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ABSTRACT

Generalization from limited examples, usually studied under the umbrella of meta-
learning, equips learning techniques with the ability to adapt quickly in dynam-
ical environments and proves to be an essential aspect of lifelong learning. In
this paper, we introduce the Projective Subspace Networks (PSN), a deep learning
paradigm that learns non-linear embeddings from limited supervision. In contrast
to previous studies, the embedding in PSN deems samples of a given class to form
an affine subspace. We will show that such modeling leads to robust solutions,
yielding competitive results on supervised and semi-supervised few-shot classifi-
cation. Moreover, our PSN approach has the ability of end-to-end learning. In
contrast to previous works, our projective subspace can be thought of as a richer
representation capturing higher-order information datapoints for modeling new
concepts.

1 INTRODUCTION

Supervised learning with deep architectures, though achieving remarkable results in many areas,
requires large amount of annotated data. Various studies show that many deep learning techniques
in computer vision, speech recognition and natural language understanding, to name a few methods
stated in Hinton et al. (2012); Krizhevsky et al. (2012), will fail to produce reliable models that gen-
eralize well if limited data annotations are available. Aside from the labor associated with annotating
data, precise annotation can become ill-posed in some cases. One prime example of such a diffi-
culty is object detection labeling which requires annotating bounding boxes of objects as explained
in Alexe et al. (2012).

In contrast to the current trend in deep learning, humans can learn new concepts from only a few
examples. This in turn provides humans with lifelong learning abilities. Inspired by such learn-
ing abilities, several approaches are developed to study learning from limited examples Lake et al.
(2015); Lazaridou et al. (2017); Vinyals et al. (2016); Triantafillou et al. (2017); Xu et al. (2017);
Finn et al. (2017); Ravi & Larochelle (2017); Wang et al. (2018); Mishra et al. (2018); Qiao et al.
(2018); Neill & Buitelaar (2018). In machine learning, the diverse ideas in this context include
embedding features through metric learning (Koch et al. (2015), Vinyals et al. (2016)), optimiza-
tion technique(Finn et al. (2017), Ravi & Larochelle (2017)), and generative models(Fei-Fei et al.
(2006), Lake et al. (2015)).

In this work, we propose a deep model that learns new concepts from limited data to address two
challenging learning problems; namely: (i) few-shot classification and (ii) semi-supervised few-shot
learning. The goal of few-shot classification is to learn a model that can discriminate a given query
by comparing it to a few of samples (a.k.a. the support set). An example is to classify a motorcycle
by viewing some different types of motorcycles (or other vehicles). The goal of semi-supervised
few-shot learning is to additionally benefit from unlabeled data to boost the performance of the
model.

Our method, coined Projective Subspace Networks or PSN for short, learns non-linear embeddings
using subspaces, in a sense that samples of a class are modeled as a low-dimensional affine subspace.
The use of subspaces to model images and sets has a long history in computer vision and machine
learning. For example, it has been proved that the set of all reflectance functions (the mapping from
surface normals to intensities) produced by Lambertian objects lie close to a low-dimensional linear
subspace (Basri & Jacobs (2003)).
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Figure 1: Feature embedding in (a) Matching Networks (Vinyals et al. (2016)), (b) Prototypical
Networks(Snell et al. (2017)), and (c) our PSN method.

In spite of its intriguing properties, to the best of our knowledge, the subspace modeling has never
been used previously to address few-shot learning problems. This makes our paper distinct and
novel as compared to former studies (e.g., Vinyals et al. (2016); Snell et al. (2017)). Fig. 1 provides
a conceptual illustration of our approach.

We empirically observed that embeddings tailored towards capturing the structure of each class
through low-dimensional affine subspaces could lead to discriminative models. Interestingly, such
models can be built with minimum overheads and without opting for advanced methods in subspace
creation (e.g., such as the notion of sparsity). Our conjecture here is that subspaces are less sensitive
to perturbations such as outliers and noise compared to other embedding techniques for few-shot
learning as illustratively shown in Fig. 2.

Our contributions in this work are:
i. Few-shot learning is formulated as an embedding problem through subspaces. We rely on a

well-established concept stating that samples of a class (and hence variations such as pose
and illumination) can be effectively captured by a low-dimensional affine space.

ii. Adaptation from few-shot learning to semi-supervised learning is performed with a refine-
ment through soft-assignment. The robustness of such a model is shown in our experiments.

iii. We also introduce an evaluation mechanism to assess the generalization ability over unseen
classes during test time.

2 RELATED WORK

In this section, we briefly review the literature on few-shot learning and subspace clustering. Few-
shot learning was originally introduced to imitate human learning capabilities in classification. Some
of the early works made use of generative models and similarity learning to capture the variation
within parts and geometric configurations of objects (Fei-Fei et al. (2006); Lake et al. (2015); Tor-
ralba et al. (2007)). As of late, few-shot problems are mainly addressed through meta-learning tech-
niques. For example, in Koch et al. (2015); Vinyals et al. (2016); Snell et al. (2017); Garcia & Bruna
(2018), the problem of few-shot learning is formulated as non-linear embedding or representation
learning.

The closest approach to our proposed work is the Prototypical Networks (PN hereafter) model ( Snell
et al. (2017)). It uses the random choice of episode images which form the prototype center per
class. In addition, recent metric learning approaches use complex architectures and pipelines in
convolutional networks of Gidaris & Komodakis (2018) and Wang et al. (2018). In contrast, our
projective subspace concept is extremely simple by design as it constitutes just a single layer of the
network.

Another common meta-learning approach to few-shot classification uses meta-learning and manipu-
lates gradient updates to train the model parameters. Ravi & Larochelle (2017) utilized Long-Short
Term Memory (LSTM)-based learner to optimize the model parameters and their gradients. More-
over, the Model Agnostic Meta-Learner(MAML) proposed by Finn et al. (2017) used gradients per
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Figure 2: The effect of outliers on prototypes and subspaces. The odd rows show the decision
boundaries obtained by prototypes (with and without outliers) for two- and three-class problems.
The even rows depict how subspaces behave for the same problems. While affected, in general, sub-
spaces show better resilience to perturbations and attain higher discriminatory power in comparison
to prototypes. Best viewed in color.

task as well as a meta-gradient from combined tasks, and, as a result, it outperformed LSTM-based
learner. Mishra et al. (2018) employed ResNets to model few-shot classification as a temporal solu-
tion with aggregation, thus, in meta-learning context, their model can refer to the past experience.

Our idea is based on the assumption that samples from any class in the support set form a low-
dimensional subspace. As we will show, to train PSN, backpropagation through Singular Value
Decomposition (SVD) is required. Backpropagation through matrix decomposition such as SVD is
a well-studied problem Ionescu et al. (2015) with applications ranging from semantic segmentation
to classification and visual recognition Ionescu et al. (2015); Li et al. (2017a); Gou et al. (2018).

3 PROBLEM SET-UP

We start by defining the terminology used in few-shot learning. The problem of N -way K-shot
classification (e.g., 5-way 1-shot) is defined as classifying queries belonging to N classes by seeing
only K samples from each class. For example, in 5-way 1-shot setting, the model needs to identify
a query among five classes by seeing only one sample from each class. To obtain a reliable model,
so-called episodes are used in training. An episode Ti consists of two sets, the support set S and the
query setQ. The system is then trained by minimizing a classification loss over episodes, simulating
the scenarios it will encounter at test time. This episode setting is the same as proposed by Vinyals
et al. (2016).
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A related problem is semi-supervised few-shot setting learning where unlabeled data is provided
to the model. In the literature, various configurations are considered for semi-supervised few-shot
learning (e.g., Garcia & Bruna (2018); Boney & Ilin (2017); Ren et al. (2018)). In this work, we
follow the challenging protocol in Ren et al. (2018) where so-called distractors are introduced. Here,
an episode includes the support set S, query setQ, and unlabeled setR. The support (labeled) S and
query Q sets are configured as in few-shot learning. Additionally, an unlabeled set R is provided
to assist the classification task within an episode. In the unlabeled set, there are examples from two
different sources: the support classes and the distractor classes. As the name implies, examples from
distractor classes are irrelevant to the classification task and represent classes outside the support
set.

4 PROJECTIVE SUBSPACE NETWORKS
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Figure 3: Projective Subspace Networks Architecture

In what follows, we introduce our PSN approach. The whole framework is trained end-to-end (see
Fig. 3) which enables PSN to be used with various deep architectures. As an example, in § 5, we use
PSN on top of the WideResNets (Zagoruyko & Komodakis (2016)) for few-shot classification.

We start by introducing our notations for the (N -way, K-shot) few-shot learning. Each episode
or task Ti is composed of the support set S = {(x1,1, c1,1), (x1,2, c1,2), · · · , (xN,K , cN,K)} and
the query set Q = {q1, · · · , qN×M}. Here, xi,j denotes the j-th sample from class i and ci,j ∈
{1, · · · , N}. In the semi-supervised setting, there is an unlabeled set R = {r1, .., rU} within
an episode. We propose to model points by subspaces {Zi}Ni=1. Each subspace Zi has a basis
represented by RD×n 3 Pi = [p1, · · · ,pn];n ≤ D, with P>i Pi = In.

4.1 PSN FOR FEW-SHOT CLASSIFICATION

Let fΘ : X → RD be a mapping from the input space X to some D-dimensional representation
realized by a neural network. Our goal is to learn Θ, i.e., the embedding function in a way that the
resulting space is suitable for subspace representation. For simplicity, we assume that every class
in an episode can be described by just one subspace. Extension to multiple subspaces per class is
straightforward though. Define µk as the mean of class k in the embedded space. That is,

µk =
1

K

∑
i, ci=k

fΘ(xi). (1)

A basis for the subspace representing class k can be obtained by Singular Value Decomposition
(SVD). To be specific, we define Xk = [xk,1 − µk, · · · ,xk,K − µk]. Applying truncated SVD on
Xk provides us with Pk. We emphasize that more involved techniques to obtain robust subspaces
from Xk can potentially improve the PSN. Nevertheless, our goal is to assess whether the concept
of subspace modeling for few-shot learning is justified or not and thus we opt for truncated SVD in
our implementation. Now a query qj can be projected onto Pk which yields:

yj,k = P>k (fΘ(qj)− µk). (2)
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The distance from the query to Pk is:

dj,k = ‖fΘ(qj)− µk − Pkyj,k‖. (3)

We define the probability of the query assigned to class k using a softmax function as:

pΘ(c = k|qj) =
exp

(
− d2

j,k

)∑
k′ exp

(
− d2

j,k′

) . (4)

Now, we can minimize the negative log of Eqn. 4 to obtain Θ. To train the whole framework,
backpropagation through SVD is required which is available in modern deep learning packages
such as PyTorch (Paszke et al. (2017)). Algorithm 1 explains the steps of training our PSN. The
code will be released online on Github1.

Algorithm 1 Train Projective Subspace Networks
Input: Each episode Ti with S = {(x1,1, c1,1), · · · , (xN,K , cN,K)} and Q = {q1, ..., qN×M}

1: Θ0 ← random initialization
2: for t in {T1, ..., TNT } do
3: Lt ← 0
4: for k in {1, ..., N} do
5: X ← Sk . Get examples in the support set from class k
6: µk ← 1

K

∑
x∈X fΘ(x) . Mean from the support set

7: µk ←
Kµk +

∑
imifΘ(ri)

K +
∑

imi
. Refined mean(only semi-supervised learning)

8: X̃ ← [xi − µk, ...,xK − µk]

9: [U ,Σ,V>]← SVD(X̃) . Matrix factorization using SVD
10: Pk ← U1,...,n . Truncate the matrix
11: for qj in Qk do
12: yj,k ← P>k (fΘ(qj)− µk) . Query projection
13: dj,k ← ‖fΘ(qj)− µk − Pkyj,k‖ . Distance calculation

14: pj,k ←
exp(−d2

j,k)∑
k′ exp(−d2

j,k′)
. Softmax on distance scores

15: end for
16: end for
17: Lt ← 1

N2M

∑
k

∑
j − log (pj,k)

18: Update Θ using ∇ΘLt

19: end for

4.2 PSN FOR SEMI-SUPERVISED FEW-SHOT LEARNING

In what follows, we extend the model developed in § 4.1 to address semi-supervised few-shot learn-
ing. In doing so, we need to take advantage of the unlabeled data to fit better subspaces to our data.
We achieve this by refining the center of each class according to

µ̃k =
Kµk +

∑
imifΘ(ri)

K +
∑

imi
, where mi =

exp(−‖fΘ(ri)− µk)‖2)∑
k′ exp(−‖fΘ(ri)− µk′)‖2)

. (5)

Here, mi is the soft-assignment score for unlabeled samples. To work at the presence of distractors,
we use a fake class with zero mean. We empirically observed that such a simple modification to the
means can improve the results without the need of refining the SVD step.

5 EXPERIMENTS

Below we contrast and assess our method against state-of-the-art techniques on two challenging
datasets, namely Mini-ImageNet (Ravi & Larochelle (2017)) and Tiered-ImageNet (Ren et al.

1https://github.com/anonymousauthor/PSN
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Models 5-way 20-way
5-shot 5-shot

Matching Nets (Vinyals et al. (2016)) 55.31± 0.73% 22.69± 0.20%
MAML (Finn et al. (2017)) 63.11± 0.92% 19.29± 0.29%

Meta-Learner LSTM(Ravi & Larochelle (2017)) 60.60± 0.71% 26.06± 0.25%
Meta-SGD (Li et al. (2017b)) 64.03± 0.94% 28.92± 0.35%

PN(Snell et al. (2017)) 65.49± 0.25% 37.23± 0.21%
PSN 66.62± 0.69% 38.26± 0.23%

Table 1: Few-shot classification results on Mini-ImageNet using 4-convolutional stages with 95%
confidence intervals.

(2018)). As the rule of thumb, the parameters of subspace dimension (n) that we used in the experi-
ments are K-1 for training and two for testing stage.

Mini-ImageNet. The Mini-ImageNet(Ravi & Larochelle (2017)) contains 60,000 images of the
ImageNet(Russakovsky et al. (2015)) datasets. Images in the Mini-ImageNet are of size 84 × 84
and represent 100 classes with 64, 16, and 20 classes used for training, validation, and testing,
respectively.

Tiered-ImageNet. This dataset is also derived from ImageNet but contains a broader set of classes
compared to the Mini-ImageNet. There are 351 classes from 20 different categories for training,
97 classes from 6 different categories for validation, and 160 classes from 8 different categories for
testing. In contrast to the Mini-ImageNet, the training and test sets in Tiered-ImageNet represent
distinct classes. Moreover, in designing the Tiered-ImageNet, the problem of few-shot learning
with unlabeled data was taken into account and the labeled data is only within a small percentage
when performing semi-supervised learning. In this large dataset, learning from the labeled data is
still sufficient to produce reasonable representations even though the unlabeled data is set in huge
portion e.g., 90%.

5.1 FEW-SHOT LEARNING

We follow the general practice and evaluate our method on the Mini-ImageNet dataset when it
comes to few-shot learning and classification. Various procedures such as pre-training using 64
classes (e.g., Qiao et al. (2018)) and training with more classes/way have shown to increase the
overall accuracy. Nevertheless, we avoid such procedures deliberately as we are mainly interested
in contrasting the core idea, i.e., the role of subspaces in few-shot learning. So, we trained on 5-
way 5-shot and 20-way 5-shot, then applied the same classification task setup during testing. The
CNN architecture is the same as the one used in Snell et al. (2017) with 4-convolutional stages. We
also use WideResNets (Zagoruyko & Komodakis (2016)) with 16 depth, 6 widening factor, and 0.3
dropout rate to compare with ResNets (He et al. (2016)) solution reported by Mishra et al. (2018).
The feature dimensions from both architectures are 1600 and 384 respectively. We used ADAM
( Kingma & Ba (2015)) for optimizing our model and set the learning rate to 0.001 and cut it to half
every 2.5K episodes for both architectures.

Results. By design, the method cannot accommodate learning with exactly one example, hence,
the comparison here is provided only for 5-shot in 5-way and 20-way. In every episode, the query
set contains 15 samples from each class. Our method outperforms the previous methods with 4-
convolutional stages shown in Table 1. We also implemented WideResNets (Zagoruyko & Ko-
modakis (2016)) using our method and obtained the performance for 5-way 5-shot: 69.92± 0.64%
and 20-way 5-shot: 41.84± 0.24% that can outperform ResNets-based approach proposed
by Mishra et al. (2018) with 68.88± 0.92% in 5-way and 5-shot classification task.

5.2 SEMI-SUPERVISED FEW-SHOT LEARNING

In this experiment, the embedding architecture has 4-convolutional layers as PN (Snell et al. (2017)).
We follow the experimental setup proposed by Ren et al. (2018). The episode composition for
labeled or support set and query set is similar to the few-shot learning classification task, but there
is an additional unlabeled set provided in each episode. Our model is trained on 100K episodes for
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Models
Mini-ImageNet Tiered-ImageNet

5-way 5-shot 5-way 5-shot
PN, Supervised 59.08± 0.22% 66.15± 0.22%

PSN, Supervised 63.43± 0.61% 68.72± 0.49%
w/o
Distractors

w/
Distractors

w/o
Distractors

w/
Distractors

PN-SSL, Non-Masked 64.59± 0.28% 63.55± 0.28% 70.25± 0.31% 68.32± 0.22%
PN-SSL, Masked 64.39± 0.24% 62.96± 0.14% 69.88± 0.20% 69.08± 0.25%

PSN, Semi-Supervised 68.12± 0.67% 66.10± 0.66% 71.15± 0.67% 69.15± 0.51%

Table 2: Semi-supervised few-shot classification results on the Mini-ImageNet and Tiered-ImageNet
with 40% and 10% labeled data, respectively. We show the classification results with and without
distractors. We compare our results to PN on semi-supervised learning (PN-SSL) with softK-means
(non-masked) and masked K-means (masked), as proposed by Ren et al. (2018).

Mini-ImageNet
Way(N ) Shot(K) PSN PN Way(N ) Shot(K) PSN PN

5

3 61.26± 0.79% 60.36± 0.31%

10

3 45.46± 0.44% 44.09± 0.28%
5 66.62± 0.69% 65.49± 0.25% 5 51.49± 0.46% 49.06± 0.25%

10 71.88± 0.59% 69.80± 0.30% 10 57.14± 0.41% 55.23± 0.27%
15 73.50± 0.58% 71.92± 0.26% 15 60.20± 0.39% 58.06± 0.22%
20 74.88± 0.63% 73.01± 0.31% 20 61.38± 0.44% 59.27± 0.22%

15

3 37.07± 0.33% 36.24± 0.22%

20

3 32.13± 0.25% 31.43± 0.18%
5 43.18± 0.32% 40.94± 0.24% 5 37.71± 0.23% 35.58± 0.17%

10 49.44± 0.31% 47.19± 0.21% 10 44.09± 0.22% 41.69± 0.16%
15 51.96± 0.32% 49.85± 0.25% 15 47.27± 0.22% 44.37± 0.17%
20 54.23± 0.34% 51.37± 0.20% 20 49.00± 0.23% 45.90± 0.18%

Table 3: Generalization performance of PSN and PN with varying number of way (N ) and shot (K)
at the test time.

Mini-ImageNet and Tiered-ImageNet with 40% and 10% of labeled data, respectively. We used the
ADAM solver (Kingma & Ba (2015)), the set the learning rate to 0.001 with the weight decay and
cut the rate to half every 10K episodes. We trained in two settings: (i) supervised setting, where
only labeled data is taken into account, and (ii) semi-supervised setting for which the unlabeled set
is also used. The unlabeled set is composed of the examples from the classes in the support set and
distractor classes. The number of supporting classes and distractor classes is set to five for training
and testing. In the training stage, the number of examples in the unlabeled set is 50 consisting of
five examples from each class. In the testing stage, the unlabeled set consists of 20 examples from
each class. We also define the query set to have 20 examples per class for testing purpose.

Results. In these experimental results, the performance is counted over 600 episodes. The results
are averaged over 10 random splits of labeled and unlabeled sets. The supervised experiment shows
that our method learns robust feature embedding from a small portion of labeled data. With the
help of soft-assignment over unlabeled datapoints, the semi-supervised experiment detailed in Ta-
ble 2 is demonstrated to outperform Prototypical Networks for Semi-Supervised Learning (PN-SSL)
proposed by Ren et al. (2018).

5.3 GENERALIZATION BEYOND N -WAY K-SHOT

As a measure of generalization ability, we propose to evaluate algorithms beyond the somehow
inflexible testing protocol of few-shot learning. In particular, we assess whether a model trained on
low number of classes can generalize well to classification tasks involving large number of classes.
To gain more insights, we further study how models trained with theK-shot assumption will perform
if extra examples are available at the test time.

In the evaluation below, all models are trained with the 5-way 5-shot setting. At the test time,
the models face the test protocol of N -way K-shot learning with N ∈ {5, 10, 15, 20} and
K ∈ {3, 5, 10, 15, 20}. Table 3 contrasts the performance of PSN against PN. The table is self-
explanatory. In all experiments, PSN outperforms PN with the gap widened with more challenging
settings (e.g., 20-way 20-shot).
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Robustness to Perturbations. Our motivation to develop PSN is to devise a model that shows better
resilience to perturbations. Intuitively, to have a noticeable change in the orientation of a subspace,
one needs to induce drastic changes to the set. To empirically verify our claim, we assess how robust
is PSN in comparison to PN (Snell et al. (2017)) in the presence of perturbations. In particular, we
considered the problems of 5-way 5-shot and 5-way 10-shot learning and introduced two types of
perturbations at the test time to the trained models. Firstly, we randomly sampled examples from
classes not presented in the support sets and included them in the support examples. Secondly, noisy
examples are generated randomly using a multivariate Gaussian distribution with random mean
and variance of σ = {0.15, 0.3, 0.4}. The results of this study are presented in Appendix A due
to page limitations. To summarize, our experiments show that both PSN and PN are affected by
outliers negatively. That said, the PSN exhibits a much better degree of resilience to outliers. When
additive noise is considered, PSN behaves robustly for a wide-range of contamination. In contrast,
the performance of PN drops rapidly and significantly in the presence of noise, reinforcing our idea
that the use of subspaces indeed leads to a more robust model for the task in hand.

6 DISCUSSION

Conceptually, the PN Snell et al. (2017) is the closest work to ours as both solutions obtain a refined
representation for each class in the support sets, with the former using the class mean as the repre-
sentation while in PSN affine subspaces model classes. That said, PSN also uses the mean of each
class towards identifying their representative subspaces. Aside from the theoretical properties of
affine subspaces2, we empirically observed that for more challenging setups (e.g., 20-way 20-shot),
utilizing the mean leads to a better performance. This is because prototypes lie on subspaces in the
feature space. Additionally, prototypes in the PN can be easily utilized to design a hybrid with our
approach.
Remark 1. Interestingly, in special cases, PSN simplifies to PN. For example, if samples of a class
span a infinitesimal region, at the limit, collapsing to a point, then an affine subspace reduces to a
point, recovering PN from PSN.
Remark 2. Since it is not possible to build an affine subspace from only one example, PSN can-
not address 1-shot learning problems per se. However, simply applying augmentations to support
images facilitates 1-shot learning. However, this issue is beyond the point we make in this work.

Subspace Dimension. In comparison to other models such as matching networks or PN, PSN comes
with an extra hyper-parameter, the dimensionality of the subspaces (i.e., n). As a rule of thumb, we
recommend to use n = K − 1 to train the model, while n = 2 at the test time gives reasonable
and robust results. That said, we thoroughly studied the effect of this parameter and summarized
our findings in Appendix B. In short, PSN exhibits a great degree of robustness to n, which in turns,
makes training of them painless.

Computational Complexity. The computational complexity of our PSN approach is
O(min(ND2K,NDK2)), whereK,N , andD are the number of shot, way, and feature dimension-
ality respectively. Compared to the complexity of the PN algorithm, i.e., O(NDK) , our algorithm
is somehow slower due to the involvement of the SVD step. If the complexity is of a concern, fast
approximate algorithms for SVD (e.g., Menon & Elkan (2011)) can be considered.

7 CONCLUSIONS

This paper presents the PSN, a novel approach for few-shot learning that employs nonlinear embed-
dings and modeling via affine subspaces. Empirically, we showed that the representations learned
via PSN were expressive across a wide-range of supervised and semi-supervised few-shot problems.

In PSN, each class is represented by the subspace formed by all its examples, meaning that each
class is modeled by the span of its samples. One possibility to extend the PSN modeling is to
benefit -cleverly- from the null space associated with each class, in the hope of designing a more
discriminative model.

2One can argue why not modeling classes with linear subspaces, i.e., to drop the class mean for modeling.
We note that linear subspaces are indeed special cases of more general affine subspaces where all subspaces
intersect at the origin.
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Appendices
A PERTURBATIONS EFFECT ON PERFORMANCE

In this section, we study the effect of perturbation on the performance of PN and PSN. More specif-
ically, we considered the problems of 5-way 5-shot and 5-way 10-shot learning and introduced two
types of perturbations at the test time with the trained models. Note that, the model is obtained from
5-way 5-shot training without perturbations. Firstly, we randomly sampled examples from classes
not presented in the support sets. Secondly, additive noise is generated randomly using a multivari-
ate Gaussian distribution with random mean and variance of σ = {0.15, 0.3, 0.4}. Both examples
in these two types are included in the support examples for prototypes and subspaces creation.

The results of this study are depicted in Fig. 4. To summarize, our experiments show that both PSN
and PN are affected by outliers negatively. That said, the PSN exhibits a much better degree of
resilience to outliers. For example, modelling with PN leads to a drop of 19% and 12% percentage
points when each support set has 20 outliers for the problem of 5-way 5-shot and 5-way 10-shot
respectively. For the same experiment, the PSN modelling only suffers 11% and 9% percentage
points of performance drop. When additive noise is considered, PSN behaves robustly for a wide-
range of contamination. In contrast, the performance of PN drops rapidly and significantly in the
presence of noise, reinforcing our idea that subspaces form indeed a more robust model for the task
in hand.
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Figure 4: The charts show 5-way 5-shot and 5-way 10-shot results of the PSN and the PN algorithms
in the presence of outliers and additive noise. In the first column, sub-plots show the effect of intro-
ducing outliers among support samples (the classes of outliers are disjoint with the support classes
of samples). The second to fourth columns show the effect of introducing noisy examples generated
randomly from Gaussian distributions with random means and variance of σ = {0.15, 0.3, 0.4},
respectively. The performance is measured with increasing number of outliers and noisy examples
(X-axes).
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B SUBSPACE DIMENSION EXPERIMENT

In this section, we report the results of experiments conducted to assess the effect of the subspace
dimensionality (i.e., n) on the overall accuracy of the algorithm. In particular, we considered two
few-shot problems, namely 5-way 5-shot and 5-way 20-shot. For the former, we varied the subspace
dimensionality n ∈ {2, 3, 4, 5} and considered all combinations during training and testing (for
example, n = 4 during training and n = 3 at the test time). For the experiment on 5-way 20-
shot problem, we varied the subspace dimensionality n ∈ {5, 10, 15, 20} and again considered all
combinations.

Our experiments demonstrate that PSN behaves robustly over a wide-range of subspace dimen-
sionality. For example, the lowest and highest performances for the 5-way 5-shot learning are
66.08± 0.67% and 66.62± 0.69%, respectively. For the problem of 5-way 20-shot learning, the
lowest and highest performances are 75.03± 0.57% and 75.58± 0.57%, respectively.
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