iterations over plenty
of examples to adapt the ConvNets (with a large number of parameters) for new categories.

Two types of approaches have been proposed towards addressing the above issue. They are referred
as few-shot image classification, which trains classifiers over datasets with few (e.g. less than 20)
examples per category. The first set of approaches Ravi & Larochelle (2016); Li et al. (2017); Finn et al.
(2017) are based on meta-learning. They train a meta learner to guide the optimization of the classifier
for the new categories. They improve the optimization by providing a good initialization Finn et al.
(2017), an adaptive learning rate Li et al. (2017) or even replacing the gradient-based optimization
method Ravi & Larochelle (2016). The second set of approaches Koch et al. (2015); Vinyals et al.
(2016); Santoro et al. (2016); Snell et al. (2017); Sung et al. (2017) are based on embedding learning.
They learn an embedding function to project the images into a space and then classify images from new
categories through the nearest neighbour search. No fine-tuning is required as the nearest neighbour
classifier is non-parametric. The embedding functions are vital to the classification accuracy, which
must be general enough to extract good embedding features for evaluating the distance/similarity
between images belonging to the unseen categories.

In this paper, we propose a new few-short learning approach. It is motivated by the observation that
human beings are pretty good at few-shot learning. Take the Segway in Figure 1 as an example (Koch
(2015)) although the Segway could be new to us, we are familiar with its components, e.g. wheels,
which are similar to those of the motors or electric scooters. Hence, we know Segway is a traffic
tool for riding. Moreover, we are able to analyze the image by decomposing it. For example, we are
aware of the relationship between Segway and rider. This kind of relationship-awareness helps in
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Figure 1: Example images with a Segway and an electric scooter.

recognition when we see a different rider with another Segway. However, existing methods take each
image as a whole without exploiting the object-level information including relation.

Based on the above observation, we design our learning model with two parts, namely the relation
extraction network and the distance learning network. We draw inspiration from the relation
network Santoro et al. (2017). In particular, we compare the objects from two images instead
of a single image as Santoro et al. (2017) in order to extract the relation between images. The
relation is converted into a similarity score. We expect the object relationship to play a crucial role
in determining the image relation for distinguishing images from different categories. The training
is conducted in episodes, each of which is constructed in the same way as in the test, i.e. with
few examples for each category. After training, we extract the relation feature vectors among the
query image (to be classified) and each labelled image from the test dataset. Nearest neighbour
classifier is then applied with the similarity score calculated from the relation feature vector. Extensive
experiments on benchmark datasets confirm the superiority of our approach in terms of classification
accuracy against existing work.

2 RELATED WORK

In this section, we review the related work of few-shot image classification including meta learning
and embedding learning based approaches. After that, we briefly introduce the relation network,
which is exploited in our method to learn the relation of images.

2.1 FEW-SHOT IMAGE CLASSIFICATION

Few-shot image classification is the task of training image classifiers over datasets with few examples
per category. It is useful for recognizing new categories, e.g. products. With the resurgence of deep
learning, most few-shot image classifiers are based on ConvNets. A simple solution is to fine-tune the
ConvNets trained on a similar dataset with many examples per category. However, the widely used
gradient based optimization algorithms (e.g. mini-batch Stochastic Gradient Descent, SGD) need a
lot of examples to adapt (fine-tune) the ConvNets Ravi & Larochelle (2016) for the new categories.

Meta Learning Towards the optimization challenge, meta learning trains a meta learner that guides
the optimization algorithms to fine-tune the learner (i.e. classifier). It is also called learning to
optimize. The meta learner is trained iteratively. For each iteration, an episode is sampled from
the training dataset, which has the same setting as the test scenario. In other words, an episode
has the same number of categories and the same number of examples per category as the test. The
meta learner is trained to fine-tune the classifier for a large number of episodes. After training, the
meta learner is expected to improve the optimization (fine-tune) of the classifier for the test episodes.
The meta learner of MAML Finn et al. (2017) learns good parameter initialization such that the
fine-tuning can adapt the parameters quickly and effectively for the test episodes. Meta-SGD’s
meta learner Li et al. (2017) generates both the initialization and learning rate for the fine-tuning
optimization algorithm. A more aggressive approach Ravi & Larochelle (2016) is to learn a LSTM to
generate the updates for fine-tuning. It replaces the SGD with LSTM for fine-tuning.

Embedding Learning Another set of approaches eliminate the fine-tuning step to avoid the opti-
mization problem. They learn a general embedding function to project both training and testing
images into an embedding space, where nearest neighbor search could be used as the classifier. Koch
et al. (2015) adapt Siamese network to do the feature embedding by training the network to predict
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the relation (from the same category or different categories) of two training images. LSTM Vinyals
et al. (2016) and memory-augmented networks Santoro et al. (2016) are also applied to learn the
embedding space. Prototypical Network Snell et al. (2017) learns an embedding for each category
by averaging the features of all samples in the category. LearningToCompare Sung et al. (2017) is
the most relevant work. It compares images within one episode to learn their relation scores, which
serve as the metric distance. However, it ignores the rich object-level information when doing the
comparison between images. Our approach exploits the object relation to learn image relation.

2.2 RELATION NETWORK

Relation network Santoro et al. (2017) is introduced for modeling the object relation within one
image. Good performance has been achieved for visual question answering. Every pair of objects is
compared by concatenating their features. A final relation feature that summarizes all object relations
is aggregated after some transformation. In this paper, we adapt the relation network extract the
relation of objects from different images in order to measure the relation of two images. Although
the test images are new to the classifier for few-shot classification, their object relations could persist
in the training dataset. Consequently, the object-level relation helps to decide the image relation. In
addition, we feed the relation features into a metric learning network to differentiate similar and dis-
similar images in each training episode. As a result, the extracted relation features are discriminative
for the test episode.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

For few-shot image classification, we are given a support set of labeled images S = {(xi, yi)}Ni=1,
where xi ∈ RD is the feature of an image, and yi ∈ C = {1, 2, · · · , C} is the label. If the number of
images per category is K, the task is denoted as C-way K-shot classification, which classifies the
images from a query set by assigning each image with a label from C. The support set and query
set together form the test data. Typically, K is small for few-shot classification, e.g. K = 1 or 5.
Hence, it is difficult to train an effective ConvNet over the support set directly. We follow the metric
learning based solution to train a model over another large labeled dataset. This additional dataset is
called the training dataset, whose label space is disjoint with the support set. The model is trained to
measure the similarity between images. By exploiting the object-level relation (see the next section),
the generated similarity is effective for the support and query images for unseen categories as well.
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Figure 2: Dataflow of our model. p, q stand for the query image and one image from the support set
respectively. f() is a CNN for feature extraction; g() is network for object relation learning; h() is a
network for image relation learning; ⊕ denotes element-wise addition.

3.2 ONE-SHOT CLASSIFICATION

Our model is created based on two intuitions. First, object-level relation persists across the training
and test images, even though they have disjoint label space. For example, if we have scooters and
motors in the training dataset, then the knowledge about wheels and riders is helpful for recognizing
Segway from the test dataset. Second, to avoid the challenge caused by gradient based optimization
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algorithms (see Section 1), nearest neighbor search (NNS) is adopted as the classifier, which is
non-parametric. For NNS, the distance (or similarity) is vital for good classification, which must
enforce sufficient margin between similar and dis-similar pairs.

Based on the above intuitions, we create our model as shown in Figure 2. We first explain the dataflow
for the case of K = 1, i.e. one-shot classification. The next subsection introduces the dataflow for
K > 1. The input of the model consists of two images denoted as p and q, where p is the query
image and q is an image from the support set. They go through the same ConvNet, denoted as f ,
to extract feature maps, i.e. fp ∈ Rw×h×c, fq ∈ Rw×h×c. w (reps. h) is the width (resp. height)
of each feature map and c is the number of feature maps. Each position (i, j) on the feature map
corresponds to a patch of the input image, which is considered as an “object”1. Therefore, we treat
fp
i,j ∈ Rc as an object level feature. Next, fp and fq are combined for comparison and object level

relation learning. In particular, we concatenate all object features from fp and fq , i.e. [fp
ip,jp

; fq
iq,jq

],
for all ip ∈ [1, w], jp ∈ [1, h], iq ∈ [1, w], jq ∈ [1, h]. As a result, we get a matrix of w × h× w × h
rows and 2c columns. g is another network that extracts the relation feature ∈ Rd between every pair
of object features (Equation 2). All w × h× w × h object relations are aggregated via element-wise
addition to get the image relation feature rap (Equation 3), which is transformed by the similarity
network h() to get the similarity of p and q, denoted as spq ∈ (0, 1) (Equation 4). spq is normalized
by the Sigmoid function.

fp = f(p) (1)
gpqip,jp,iq,jq = g([fp

ip,jp
; fq

iq,jq
]) (2)

rpq =
∑

ip,jp∈[1,w];iq,jq∈[1,h]

gpqip,jp,iq,jq (3)

sap = sigmoid(h(rpq)) (4)

3.3 K-SHOT CLASSIFICATION

For the case of K > 1, i.e. there is more than one example per category in the support set, the feature
maps of images from the same category are averaged, i.e., fq . The averaged feature maps are deemed
as the category feature, which is also used in Prototypical Network Snell et al. (2017). The dataflow
for the remaining steps is the same as for one-shot classification. The extracted relation is between
the query image p and the category q.

3.4 TRAINING AND INFERENCE

Similar to the training procedure of meta learning, we train our model in episodes. For each episode,
we sample C classes as the support set; and for each class, we sample K images. In addition, for each
episode, some query images are sampled, which share the same label space as the support images.
Then the training is similar to the test scenario, i.e. C-way K-shot. By varying the value of K, we can
train and test different tasks, including one-shot and few-shot classification. During training, for each
query p, we randomly sample an image q. If p and q are from the same class, then the ground truth
similarity is set to tpq = 1; otherwise, the ground truth similarity is set to tpq = 0. The normalized
similarity score spq is compared with the ground truth via cross-entropy loss (Equation 5). Under
this episode based training strategy, the model is trained to maximize the ability of differentiating
different classes within the same episode. For inference, the query image and each image from the
support set are fed into the model to compute their similarity following Figure 2. The class with the
largest similarity as the query is assigned to the query image as the classification result.

L(p, q) = −tpqlogspq − (1− tpq)log(1− spq) (5)

1It may not be a complete object.
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Figure 3: Details of the network architecture for omniglot.

4 EXPERIMENTAL EVALUATION

Our experimental evaluation is to answer the question: Can exploiting object-level relation help
improve few-shot learning performance? The results on public benchmark datasets confirm that our
approach does improve few-shot learning.

We evaluate our approach on two public benchmark datasets: Omniglot, and miniImageNet. For each
dataset, we partition it into training, validation and testing subsets. The C-way K-shot classifier is
trained by sampling C classes and K examples per class for each training episode. We introduce the
experiments on the two datasets respectively in the following subsections.

4.1 EVALUATION ON OMNIGLOT

Omniglot Lake et al. (2015) contains 1623 characters (classes) from 50 different alphabets. Each class
has 20 samples drawn by different people. We use 1200 classes for training (including validation),
and the remaining 423 classes for testing. Following Sung et al. (2017); Snell et al. (2017), all input
images are augmented by rotations in multiples of 90 degrees. In every testing episode, 15 query
images per class are tested.

Table 1: Performance comparison on Omniglot dataset.
MODEL FINE 5-WAY 20-WAY

TUNE 1-shot 5-shot 1-shot 5-shot

CONV SIAMESE NETS Koch et al. (2015) N 96.7% 98.4% 88.0% 96.5%
CONV SIAMESE NETS Koch et al. (2015) Y 97.3% 98.4% 88.1% 97.0%
MANN Santoro et al. (2016) N 82.8% 94.9% - -
MATCHING NETS Vinyals et al. (2016) N 98.1% 98.9% 93.8% 98.5%
MATCHING NETS Vinyals et al. (2016) Y 97.9% 98.7% 93.5% 98.7%
NEURAL STAT Edwards & Storkey (2016) N 98.1% 99.5% 93.2% 98.1%
CONVNET WITH MEMORY Kaiser et al. (2017) N 98.4% 99.6% 95.0% 98.6%
META NETS Munkhdalai & Yu (2017) N 99.0% - 97.0% -
PROTOTYPICAL NETS Snell et al. (2017) N 98.8% 99.7% 96.0% 98.9%
MAML Finn et al. (2017) Y 98.7±0.4% 99.9±0.1% 95.8±0.3% 98.9±0.2%
META-SGD Li et al. (2017) Y 99.5±0.3% 99.9±0.1% 95.9±0.4% 99.0±0.2%
LEARNING2COMPARE Sung et al. (2017) N 99.6±0.2% 99.8±0.1% 97.6±0.2% 99.1±0.1%

OURS N 99.8±0.1% 99.9±0.1% 98.2 ±0.1% 99.5±0.1%

The detailed configuration of our networks is illustrated in Figure 3. ‘Conv‘ denotes a block of 3
layers, namely convolution layer, batch normalization layer and ReLU layer. The associated numbers
in the box are for the number of filters and kernel size respectively. The numbers on the right side of
each box are the output feature map shape, which is interpreted as (number of channels, height, width).
The numbers associated with ‘MaxPool’ (resp ‘AvgPool’) stand for the pooling kernel size and stride
size. Previous papers Sung et al. (2017); Snell et al. (2017) resize the images to 28x28 or 20x20,
which results in small feature maps from the last convolution layer, e.g. 1x1x64; In order to get a large
feature map for object relation modeling, we resize the input images to 84x84. Consequently, the
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output from f has 64 feature maps, each of size 7x7. Therefore, there are (7× 7)× (7× 7) = 2401
combinations, i.e object relation features, each of size 64+ 64 = 128. The g network processes these
2401 object relation features independently through a MLP model. The configuration of hidden layers
follows RelationNet Santoro et al. (2017). The output feature of each relation is of dimension 256.
All features are summed over into a single feature, which is then fed into h to generate the similarity
score. All omniglot experiments are trained with Adam Kingma & Ba (2014) with a learning rate of
0.001 and no weight decay.
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Figure 4: Training and testing of 5-way 1-shot over omniglot dataset.

From Figure 4(b), we can see that overfitting is not a problem for our model even weight decay is 0,
the datasets are not large and there are many fully connected layers in g and f . One possible reason
is that averaging the object relation features has similar effect as ensemble modeling.

Following the experimental setting in previous papers, we compare our approach with existing
methods on four tasks, namely 5-way 1-shot, 5-way 5-shot, 20-way 1-shot and 20-way 5 shot
classification. The results in terms of classification accuracy are presented in Table 1. For existing
methods, we copy their performance reported in the original papers or other published papers. Both
meta-learning and metric-learning based approaches are compared. Meta-learning based solutions
need to fine-tune the model over the test support dataset. For metric-learning based approaches,
fine-tuning is not necessary. It may improve or decrease the performance as reported by Matching
Nets Vinyals et al. (2016), shown in the 3rd and 4th rows in the table. The second column indicates
whether the model is fined-tuned over the test support set or not. Our results are averaged over 600
test episodes and are reported with 95% confidence intervals. The variance is also reported. We can
see that our approach outperforms existing methods for 3 out of 4 tasks. Note that the accuracy of
existing solutions are very high, especially for 5-way tasks. Hence, a small improvement over the
state-of-the-art should be considered as significant. The improvement for 20-way tasks is clearer.
20-way tasks are more difficult than 5-way tasks as the model needs to be more discriminative to
differentiate more classes. To confirm the advantage of our approach, we perform comparison against
another difficult dataset in the next subsection.

4.2 EVALUATION ON MINIIMAGENET

The miniImagenet dataset Vinyals et al. (2016) consists of 60,000 colour images with 100 classes
sampled from ImageNet Deng et al. (2009). Each class has 600 examples. We follow the partition
scheme as in the original paper Vinyals et al. (2016) to get 64, 16, 20 classes for training, validation
and testing, respectively. We resize the images to 224x224 and do channel-wise standardization. No
data augmentation is conducted. miniImageNet is a more difficult benchmark than Omniglot because
it has a larger number of classes and greater variations among the images within each class.

The configuration of f and g is shown in Figure 5. The network of f is almost the same as that in
Figure 3 except the final average pooling layer has a larger kernel and stride size. This is to reduce
the memory cost caused by large input images. f generates 64 feature maps, each of size 10x10.
Consequently, we have (10×10)× (10×10) = 10, 000 combinations of object features. g processes
the 10,000 combinations independently via a 4 layer MLP model. The output is summed over to
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Figure 5: Details of the network architecture for miniImageNet.

generate a 256-d feature. The h network from Figure 3 is used again to generate the image relation
feature. All miniImageNet experiments are trained with Adam Kingma & Ba (2014) with a learning
rate of 0.001 and no weight decay.

Four tasks are conducted to do the evaluation, namely, 5-way 1-shot, 5-way 5-shot, 20-way 1-shot
and 20-way 5-shot classification. In Table 2, we report the classification accuracy including the mean
and variance over 600 test episodes. The performance of existing methods are copied from their
original papers or other papers. We can see that our model achieves significant improvement over
existing methods, especially compared with other naive version of models. Again, the margin is
bigger for 20-way tasks. The above observations are consistent with the results on omniglot dataset,
which indicates that our approach has larger capacity in modelling more difficult tasks.

Table 2: Performance comparison on miniImageNet dataset.
MODEL FINE 5-WAY 20-WAY

TUNE 1-shot 5-shot 1-shot 5-shot

META-SGD Y 50.5± 1.9% 64.0± 1.0% 17.6± 0.6% 29.0± 0.4%
MATCHING NETS N 43.6± 0.8% 55.3± 0.7% 17.3± 0.2% 22.7± 0.2%
META LSTMRavi & Larochelle (2016) N 43.4± 0.8% 60.6± 0.7% 16.7± 0.2% 26.1± 0.3%
MAML Y 48.7± 1.8% 63.1± 1.0% 16.5± 0.6% 19.3± 0.3%
META NETS N 49.2 ± 0.9% - - -
PROTOTYPICAL NETS N 49.4 ± 0.8% 68.2 ± 0.7% - -
LEARNING2COMPARE N 51.4 ± 0.8% 67.1 ± 0.7% - -
TCML Mishra et al. (2017) N 55.7 ± 1.0% 68.9 ± 0.9% - -
LEARNING2COMPARE DEEP N 50.4 ± 0.8% 65.3 ± 0.7% - -

OURS N 59.0 ± 1.0% 70.9± 0.5% 22.2 ± 0.3% 32.2± 0.2%

5 DISCUSSION

In this paper, we exploit the object-level relation to infer the image relation. In particular, we consider
each ‘pixel’ on the feature map as an object in the input image, and use the values across all channels
as the object feature. In fact, one ‘pixel’ corresponds to one patch of the original image. Small
patches may not contain any objects, while in big patches, there could be multiple objects. In the
extreme case where the feature map size is 1x1, the corresponding patch is the whole image. Our
model is then equivalent to LearningToCompare Sung et al. (2017). In fact, we capture object pairs
from different locations, whereas LearningToCompare is restricted to element-wise match at the same
spatial location. The effectiveness of our approach from the experimental study confirms that the
relation extracted from multiple local patches is useful for determining the image relation. Particularly,
we do one more set of comparison against Learning2Compare since it has similar architecture as
our model. We change the input image size of Learning2Compare to 224x224, i.e., the same as our
model. The accuracy for 5-way 1-shot and 5-way 5-shot is 50.16% and 65.98% respectively. In
addition, we compare effect of the feature map size of our model. We vary the feature map size as
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1x1, 3x3, 5x5, 7x7 and 9x9. The corresponding accuracy of 5-way 5-shot classification is 64.55%,
67.78%, 69.68%, 69.82%, 70.90%. The improvement becomes marginal for bigger sizes. We can see
that with the increasing of objects number (feature map size), the performance improves. It indicates
that the objects-level relation does make a difference.

The basic idea behind our model is to aggregate the local information for global reasoning. In this
paper, we consider the spatial local information. However, the framework is extensible for other local
information. For example, if we treat different feature maps as different aspects (or features) of the
image, in Figure 2, we can compare (combine) these feature maps from two images to get c× c local
relation features, each of size w × h+ w × h. Similarly, we can compare the features of different
attributes of each class with the feature maps to do zero-shot learning. It compares the local text
information with local image information.

6 CONCLUSION

ConvNets have shown great success for image classification with many examples per category.
However, few-shot learning is challenging because the training algorithms of ConvNets, i.e. gradient
based optimization algorithms, require many iterations to fine-tune the parameters over a lot of
examples for new image classes. In this paper, we avoid the fine-tuning step by training a model that
is general to learn the relation of images from unseen categories. We observe that the object-level
relation persists across training and test images, although the relation of images from test datasets is
unseen. Therefore, we propose to exploit object-level relation to infer the image relation. In particular,
object features are compared (combined) and transformed to extract the image relation feature, which
is applied directly for similarity learning. Using the learned similarity from the relation feature, our
approach outperforms existing algorithms for few-shot image classification tasks.
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