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ABSTRACT

In drug discovery, researchers make sequential decisions to schedule experiments,
aiming to maximize probability of success towards drug candidates while simultane-
ously minimizing expected costs. However, such tasks pose significant challenges
due to complex trade-offs between uncertainty reduction and allocation of con-
strained resources in a high-dimensional state-action space. Traditional methods
based on simple rule-based heuristics or domain expertise often result in either
inefficient resource utilization due to risk aversion or missed opportunities arising
from reckless decisions. To address these challenges, we developed a Implicit
Bayesian Markov Decision Process (IB-MDP) algorithm that constructs an im-
plicit MDP model of the environment’s dynamics by integrating historical data
through a similarity-based metric, and enables effective planning by simulating
future states and actions. To enhance the robustness of the decision-making process,
the IB-MDP also incorporates an ensemble approach that recommends maximum
likelihood actions to effectively balance the dual objectives of reducing state un-
certainty and optimizing expected costs. Our experimental results demonstrate
that the IB-MDP algorithm offers significant improvements over traditional rule-
based methods by identifying optimal decisions that ensure more efficient use of
resources in drug discovery.

1 INTRODUCTION

In drug discovery, strategic planning and selection of experiments play a pivotal role in impacting
the pace and expenses of R&D activities. The identification of potential drug candidates requires
conducting numerous assays at various stages of preclinical studies. The process often begins with
limited information, creating significant challenges for achieving optimized outcomes due to time
and budget constraints. Optimizing the use of resources to achieve targeted goals within these
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limitations is among the most demanding tasks in creating effective Research Operation Plans (ROP).
Conventional approaches, often relying on simple rule-based heuristics or domain expertise, struggle
to adapt as new data emerges and typically fail to address state, model, and parameter uncertainties
effectively, a challenge central to fields like Reinforcement Learning (RL) (Sutton & Barto, 2018)
and Bayesian Experimental Design (BED) (Rainforth et al., 2024). Consequently, these methods
often result in suboptimal decision-making and inefficient allocation of resources (Puterman, 2014).

To address these challenges, we propose the Implicit Bayesian Markov Decision Process (IB-MDP)
algorithm, a model-based RL approach that constructs an implicit model of the dynamics of the
environment by integrating historical data through a distance-based similarity metric (Bellet et al.,
2013). Unlike traditional MDPs requiring explicit transition models (Puterman, 2014), or kernel RL
methods often focused on value approximation (Ormoneit & Sen, 2002), IB-MDP uses similarity
to drive a generative sampling process based on historical data (Alagoz et al.). This avoids precise
parametrization and implicitly handles uncertainty about the underlying system state by dynamically
adjusting data relevance, akin to belief updating in partially observable settings (see Appendix H for
a conceptual POMDP framing), enabling efficient multi-step planning.

Moreover, to improve the robustness and reliability of decision-making, we incorporate an ensemble
approach into the IB-MDP. While established for enhancing robustness in ML/RL (Dietterich, 2000;
Zhou, 2012; Lakshminarayanan et al., 2017), we apply ensembles specifically to mitigate variance aris-
ing from IB-MDPś sampling-based model and MCTS planning (Osband et al., 2016). By aggregating
policies from independent runs, we achieve more stable and reliable decision recommendations.

Our algorithm is demonstrated in the context of assay scheduling and ROP optimization, where it
significantly improves resource utilization and decision quality compared to traditional heuristic-
based approaches. The IB-MDP framework is broadly applicable to various resource-constrained
decision-making tasks in drug discovery, making it a valuable tool for optimizing sequential decisions
in preclinical studies.

Summary of Contributions: We introduce the IB-MDP, a model-based algorithm that integrates
historical data using a distance-based similarity metric within the MDP framework, enabling efficient
planning in sequential decision-making tasks. We incorporate an ensemble approach to enhance
policy estimation, providing conceptual justification (Appendix H) and empirical evidence for
its effectiveness in variance reduction, bias mitigation, and improved generalization within our
framework. Finally, we validate our approach through experiments in assay scheduling, demonstrating
significant improvements in resource utilization and decision quality over both traditional heuristic
methods and value iteration (VI)-based approaches (see Supplementary Information for detailed
comparisons).

2 RELATED WORK

The optimization of decision-making under uncertainty is central to various fields, including drug
discovery. Our work builds upon and contributes to research in Markov Decision Processes, Rein-
forcement Learning, Bayesian methods, and Experimental Design.

MDPs and Model-Based Reinforcement Learning : MDPs provide a mathematical framework for
sequential decision-making (Puterman, 2014). While applied in drug discovery contexts like clinical
trial optimization (Bennett & Hauser, 2013; Eghbali-Zarch et al., 2019; Abbas et al., 2007; Fard
et al., 2018), their use in preclinical scheduling is limited by the difficulty of specifying transition
probabilities (P (s′|s, a)) and rewards (R(s, a)). Model-Based Reinforcement Learning (MBRL)
learns environmental models to improve planning (Sutton & Barto, 2018; Kaiser et al.; Moerland
et al., 2023), with applications in molecule generation (Wang et al., 2021; Bengio et al., 2021; You
et al., 2018; Zhou et al., 2019) and synthesis (Segler et al., 2018). However, learning accurate, explicit
models for complex biological systems remains challenging. Kernel-based RL methods (Ormoneit &
Sen, 2002; Kveton & Theocharous, 2012; Xu et al., 2007) use similarity functions, often for value
function approximation or state generalization. In contrast, IB-MDP employs a similarity metric
directly to create a generative, non-parametric transition model by sampling from historical data,
rather than approximating values or learning explicit kernelized dynamics.

Bayesian RL, Optimization, and Similarity Metrics : Leveraging historical data under uncertainty
is key. Bayesian Reinforcement Learning (BRL) typically maintains posteriors over model parameters
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or value functions (Ghavamzadeh et al., 2015). Methods like Posterior Sampling RL (PSRL) (Osband
et al., 2013; Agrawal & Jia, 2017) sample explicit MDP models from a posterior for planning. IB-
MDP differs by avoiding explicit posteriors over MDP parameters; it captures uncertainty implicitly
via similarity-weighted sampling from historical data, with weight updates acting as heuristic belief
adjustments (Appendix H). Bayesian Optimization (BO), used for optimizing molecular properties
(Griffiths & Hernández-Lobato, 2020; Gómez-Bombarelli et al., 2018), primarily targets single-step
optimization, unlike IB-MDP’s multi-step sequential planning with costs and state constraints. IB-
MDP integrates similarity metrics (Bellet et al., 2013) directly into this sequential decision process
via its sampling mechanism.

Ensemble Methods in Reinforcement Learning : Ensemble methods improve robustness and
reliability (Dietterich, 2000; Zhou, 2012). In RL, they enhance exploration, generalization, and
uncertainty estimation (Wiering & Van Hasselt, 2008; Osband et al., 2016; Lakshminarayanan
et al., 2017). Our IB-MDP framework applies ensemble principles not as a novel method itself,
but specifically to enhance decision robustness by aggregating policies from multiple runs, thereby
mitigating variance introduced by its stochastic sampling-based model and MCTS planner.

Bayesian Experimental Design (BED), Implicit Models, and RL : Efficient data acquisition is
studied in Bayesian Experimental Design (BED) (Chaloner & Verdinelli, 1995; Rainforth et al., 2024).
A challenge arises with simulators or complex systems where likelihoods are intractable (implicit
models). Recent work tackles Implicit BED using information-theoretic approaches (Kleinegesse
& Gutmann, 2020; 2021) or policy learning (Ivanova et al., 2021). While sharing the implicit
model philosophy, IB-MDP differs by embedding the problem within an RL (MDP) framework
solved via multi-step MCTS planning, explicitly incorporating operational costs and state-based
termination/feasibility constraints, using similarity-based sampling rather than focusing primarily on
information-theoretic objectives. RL for Sequential Experimental Design (e.g., Blau et al., 2022)
is related; IB-MDP contributes as a model-based RL variant using historical data for its implicit
simulator.

Constrained MDPs and POMDPs : Our problem involves constraints on state properties (uncertainty
H(s), likelihood L(s)). This differs from typical Constrained MDPs (CMDPs) which often constrain
cumulative action costs (Achiam et al., 2017); IB-MDP handles its constraints via rewards and
termination conditions within MCTS. Furthermore, the task’s information-gathering nature resembles
a Partially Observable MDP (POMDP) (Kaelbling et al., 1998). As argued in Appendix H, IB-MDP’s
state representation and weight updates act as an implicit belief mechanism, justifying the dynamic
transitions observed within MCTS as belief propagation.

Application Context: ADME Studies : ADME studies are crucial for establishing efficacy and
safety profiles during drug discovery (Hoffman, 1998; Hoffman et al., 2004; Hughes et al., 2011).
Decision-making here requires balancing information gain against resource limits. While RL has been
applied to clinical trial optimization (Coronato et al., 2020; Escandell-Montero et al., 2014; Martı́n
et al., 2020), its use for optimizing assay scheduling in drug discovery is less explored. IB-MDP
addresses this gap with a flexible, scalable approach integrating historical and real-time data via its
implicit, similarity-based model and ensemble planning, distinguishing it from traditional heuristics
or explicit modeling techniques.

3 A SEQUENTIAL DECISION-MAKING PROBLEM STATEMENT

The sequential scheduling of experimental assays to define a drug’s efficacy and safety profile is a
significant challenge in drug discovery. Here, we focus on sequential assay decisions for central
nervous system (CNS) drug candidates, where establishing whether a compound can cross the
blood–brain barrier is critical. A key step involves identifying whether the compound is a substrate of
efflux transporters such as P-glycoprotein (PgP) and Breast Cancer Resistance Protein (BCRP). While
in vitro assays offer valuable early indicators of brain penetration potential, in vivo assays such as the
measurement of unbound brain-to-plasma partition coefficient (kpuu) often provide a more definitive
assessment. Consequently, the central goal in scheduling these assays is to maximize information on
a compound’s likelihood of crossing the blood–brain barrier while minimizing operational costs and
resource constraints.
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This inherently sequential decision-making problem, where choices influence future information
states and costs, can be formulated as a multi-objective optimization problem under uncertainty.
The primary objectives are to: (1) minimize the uncertainty in determining critical drug properties,
particularly kpuu, and (2) minimize the total operational costs associated with conducting assays.
These objectives must be balanced while adhering to resource constraints such as laboratory capacity
and monetary costs. The challenge lies not in model uncertainty, but rather in efficiently reducing
state uncertainty—the incomplete knowledge about the compound’s hidden true properties (akin to a
partially observable state)—through strategic selection and sequencing of experimental assays.

The detailed formulation of the IB-MDP algorithm and its implementation are provided in Ap-
pendix A.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Our experimental setup utilizes a dataset of 220 compounds, each characterized by both in silico
predictions and physical properties. This dataset serves as the historical data D for IB-MDP. The
in silico features include Quantitative Structure-Activity Relationship (QSAR) predictions, such as
QSAR1uM PgP, QSAR100nM BCRP, and QSARmrt. In addition to these predictions, measured transporter
activity data such as 100nM PgP, 1uM PgP, and 100nM BCRP are also available in the dataset. The
financial and time costs associated with these transporter activities (actions) are estimated at $400 per
assay (7 days turnaround), while the target kpuu measurements incur $4000 (21 days). These values
highlight the resource constraints.

To generate Maximum Likelihood Action Sets Path (MLASP), we allow up to three parallel assays
per decision step, enabling simultaneous operations. This setup potentially reduces state uncertainty
more efficiently. Uncertainty H(s) is calculated as described in Section A.2.1, with a threshold
ϵ = 10 used for termination conditions (Section A.2.5) to capture meaningful differences.

We employ the IB-MDP algorithm (Appendix A), integrated with an MCTS-DPW solver. This solver
runs for 20,000 iterations per decision step, with an exploration constant c = 5.0, and Ne = 50
ensembles, balancing exploration and exploitation.

The primary goal is to identify action sequences that achieve the greatest reduction in state uncertainty
about the target assay (kpuu), while minimizing costs and satisfying likelihood constraints L(s) ≥ τ ,
comparing favorably to simply performing all assays including the expensive target one.

Experimental Computing Resources: We performed IB-MDP simulations on an Apple M1 Pro
chip (16GB RAM). For each compound simulation (across 50 ensembles), the estimated completion
time was approximately 1 hour.

4.2 TRADITIONAL HEURISTIC DECISION RULES

As a practical baseline, the decision-making for brain penetration assays often relies on simple
heuristic rules based on QSAR predictions and the final kpuu assay result: A compound is considered
promising if: QSAR1uM PgP < 2, QSAR100nM BCRP < 2, and 0.5 ≤ kpuu ≤ 1. A compound is
considered non-promising if either: QSAR1uM PgP > 4 or QSAR100nM BCRP > 4, regardless of the
kpuu value.

4.3 BENCHMARK POLICIES

To evaluate the effectiveness of IB-MDP against stronger baselines, we conducted a systematic
benchmark study using synthetic datasets with known structures. We established a baseline using
Value Iteration (VI) with exact theoretical uncertainty calculations (VI-Theo) and compared IB-MDP
against both VI-Theo and a VI variant using similarity-based estimation (VI-Sim). Full results
demonstrating IB-MDP’s advantages are presented in the Supplementary Information (SI).
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4.4 SELECTIVE CASE STUDY FOR COMPOUND SELECTION DECISION-MAKING

We tested the framework on the 220-compound dataset using three scenarios reflecting different
QSAR conditions, demonstrating IB-MDP’s flexibility and potential to identify promising compounds
missed by traditional methods:

Baseline Confirmation: Tests compounds where QSARs are low (< 2) and kpuu is normal, validating
standard heuristics.

Heuristic Challenge: Tests compounds with borderline/conflicting QSARs (at least one > 4),
assessing IB-MDP’s ability to interpret complex signals.

Opportunity Discovery: Evaluates compounds with high QSARs (> 4) but acceptable kpuu, seeking
compounds overlooked by heuristics.

Figure 1: Monetary-prioritized IB-MDP results with MLASPs for 4 representative compounds,
ordered by kpuu values to illustrate variations in QSAR prediction and recommended actions.
For kpuu = 0.53, QSAR1uM PgP = 5.0, QSAR100nM BCRP = 9.6, and QSARmrt = 0.99. The IB-MDP
recommends action is [100nM BCRP] (top left).
For kpuu = 0.53, QSAR1uM PgP = 0.903, QSAR100nM BCRP = 8.5, and QSARmrt = 2.64. The recom-
mended action is [100nM BCRP] (top right).
For kpuu = 0.54, QSAR1uM PgP = 1.68, QSAR100nM BCRP = 1.3, and QSARmrt = 1.82. The IB-MDP
suggests actions are either [100nM PgP, 100nM BCRP] or [1uM PgP, 100nM BCRP] (bottom left).
For kpuu = 0.64, QSAR1uM PgP = 21.4, QSAR100nM BCRP = 0.73, and QSARmrt = 1.2. Recom-
mended actions include [1uM PgP], indicating a high probability of effectiveness under the given
experimental conditions (bottom right).

4.5 EXPERIMENTAL RESULTS: COST COMPARISON BETWEEN CONVENTIONAL AND IB-MDP
DECISIONS

The results of the IB-MDP exploration for representative cases (corresponding to the scenarios above
and detailed in Table 1) are shown in Figure 1. In the baseline scenario, IB-MDP recommends
sequences costing $400-$800, significantly less than the conventional approach of running all assays
($5200 = $4000kpuu + 3× $400transporter).
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In the heuristic challenge scenario, IB-MDP proposes efficient action sequences (e.g., single assay,
$400 cost), whereas traditional heuristics would discard potentially viable compounds. For the
opportunity discovery scenario (high QSARs), IB-MDP successfully identifies cost-effective action
sequences (e.g., [100nM PgP, 1uM PgP], cost $800) that significantly reduce uncertainty, finding
value where traditional rules fail.

Table 1: Comparison of Traditional Approach and IB-MDP Generated Costs for Selected Compounds
QSAR Assay Values Cost ($) (×100)

1uM 100nM mrt kpuu 100nM 1uM 100nM Trad. IB-MDP
PgP BCRP PgP PgP BCRP

1.7 1.3 1.8 0.54 1.1 0.8 1.3 52 4-8
0.9 8.5 2.6 0.53 2.2 1.1 14.2 52 4
21.4 0.7 1.2 0.64 17.4 19.7 0.8 52 4-8
5.0 9.6 1.0 0.53 15.9 12.9 8.2 52 8

5 CONCLUSIONS

In this study, we introduced IB-MDP, a framework that improves decision-making under uncertainty in
resource-constrained environments. Framed conceptually as an approximate POMDP (Appendix H),
it dynamically integrates historical data via a similarity-based metric. Through implicit, heuristic
belief updates (adaptive weight recalculation) and sampling processes within an MCTS planner,
IB-MDP enables policies that maximize information gain, minimize costs, and meet key experimental
objectives.

A notable advantage is its ability to reduce state uncertainty cost-effectively, often without relying
solely on the most expensive assays, thereby improving efficiency and potentially accelerating
decisions. Moreover, IB-MDP employs an ensemble approach (Dietterich, 2000; Lakshminarayanan
et al., 2017) that aggregates multiple policy runs, reducing variance and enhancing robustness against
the stochasticity of the model and planner. By generating a Maximum Likelihood Action Sets Path
(MLASP) guided by likelihood constraints, it ensures more consistent decision quality.

Overall, IB-MDP outperforms traditional heuristic methods and simpler VI-based approaches (see SI),
offering enhanced adaptability, precision, and resource optimization. This comprehensive, data-driven
framework shows strong potential for streamlining sequential decision-making tasks in drug discovery
and other fields requiring strategic resource management under uncertainty.
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Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
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A IB-MDP ALGORITHM DETAILS

A.1 FRAMEWORK DESCRIPTION

The IB-MDP algorithm optimizes experimental scheduling in resource-constrained settings by
leveraging historical data D through a distance-based similarity metric. Conceptually viewing the
problem as a Partially Observable MDP (POMDP, see Appendix H), where the true state (e.g.,
full compound properties) is hidden, this framework aims to strategically select assays (actions)
to minimize costs and maximize information gain (reduce uncertainty about the hidden state),
particularly in high-dimensional decision spaces like preclinical PKPD studies.

The algorithm starts with a partially known initial state s (representing the observed features) and
potential actions A. As it explores, IB-MDP dynamically adjusts its strategy. By constructing
an implicit generative model based on D, IB-MDP avoids explicit parametrization of transition
probabilities P (s′|s, a). Instead, transitions in the observed state are simulated by sampling from
historical data, weighted by similarity to the current observed state s. This implicitly models the
effect of actions and subsequent observations on the agent’s knowledge or belief about the hidden
true state. This method reduces modeling complexity while retaining flexibility.

A key feature is its use of Monte Carlo Tree Search with Double Progressive Widening (MCTS-DPW)
(Browne et al., 2012; Couëtoux et al., 2011), enabling efficient planning in large state(-action) spaces.
MCTS effectively explores sequences of potential actions and their impact on the implicit belief state
(represented jointly by the observed state s and similarity weights W (s), see Appendix H). It balances
exploration and exploitation to identify promising experimental sequences. The recalculation of
similarity weights after each simulated action (the “Adaptive Weight Update” below, Section ??)
acts as a heuristic belief update within the MCTS simulations, adapting the model based on gathered
information.

To further enhance robustness, IB-MDP integrates an ensemble method, aggregating policies from
multiple independent runs to mitigate variance and bias from the sampling process and MCTS
stochasticity, ensuring reliable decision recommendations.

A.2 IB-MDP FORMULATION

The Implicit Bayesian Markov Decision Process (IB-MDP) framework models the sequential decision-
making process over observed states s using historical data D to guide actions. It is formally defined
by the tuple ⟨S,A, Timplicit,R, γ⟩, where:

• States (S): The space of observed states s, representing the agent’s current knowledge (e.g.,
measured features derived from historical data and chosen actions).

• Actions (A): The set of available assays or experiments that can be performed.

• Implicit Transition Function (Timplicit): Defines probabilities P (s′|s, a) for transitions
between observed states based on similarity-weighted sampling from historical data D,
implicitly modeling state dynamics and observation gathering (detailed in Section A.2.3).

• Reward Function (R): A function assigning value to state-action pairs, primarily penalizing
costs and enforcing constraints (detailed in Section A.2.4).

• Discount Factor (γ): A factor 0 < γ ≤ 1 discounting future rewards.

A.2.1 KEY STATE-DEPENDENT METRICS: UNCERTAINTY AND LIKELIHOOD

The decision process is fundamentally guided by two key metrics derived from the current observed
state s and its similarity to the historical dataset D:

• State Uncertainty H(s): Quantifies the ambiguity about a target property k (e.g., kpuu)
given the current observations. It is calculated as the weighted variance over the historical
data:

H(s) =

∑N
i=1 wi(s)

(
(Di)k − k̄w(s)

)2∑N
j=1 wj(s)

(1)

10
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where (Di)k is the value of the target property k in historical data point Di, wi(s) are the
similarity weights (defined in Section A.2.3), N = |D|, and k̄w(s) is the similarity-weighted
mean of the target property:

k̄w(s) =

∑N
i=1 wi(s) · (Di)k∑N

j=1 wj(s)
. (2)

• State Likelihood L(s): Represents the confidence that the true target property k lies within
desired bounds [kmin, kmax]. It is estimated as the weighted proportion of historical data
consistent with these bounds:

L(s) =
∑N

i=1 wi(s) · I[(Di)k ∈ [kmin, kmax]]∑N
j=1 wj(s)

, (3)

where I[·] is the indicator function.

A.2.2 OPTIMIZATION GOAL AND CONSTRAINTS

The objective is to find an optimal policy π∗ : S → A that minimizes the expected total discounted
cost, while ensuring the final state meets a predefined uncertainty threshold (ϵ) and intermediate
states maintain sufficient likelihood (τ ):

π∗ = min
π

Eπ

[
T∑

t=0

γtR(st, π(st))

]

subject to the state-dependent constraints:

1. Terminal Uncertainty Constraint: H(sT ) ≤ ϵ.

2. Intermediate Likelihood Constraint: L(st) ≥ τ, ∀t = 0, . . . , T − 1.

These constraints ensure the policy prioritizes informative and reliable decision paths, distinguishing
this formulation from typical Constrained MDPs (CMDPs) which usually focus on cumulative action
cost constraints (Achiam et al., 2017). These state-based constraints are managed within the MCTS
planner via the reward structure and termination conditions.

A.2.3 THE IMPLICIT DYNAMICS ENGINE

The core of IB-MDP lies in its mechanism for simulating state transitions (Timplicit) and implicitly
updating beliefs, driven by similarity to historical data. This involves three key steps:

SIMILARITY WEIGHT FUNCTION

The relevance of each historical data point Di ∈ D to the current observed state s is quantified by
similarity weights wi(s). These are computed using a variance-normalized exponential kernel:

wi(s) = exp (−λw · d(s,Di)) , (4)

where λw is a global sensitivity parameter, and d(s,Di) is the distance calculated over the features k
currently observed in state s:

d(s,Di) =
∑

k∈ObservedFeatures(s)

λk · (sk − (Di)k)
2

σ2
k

. (5)

Here, sk is the value of observed feature k in state s, (Di)k is its value in historical point Di,
σ2
k is the empirical variance of feature k in D, and λk are feature-specific scaling factors. Let

W (s) = {wi(s)}Ni=1 be the vector of weights.

11
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IMPLICIT TRANSITION MODELING VIA SAMPLING

The transition function Timplicit defines the probability P (s′|s, a) of moving from the current observed
state s to the next observed state s′ upon taking action a. It is implicitly defined by leveraging the
similarity weights W (s) and the historical data D:

P (s′|s, a) =
N∑
i=1

wi(s)∑N
j=1 wj(s)

· I[s′ = s⊕∆s(a,Di)], (6)

where:

• wi(s) is the similarity weight for historical data point Di relative to state s (Eq. equation 4).

• ∆s(a,Di) is the change in observed state (e.g., newly revealed feature values) resulting
from applying action a in the context of historical point Di. This ∆s serves as the implicit
observation.

• ⊕ denotes the state update operation (e.g., augmenting s with information from ∆s).

• I[·] is the indicator function.

• N = |D|.

This definition specifies the probability distribution over next states used implicitly by the MCTS
planner. Operationally, a transition s → s′ is simulated using the following generative process:

1. Sample Historical Context: Select a historical data point Dssampled from D according to the
distribution defined by the normalized similarity weights W (s)/

∑
j wj(s).

2. Determine Action Outcome: Identify the state change ∆s(a,Dssampled) associated with
action a under the conditions of Dssampled .

3. Update Observed State: Compute the resulting state s′ = s⊕∆s(a,Dssampled).

This procedure allows MCTS to sample next states according to the probabilities defined in Eq. equa-
tion 6 without explicitly calculating or storing the full transition matrix.

ADAPTIVE WEIGHT UPDATE (HEURISTIC BELIEF UPDATE)

Crucially, after simulating a transition to the new state s′, the similarity weights are recalculated
based on this updated state:

W ′(s′) = {wi(s
′)}Ni=1 using Eq. equation 4 and equation 5 with s′.

This recalculation dynamically adjusts the perceived relevance of historical data points in light of the
new information gained (∆s). This mechanism acts as a heuristic belief update, refining the model’s
focus for subsequent simulation steps originating from s′ within the MCTS rollout. (See Appendix H
for a conceptual framing within the Partially Observable MDP context).

A.2.4 REWARD FUNCTION

The reward function R(s, a) guides the policy towards cost-effective information gathering while
strictly enforcing the operational constraints defined in Section A.2.2:

R(s, a) =

{
−c(a) · λ, if a ̸= eox and L(s) ≥ τ,

−M, if a = eox or L(s) < τ.
(7)

Here, c(a) is the vector of costs (e.g., monetary, time) associated with action a, λ is a vector
of trade-off parameters weighting different cost dimensions, eox (short for “end-of-experiment”)
represents the action to terminate the experiment sequence, and M is a large penalty value ensuring
that constraint violations (checked before taking action a) or premature termination are strongly
avoided. For simplicity, the cost c(a) is assumed to be independent of the state s in this formulation.

12
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A.2.5 TERMINAL CONDITION

The sequential decision process, whether during MCTS simulation or actual experimental execution,
terminates under any of the following conditions:

• The information goals are successfully achieved: The state s satisfies both H(s) ≤ ϵ and
L(s) ≥ τ .

• A predefined process limit (horizon H , e.g., maximum number of steps, total budget) is
reached.

• The explicit termination action a = eox is selected by the policy.

A.3 THE IB-MDP ALGORITHM IMPLEMENTATION

The IB-MDP framework supports sequential decision-making in resource-constrained settings, where
the agent must determine an optimal sequence of experiments to maximize information gain while
minimizing cost and uncertainty. To efficiently plan in such settings, the IB-MDP algorithm leverages
a variant of Monte Carlo Tree Search (MCTS) called Double Progressive Widening (DPW).

A.3.1 SOLVING IB-MDP WITH MCTS-DPW

To solve the IB-MDP problem, we use Monte Carlo Tree Search with Double Progressive Widening
(MCTS-DPW) (Browne et al., 2012; Couëtoux et al., 2011). MCTS-DPW is particularly well-suited
for large state-action spaces where the number of feasible actions expands dynamically. It constructs
a search tree through iterative simulations consisting of four key steps: Selection, Expansion,
Simulation, and Backpropagation.

In the Selection step, the Upper Confidence Bound (UCB) policy is used to balance exploration and
exploitation:

a = arg max
a′∈A(s)

(
Q(s, a′) + c

√
lnNt(s)

Nt(s, a′)

)
,

where Q(s, a′) is the estimated value of action a′ in state s, Nt(s) is the number of visits to state s,
and Nt(s, a

′) is the number of times action a′ was taken from s.

Crucially, the Simulation step invokes the implicit transition model (Section A.2.1) and adaptive
similarity-based weight update (Section A.2.3). This mechanism models belief evolution implicitly
using weighted sampling from historical data. As more information is gathered, the transition behavior
adapts, capturing belief refinement over time. While standard MCTS convergence guarantees may
not strictly hold under such non-stationarity, MCTS remains an effective heuristic for planning under
implicit partial observability.

A.3.2 PARETO FRONT GENERATION

Each individual IB-MDP run produces a terminal state sT by executing its corresponding policy π∗
j .

After Ne ensemble runs, we collect the terminal outcomes {s(j)T } and generate the empirical Pareto
front across these runs.

The Pareto front is constructed by evaluating trade-offs between terminal cost C(s(j)T ) and uncertainty
H(s

(j)
T ) for each trajectory. A state s′T dominates another state sT if H(s′T ) < H(sT ) and C(s′T ) <

C(sT ). The resulting Pareto front thus includes only the non-dominated terminal outcomes from
the ensemble, representing the best observed trade-offs between minimizing cost and reducing
uncertainty.

This procedure allows us to visualize and evaluate the effectiveness of the IB-MDP planner across
runs, revealing the diversity and robustness of achievable decision paths under different stochastic
realizations.

13



Published at the GEM workshop, ICLR 2025

A.4 ENSEMBLE METHOD FOR IB-MDP

The ensemble method enhances robustness by averaging over multiple independent runs of the
IB-MDP planner, each affected by stochasticity from historical data sampling and MCTS exploration.
Running the algorithm Ne times produces a set of candidate policies {π∗

j } and outcome distributions.
Aggregating across this ensemble reduces variance, mitigates sampling noise, and improves confi-
dence in the final decision recommendation. This approach follows ensemble learning principles
described in Dietterich (2000) and ensures greater stability in high-stakes experimental design tasks.

Advantages of Ensemble IB-MDP: The ensemble IB-MDP methodology provides several advan-
tages:

• Improved Robustness: By aggregating results from multiple simulations, the ensemble
approach reduces the impact of variability and randomness in individual runs, enhancing the
stability of decision outcomes against the stochastic elements of the algorithm.

• Bias Reduction: Exploring diverse decision trajectories across the ensemble potentially
minimizes inference bias that might arise from a single MCTS search getting stuck in a
suboptimal region of the policy space. This yields more accurate estimates of effective
action sequences.

• Predictive Power & Action Prioritization: The ensemble method helps identify frequently
recommended actions or action sequences across multiple runs. The aggregation of these
results informs the construction of a Maximum Likelihood Action Sets Path (MLASP),
providing a robust, prioritized sequence of recommended actions guided by the collective
results of the ensemble.

A.4.1 MAXIMUM LIKELIHOOD ACTION SETS PATH (MLASP)

The MLASP is a key outcome of the ensemble approach, providing a practical recommendation for
decision-makers. It is constructed by identifying the most frequently occurring optimal action set
A∗

u recommended by the ensemble policies at different stages, often characterized by the achieved
uncertainty level u. Specifically, for representative uncertainty levels u, the most frequent action set is
chosen:A∗

u = argmaxA
∑Ne

j=1 I(A is part of policy π∗
j at uncertainty u). where I(·) is the indicator

function, counting how often action set A was part of the j-th policy π∗
j when the system state had

uncertainty approximately equal to u. Ne is the total number of ensemble runs. By connecting the
sequence of A∗

u across decreasing uncertainty levels (from initial state uncertainty down to the target
ϵ), we form the MLASP path. This path represents a robust, cost-vs-uncertainty trade-off policy
derived from the ensemble. Figure A.4.1 shows exemplary MLASP paths generated for the same
compound but using different likelihood thresholds (τ ), demonstrating how this constraint influences
the recommended sequence of actions. Figure A.4.1 illustrates the action frequency distribution
at a specific point used in the voting process to determine one step (A∗

u) along the MLASP. This
aggregation leverages the ensemble to converge on reliable decisions despite simulation variability
inherent in the IB-MDP process.

A.5 ALGORITHM

the detailed and complete description of the algorithm, see Algorithm 1.

B BENCHMARK TEST OVERVIEW

To evaluate the effectiveness of similarity-based approaches (i.e., IB-MDP) in experimental design,
we conducted a systematic benchmark study. First, we generated a synthetic dataset with known
uncertainty structures and feature relationships. This dataset served as our testing ground for
comparing different decision-making approaches.

Using this dataset, we established a baseline policy through Value Iteration (VI) with exact theoretical
calculations of uncertainty reduction. This baseline represents the optimal policy under perfect infor-
mation about uncertainty dynamics. We then benchmarked two similarity-based approaches against
this theoretical baseline: 1. Similarity-based Value Iteration (VI-Sim): This approach maintains the
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Algorithm 1 Ensemble IB-MDP Algorithm (Appendix)
Require: Initial state s0, historical data D, similarity function W , Bayesian update function β, horizon H ,

number of iterations nitr, number of ensemble runs Ne, number of times a particular state ’s’ has been visited
Nt

Ensure: Pareto front of state uncertainty vs. expected utility costs
1: Initialize an array P to store Pareto fronts
2: for j = 1 to Ne do
3: Initialize MCTS-DPW tree with root node representing s0
4: for i = 1 to nitr do
5: s← s0
6: while not terminal and within horizon H do
7: Select action a using UCB policy: a = argmaxa′∈A(s) Q(s, a′) + c

√
lnNt(s)
Nt(s,a′)

8: Simulate next state s′ using Bayesian update via sampling: s′ = β(s,D, a)
9: Update similarity weights W based on new state s′

10: Update tree with s′ and reward R(s, a)
11: s← s′

12: end while
13: Backpropagate rewards and update Q values along the path
14: end for
15: π∗

j ← Extract optimal policy from tree
16: Pj ← Compute Pareto front from π∗

j

17: Append Pj to P
18: end for
19: for each uncertainty level u do
20: A∗

u = argmaxA

∑Ne
j=1 I(A ∈ Pj(u))

21: end for
22: Construct Maximum Likelihood Action Sets Path (MLASP) from A∗

u

23: return MLASP

VI framework but replaces exact uncertainty calculations with similarity-based estimations using
nearest neighbors. 2. IB-MDP: This approach combines similarity-based uncertainty estimation with
Monte Carlo Tree Search to generate an ensemble of policies, providing both primary and alternative
action recommendations.
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This benchmark framework allows us to assess how well similarity-based methods can approximate
the theoretically optimal policy when exact uncertainty calculations are unavailable or computationally
prohibitive in real experimental scenarios.

C SYNTHETIC DATA GENERATION PROCESS

The synthetic dataset is designed to simulate a chemical compound measurement system with multiple
features and a target variable. The generation process follows a structured approach to create realistic
correlations between features and the target.

C.0.1 FEATURE GENERATION

For a system with n features, each feature xi is generated from a truncated normal distribution:

xi ∼ T N (µi, σi, 0, 2µi) for i ∈ {1, . . . , n}

µi = 50 · i
n

σi = 0.3µi

(8)

where T N represents a truncated normal distribution with lower bound 0 and upper bound 2µi. Here,
µi represents the mean of feature i, and σi represents its standard deviation. The mean increases
linearly with the feature index, while the standard deviation is set to 30% of the mean to maintain
consistent relative variability across features. This ensures that:

• Features have different scales but consistent relative variability
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• All feature values remain positive

• The variance increases proportionally with the mean

C.0.2 TARGET VARIABLE GENERATION

The target variable y is generated as a linear combination of the features with additive noise:

y =

n∑
i=1

βixi + ϵ, ϵ ∼ N (0, σ2
ϵ ) (9)

where:

• β = [β1, ..., βn] are the target coefficients

• βi decreases with i to simulate varying feature importance

• σ2
ϵ represents measurement noise

In the data simulation, we choose to setup the dataset consisting of 200 compounds, each characterized
by these six features and their corresponding target values.

• β = [0.3, 0.25, 0.2, 0.15, 0.07, 0.03] are the default target coefficients

• ϵ ∼ T N (0, 5,−10, 10) represents measurement noise

The measurement noise in our simulation is modeled using a truncated normal distribution:

ϵ ∼ T N (µϵ, σϵ, a, b) (10)

with parameters:
µϵ = 0 (zero mean)
σϵ = 5 (standard deviation)
a = −10 (lower bound)
b = 10 (upper bound)

(11)

The truncation ensures that the noise remains within reasonable bounds relative to the target values,
while the zero mean preserves the expected value of the target variable.

D BASELINE POLICY: VALUE ITERATION WITH EXACT UNCERTAINTY
REDUCTION

Value Iteration (VI) provides a systematic approach to find optimal policies in sequential decision-
making problems. For our experimental design task, we implement VI with exact uncertainty
calculations to establish a baseline policy.

D.1 VALUE ITERATION FRAMEWORK

The general form of value iteration updates the value function V (s) for each state s through iterative
application of the Bellman equation:

Vt+1(s) = max
a∈A

{
R(s, a) + γ

∑
s′∈S

P (s′|s, a)Vt(s
′)

}
(12)

where R(s, a) is the immediate reward, γ is the discount factor, and P (s′|s, a) is the transition
probability.
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D.2 VALUE FUNCTION FOR EXPERIMENTAL DESIGN

In our experimental design context, we define:

• State s = M: the set of measured features
• Action space A(M) = P({1, . . . , n} \M): the power set of unmeasured features
• Action a ∈ A(M): a subset of features to measure next

• Reward R(M, a) =
∆σ2

a

ca
: uncertainty reduction per unit cost

Since our measurement process is deterministic (measuring a feature always yields its true value), the
transition probability P (s′|s, a) simplifies to:

P (s′|s, a) =
{
1 if s′ = s ∪ a

0 otherwise
(13)

This deterministic transition leads to our simplified value function:

V (M) = max
a∈A(M)

{
∆σ2

a

ca
+ γV (M∪ a)

}
(14)

D.3 THEORETICAL UNCERTAINTY CALCULATION

Given the linear relationship between features and target, we can calculate the exact uncertainty
reduction for any sequence of measurements.

D.3.1 PRIOR UNCERTAINTY

The prior variance of the target variable, before any measurements, is:

σ2
prior =

n∑
i=1

β2
i σ

2
i + σ2

ϵ (15)

where:

• βi are the known target coefficients [0.3, 0.25, 0.2, 0.15, 0.07, 0.03]
• σi is the standard deviation of feature i: σi = 0.3µi

• σϵ is the noise standard deviation: σϵ = 5

D.3.2 CONDITIONAL UNCERTAINTY

After measuring a subset of features M, the conditional variance is:

σ2
conditional =

∑
i/∈M

β2
i σ

2
i + σ2

ϵ (16)

The uncertainty reduction from measuring feature set a is:

∆σ2
a =

∑
k∈a

β2
kσ

2
k (17)

D.4 IMPLEMENTATION DETAILS

The value iteration algorithm is implemented with the following specifications:

• Discount factor γ = 0.95

• Convergence threshold ϵ = 10−6
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• Maximum iterations: 1000
• Action space A(M) includes all possible combinations of unmeasured features (full power

set)
• Feature costs increase with index:

ck =



1.0 for k = 1

1.2 for k = 2

1.5 for k = 3

1.8 for k = 4

2.0 for k = 5

2.2 for k = 6

10.0 for target measurement

(18)

For any action a ∈ A(M) that includes multiple features, the total cost is the sum of individual
feature costs:

ca =
∑
k∈a

ck (19)

The resulting policy provides the optimal feature selection strategy when exact uncertainty dynamics
are known, serving as our baseline for comparing similarity-based approaches.

E SIMILARITY-BASED POLICY GENERATION

To evaluate alternative approaches to the baseline Value Iteration policy with exact calculations, we
investigate two similarity-based methods for generating experimental design policies. These methods
are particularly relevant when exact uncertainty calculations are unavailable in real experimental
scenarios.

E.1 VALUE ITERATION WITH SIMILARITY-BASED ESTIMATION

Our first approach maintains the Value Iteration framework while replacing exact uncertainty calcula-
tions with similarity-based estimations:

V (M) = max
a∈A(M)

{
∆σ̂2

a

ca
+ γV (M∪ a)

}
(20)

where ∆σ̂2
a represents the estimated uncertainty reduction based on similarity metrics between

experimental states. The estimated uncertainty reduction for action a is then:

∆σ̂2
a = σ̂2

conditional(M)− σ̂2
conditional(M∪ a) (21)

E.2 SIMILARITY-BASED UNCERTAINTY ESTIMATION

E.2.1 METHOD DESCRIPTION

The similarity-based approach estimates conditional variance using:

σ̂2
conditional(M) =

N∑
j=1

wj(yj − ȳw)
2 (22)

where:

• wj =
exp(−d(xj ,x))∑
k exp(−d(xk,x))

are similarity weights

• d(xj ,x) is a distance metric over measured features M

• ȳw =
∑N

j=1 wjyj is the weighted mean

• N is the number of historical data points
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E.3 IB-MDP POLICY GENERATION

Our second approach, IB-MDP, generates experimental policies using a combination of similarity-
based uncertainty estimation and Monte Carlo Tree Search. The ensemble IB-MDP method:

• Generates an ensemble of potential policies

• Provides ranked action recommendations

• Incorporates exploration-exploitation trade-offs

• Adapts to varying experimental conditions

F CONVERGENCE ANALYSIS OF SIMILARITY-BASED VALUE ITERATION

F.1 THEOREM

For the synthetic data model with independent features, as the number of historical samples N → ∞,
the similarity-based variance estimate converges in probability to the theoretical variance:

V̂ar(y|xM) = σ̂2
conditional(M)

p−→
∑
i∈U

β2
i σ

2
i + σ2

ϵ (23)

F.2 PROOF

1) For a fixed query point x, the similarity weights wj form a probability distribution:

wj =
exp(−d(xj ,x))∑N
k=1 exp(−d(xk,x))

N∑
j=1

wj = 1, wj ≥ 0 ∀j
(24)

where d(xj ,x) is the distance metric over measured features.

2) Due to the independence of features in our model:

P (xi|xM) = P (xi) ∀i ∈ U (25)

where xi ∼ T N (µi, σ
2
i , 0, 2µi) for unmeasured features.

3) The weighted variance estimator can be decomposed:

V̂ar(y|xM) =

N∑
j=1

wj(yj − ȳw)
2

=

N∑
j=1

wj(
∑
i∈U

βixji + ϵj − (
∑
i∈U

βix̄i + ϵ̄))2

(26)

where x̄i =
∑N

j=1 wjxji and ϵ̄ =
∑N

j=1 wjϵj .

4) By the strong law of large numbers, as N → ∞:

x̄i
a.s.−−→ E[xi] = µi ∀i ∈ U

ϵ̄
a.s.−−→ E[ϵ] = 0

(27)
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5) Therefore, by the continuous mapping theorem:

V̂ar(y|xM)
p−→ E[(y − E[y|xM])2|xM]

= Var(
∑
i∈U

βixi + ϵ|xM)

=
∑
i∈U

Var(βixi|xM) + Var(ϵ|xM)

=
∑
i∈U

β2
i σ

2
i + σ2

ϵ

(28)

The final equality follows from:

• Independence of features: Var(xi|xM) = Var(xi) = σ2
i

• Independence of noise: Var(ϵ|xM) = σ2
ϵ

• No covariance terms due to independence

The convergence result has significant implications for linear relationships, where the similarity-based
approach provides consistent estimates of uncertainty reduction. Under the assumptions of linear
relationships and independent features, this method yields consistent estimates while remaining
unbiased, although it may exhibit higher variance in finite samples. However, it is important to
note that the approach is limited to linear relationships and may not accurately capture non-linear
relationships or interactions. The approach’s convergence rate is influenced by various factors,
including the dimension of the measured feature space, the density of available data points, and the
choice of similarity metric and bandwidth parameters. While both the similarity-based approach and
theoretical calculations yield equivalent results in the limit for linear models, they differ in practical
application. Theoretical calculations provide exact results for synthetic models with known linear
structure, making them computationally efficient. The similarity-based approach, while still restricted
to linear relationships, has the advantage of not requiring explicit knowledge of the coefficients
and scales computationally with data size. However, for real-world scenarios with potential non-
linear relationships, both methods may be inadequate, and more sophisticated uncertainty estimation
techniques should be considered.

G BENCHMARK TEST RESULTS

To evaluate different approaches for experimental design policy generation, we conducted extensive
benchmark tests comparing a theoretical baseline against two alternatives: similarity-based Value
Iteration and Implicit Bayesian MDP (IB-MDP). Each approach was tested over 100 iterations to
assess their consistency and reliability.

G.1 TEST METHODOLOGY

For each iteration, we follow these steps:

1. Data Generation

• Generate 200 compounds using our synthetic data model

• Features follow truncated normal distributions with known parameters

• Target variable calculated using fixed coefficients with optional noise

2. Policy Generation

• VI Theoretical (VI Theo): Baseline policy using exact uncertainty calculations and known
coefficients

• VI Similarity (VI Sim): Policy using similarity-based uncertainty estimation without knowl-
edge of coefficients
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• Implicit Bayesian MDP (IB-MDP): Policy using ensemble-based approach with Monte
Carlo Tree seaerch algorithm

3. Feature Recommendations

• VI Theo generates a single optimal feature recommendation
• VI Sim generates a single feature recommendation based on similarity metrics
• IB-MDP generates primary (Top1) and alternative (Top2) feature recommendations

G.2 COMPARISON METRICS

We evaluate three alignment metrics:

• T1 Match: Binary indicator (1/0) if IB-MDP’s primary recommendation contains the
theoretical optimal feature

• T2 Match: Binary indicator (1/0) if IB-MDP’s alternative recommendation contains the
theoretical optimal feature

• Sim Match: Binary indicator (1/0) if VI Similarity’s recommendation matches the theoretical
choice

G.3 RESULTS TABLE

The Table 2 presents iteration-by-iteration results where:

• Iter: Iteration number (1-100)
• VI Theo: Feature recommended by theoretical Value Iteration
• IB-MDP Top1 Features: Set of features in primary recommendation
• IB-MDP Top2 Features: Set of features in alternative recommendation
• VI Sim: Feature recommended by similarity-based Value Iteration
• Match columns: Binary indicators for alignment with theoretical recommendation

Table 2: Comparison of VI Theoretical vs IB-MDP and VI Similarity
Approaches

Iter VI Theo IB-MDP Top1 Features T1 Match IB-MDP Top2 Features T2 Match VI Sim Sim Match

1 5 {3, 4} 0 {3, 5} 1 3 0
2 5 {3, 4} 0 {3, 5, 6} 1 3 0
3 3 {3, 4} 1 {3, 5} 1 5 0
4 5 {3, 4} 0 {3, 5} 1 3 0
5 3 {3, 4} 1 {3, 5} 1 3 1
6 4 {3, 4} 1 {3, 5} 0 3 0
7 3 {3, 4} 1 {3, 5} 1 3 1
8 5 {3, 4} 0 {3, 5, 6} 1 3 0
9 3 {3, 4} 1 {3, 5} 1 3 1

10 4 {3, 4} 1 {3, 5, 6} 0 6 0
11 4 {3, 4} 1 {3, 5} 0 4 1
12 4 {3, 4} 1 {3, 5} 0 4 1
13 4 {3, 4} 1 {3, 5} 0 6 0
14 4 {3, 4} 1 {3, 5} 0 6 0
15 5 {3, 4} 0 {3, 5} 1 3 0
16 5 {3, 4} 0 {3, 5} 1 3 0
17 4 {3, 4} 1 {3, 5} 0 4 1
18 4 {3, 4} 1 {3, 5, 6} 0 3 0
19 5 {3, 4} 0 {3, 5} 1 3 0
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Table 2: Comparison of VI Theoretical vs IB-MDP and VI Similarity
Approaches

Iter VI Theo IB-MDP Top1 Features T1 Match IB-MDP Top2 Features T2 Match VI Sim Sim Match

20 5 {3, 4} 0 {3, 5} 1 3 0
21 5 {3, 4} 0 {3, 5} 1 3 0
22 4 {3, 4} 1 {3, 5} 0 4 1
23 5 {3, 4} 0 {3, 5} 1 3 0
24 4 {3, 4} 1 {3, 5} 0 6 0
25 5 {3, 4} 0 {3, 6} 0 5 1
26 5 {3, 4} 0 {3, 5} 1 3 0
27 5 {3, 4} 0 {3, 5} 1 3 0
28 4 {3, 4} 1 {3, 5} 0 3 0
29 4 {3, 4} 1 {3, 5} 0 3 0
30 5 {3, 4} 0 {3, 5} 1 3 0
31 5 {3, 4} 0 {3, 5, 6} 1 3 0
32 4 {3, 4} 1 {3, 5} 0 6 0
33 5 {3, 4} 0 {3, 5} 1 5 1
34 4 {3, 4} 1 {3, 5} 0 4 1
35 4 {3, 4} 1 {3, 5} 0 4 1
36 5 {3, 4} 0 {3, 5} 1 3 0
37 5 {3, 4} 0 {3, 5} 1 3 0
38 5 {3, 4} 0 {3, 5} 1 3 0
39 5 {3, 4} 0 {3, 5} 1 3 0
40 3 {3, 4} 1 {3, 5} 1 3 1
41 4 {3, 4} 1 {3, 5} 0 4 1
42 4 {3, 4, 5} 1 {3, 4, 5} 1 6 0
43 3 {3, 4} 1 {3, 5} 1 3 1
44 5 {3, 4} 0 {3, 5, 6} 1 3 0
45 5 {3, 4} 0 {3, 5} 1 3 0
46 5 {3, 4} 0 {3, 5} 1 3 0
47 3 {3, 4} 1 {3, 5} 1 3 1
48 5 {3, 4} 0 {3, 5} 1 5 1
49 4 {3, 4} 1 {3, 5} 0 3 0
50 5 {3, 4} 0 {3, 5} 1 3 0
51 4 {3, 4} 1 {3, 5, 6} 0 4 1
52 5 {3, 4} 0 {3, 5} 1 3 0
53 5 {3, 4} 0 {3, 5} 1 5 1
54 5 {3, 4} 0 {3, 5} 1 3 0
55 4 {3, 4} 1 {3, 5} 0 3 0
56 5 {3, 4} 0 {3, 5} 1 3 0
57 4 {3, 4} 1 {3, 4, 5} 1 3 0
58 3 {3, 4} 1 {3, 5} 1 3 1
59 4 {3, 4} 1 {3, 5} 0 6 0
60 3 {3, 4} 1 {3, 4, 5} 1 3 1
61 3 {3, 4} 1 {3, 5, 6} 1 3 1
62 6 {3, 4} 0 {3, 5} 0 3 0
63 5 {3, 4} 0 {3, 5} 1 5 1
64 4 {3, 4} 1 {3, 5} 0 3 0
65 5 {3, 4} 0 {3, 5} 1 3 0
66 5 {3, 4} 0 {3, 5} 1 3 0
67 5 {3, 4} 0 {3, 5} 1 3 0
68 4 {3, 4} 1 {3, 5} 0 6 0
69 6 {3, 4} 0 {3, 5} 0 6 1
70 4 {3, 4} 1 {3, 5} 0 4 1
71 5 {3, 4} 0 {3, 5} 1 3 0
72 5 {3, 4} 0 {3, 5} 1 3 0
73 4 {3, 4} 1 {3, 5} 0 6 0
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Table 2: Comparison of VI Theoretical vs IB-MDP and VI Similarity
Approaches

Iter VI Theo IB-MDP Top1 Features T1 Match IB-MDP Top2 Features T2 Match VI Sim Sim Match

74 5 {3, 4} 0 {3, 5} 1 3 0
75 5 {3, 4} 0 {3, 5} 1 5 1
76 5 {3, 4} 0 {3, 5} 1 5 1
77 5 {3, 4} 0 {3, 5} 1 3 0
78 4 {3, 4} 1 {3, 5} 0 4 1
79 5 {3, 4} 0 {3, 5} 1 3 0
80 5 {3, 4} 0 {3, 5} 1 5 1
81 5 {3, 4} 0 {3, 5} 1 3 0
82 5 {3, 4} 0 {3, 5} 1 3 0
83 4 {3, 4} 1 {3, 5} 0 4 1
84 5 {3, 4} 0 {3, 5} 1 3 0
85 5 {3, 4} 0 {3, 5} 1 3 0
86 5 {3, 4} 0 {3, 5} 1 3 0
87 4 {3, 4} 1 {3, 5, 6} 0 3 0
88 5 {3, 4} 0 {3, 5} 1 3 0
89 5 {3, 4} 0 {3, 5} 1 3 0
90 5 {3, 4} 0 {3, 5} 1 3 0
91 3 {3, 4} 1 {3, 5} 1 3 1
92 4 {3, 4} 1 {3, 5} 0 4 1
93 3 {3, 4} 1 {3, 5} 1 3 1
94 3 {3, 4} 1 {3, 5} 1 3 1
95 4 {3, 4} 1 {3, 5, 6} 0 3 0
96 5 {3, 4} 0 {3, 5} 1 5 1
97 5 {3, 4} 0 {3, 5} 1 3 0
98 4 {3, 4} 1 {3, 5} 0 4 1
99 3 {3, 4} 1 {3, 5} 1 3 1

100 4 {3, 4} 1 {3, 5} 0 6 0

G.4 BENCHMARK RESULTS ANALYSIS

Table 3: Policy Alignment with Theoretical Baseline
Method Matches Match Rate (%)

IB-MDP Top 1 47 47.0
IB-MDP Top 2 66 66.0
VI Similarity 36 36.0

The benchmark results, summarized in Table 3, reveal systematic differences between deterministic
VI-based policies and ensemble-based IB-MDP policies. Over 100 iterations, IB-MDP’s primary
recommendations achieve 47

Value Iteration approaches, both theoretical and similarity-based, produce deterministic policies
through the optimization of π∗(s) = argmaxa{R(s, a) + γV (s′)}, selecting a single optimal
action for each state. In contrast, IB-MDP employs an ensemble of Monte Carlo Tree Search runs
with different random seeds to explore the policy space more thoroughly. This ensemble approach
generates multiple independent policies, aggregates their recommendations, and ranks feature sets
based on their selection frequency across the ensemble.

The superior coverage of IB-MDP can be attributed to this fundamental difference in policy gen-
eration. While VI methods converge to a single deterministic policy, potentially missing equally
valuable alternatives, IB-MDP’s ensemble approach allows it to identify multiple high-value feature
combinations through independent policy searches. This is particularly valuable in experimental de-
sign, where multiple feature combinations might yield similar information gains. The results suggest
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that ensemble-based policy generation provides more robust recommendations by identifying these
equivalent policies, while deterministic approaches may arbitrarily select among equally valuable
options.

H CONCEPTUAL FRAMING OF IB-MDP AS A POMDP

This paragraph outlines how the Implicit Bayesian Markov Decision Process (IB-MDP) framework
can be interpreted within the conceptual structure of a Partially Observable Markov Decision Process
(POMDP). While standard POMDPs rely on explicitly maintaining and updating a belief state distribu-
tion over hidden states, IB-MDP employs a data-driven, similarity-weighted sampling approach. This
mechanism serves as a practical heuristic to approximate the belief dynamics inherent in POMDPs,
particularly in information-gathering scenarios. Below, we detail the mapping between IB-MDP and
POMDP components and elaborate on their conceptual relationship.

H.1 POMDP FRAMEWORK OVERVIEW

A POMDP is formally defined by the tuple ⟨S,A,Ω, P,O,R, γ⟩, where:

• S: A set of hidden states, unobservable by the agent.

• A: A set of actions available to the agent.

• Ω: A set of possible observations.

• P (s′|s, a): The state transition probability function, P : S ×A× S → [0, 1].

• O(ω|s′, a): The observation probability function, O : Ω× S ×A → [0, 1].

• R(s, a): The reward function, R : S ×A → R.

• γ: A discount factor (0 ≤ γ < 1).

Since the agent cannot observe s ∈ S directly, it maintains a belief state b(s), which is a probability
distribution over S, representing the agent’s belief about the current hidden state. This belief is
updated after taking action a and receiving observation ω using Bayes’ theorem:

b′(s′) = η ·O(ω|s′, a)
∑
s∈S

P (s′|s, a)b(s),

where η is a normalizing constant ensuring
∑

s′ b
′(s′) = 1. The term

∑
s∈S P (s′|s, a)b(s) represents

the predicted belief before observing ω.

H.2 IB-MDP FRAMEWORK REVISIT

IB-MDP is tailored for scenarios, like experimental design in drug discovery, where the true state
(e.g., a compound’s complete profile) is only partially known. Instead of an explicit belief state,
IB-MDP simulates transitions using historical data:

P (s′observed|sobserved, a) =

N∑
i=1

wi(sobserved)∑N
j=1 wj(sobserved)

· I [s′observed = sobserved ⊕∆s(a,Di)] .

Here:

• sobserved: The currently observed state (e.g., measured features).

• D = {Di}Ni=1: A historical dataset containing past trajectories or state examples.

• wi(sobserved) = exp (−λw · d(sobserved, Di)): Similarity weight between sobserved and histori-
cal data point Di.

• d(·, ·): A distance metric defined over the observed features.

• ∆s(a,Di): The state change (often revealing new feature values) associated with action a
in the context of Di.
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• ⊕: An operator that updates the observed state, typically by augmenting it with newly
revealed information from ∆s.

• I[·]: The indicator function.

This mechanism implicitly handles uncertainty by sampling transitions based on similarity to past
experiences, avoiding explicit belief representation.

H.3 MAPPING IB-MDP TO THE POMDP FRAMEWORK

The components of IB-MDP can be mapped conceptually to the POMDP framework:

• Hidden States (S): Corresponds to the true, complete, underlying state of the system,
denoted strue. In drug discovery, this is the full set of intrinsic properties of the compound,
mostly unknown initially.

• Actions (A): These are directly equivalent – the choices available to the agent (e.g., per-
forming an assay).

• Observations (Ω): In IB-MDP, an explicit observation set Ω isn’t defined. Instead, taking
action a and simulating the transition via sampling Di yields a state change ∆s(a,Di). The
new information revealed within ∆s (e.g., the value of a newly measured feature) serves the
role of the observation ω.

• Transition Function (P ): In many IB-MDP applications involving information gathering,
the underlying true state strue is static (P (s′true|strue, a) = I[s′true = strue]). Actions only serve
to reveal information. The IB-MDP transition function P (s′observed|sobserved, a) models the
change in the observed state based on sampling, which reflects gaining information about
the static strue.

• Belief State (b): The POMDP belief b(strue) is approximated in IB-MDP by an implicit
belief representation consisting of the pair (sobserved,W (sobserved)):

– sobserved: The agent’s current knowledge manifested as observed features.
– W (sobserved) = {wi(sobserved)}Ni=1: The vector of similarity weights. This vector

defines a distribution over the historical dataset D, implicitly encoding belief about
strue by highlighting which past examples are currently considered most relevant or
likely.

• Belief Update: The POMDP belief b is updated via Bayes’ rule. In IB-MDP, the update
occurs when action a yields new information, augmenting sobserved to s′observed. The agent
then recalculates the similarity weights W (s′observed). This recalculation acts as a heuristic
belief update, adjusting the distribution over D to reflect the new information (implicit
observation ω), thereby refining the implicit belief about strue.

H.4 CONCEPTUAL PARALLEL: IB-MDP UPDATE AS AN APPROXIMATE BELIEF UPDATE

We can illustrate the conceptual parallel between the formal POMDP belief update and the IB-MDP
weight recalculation.

H.4.1 POMDP BELIEF UPDATE (INFORMATION GATHERING)

For a static true state (s′ = s), the update simplifies:

b′(strue) = η ·O(ω|strue, a) · b(strue),

The posterior belief is proportional to the prior belief multiplied by the likelihood of observing ω
given the state strue.

H.4.2 IB-MDP IMPLICIT UPDATE STEPS

The process within an MCTS simulation step or real-world step involves:

1. Implicit Prior: The current weights W (sobserved) define a distribution over D, acting as a
heuristic prior belief about which historical states resemble the true state.
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2. Implicit Observation Likelihood: An action a is taken. A historical point Di is sampled
based on W (sobserved). The resulting state change ∆s(a,Di) reveals new information
(implicit observation ω). The process inherently favors sampling Di consistent with likely
observations.

3. Implicit Posterior: The observed state is updated to s′observed = sobserved ⊕∆s(a,Di). The
weights are recalculated as W (s′observed). This new weight vector represents the updated
implicit belief, giving higher weight to historical points that match the augmented s′observed
(i.e., are consistent with the observation ω).

While the POMDP update uses the mathematically grounded Bayes’ rule, IB-MDP employs a
computationally tractable heuristic: recalculating similarity weights based on the augmented observed
state. This adjusts the focus on relevant historical data, effectively updating the agent’s implicit belief.

H.5 IMPLICATIONS AND CONCLUSION

Framing IB-MDP within the POMDP context yields several insights:

• Justification for Dynamics: The changing transition probabilities observed within MCTS
simulations in IB-MDP are not arbitrary non-stationarity. They reflect the simulation of belief
updating inherent in solving POMDPs – as information is gathered (state is augmented), the
model used for subsequent predictions naturally changes.

• Suitability of MCTS: MCTS is a viable algorithm because it effectively explores the
consequences of actions on the (implicit) belief state and associated future rewards. Its ability
to handle large state spaces makes it suitable for navigating complex belief representations,
even approximate ones.

• Heuristic Nature: IB-MDP provides a practical, data-driven approximation to solving a
POMDP. Its effectiveness relies on the quality of the historical data D and the appropriateness
of the similarity metric d(·, ·) in capturing relevant state information. Formal convergence
guarantees depend on the properties of this approximation.

• Computational Efficiency: By avoiding explicit belief state representation and Bayesian
updates, IB-MDP offers a potentially more scalable approach for complex problems where
POMDPs become intractable.

In conclusion, interpreting IB-MDP as an approximate POMDP framework provides strong con-
ceptual grounding. It clarifies the role of state augmentation and weight recalculation as a form of
implicit belief updating, justifying the methodology and the application of MCTS for planning under
uncertainty.

I BROADER IMPACTS

The IB-MDP framework provides a versatile approach to adaptive decision making with potential
benefits beyond preclinical assay scheduling. By integrating historical data, dynamic heuristic belief
updates, and ensemble methods, the framework can potentially enhance decision-making efficiency
in various fields requiring sequential planning under uncertainty with resource constraints, such as
healthcare logistics or adaptive clinical trial design (Coronato et al., 2020). Its ability to handle
uncertainty and constraints via data-driven simulation and robust planning makes it a potentially
valuable tool for improving outcomes where explicit models are unavailable but historical data exists.

J LIMITATIONS

Increasing the ensemble size Ne enhances the accuracy and robustness of the MLASP but increases
computational costs, with diminishing returns typical of ensemble methods (Zhou, 2012). The
optimal Ne depends on problem complexity and resources. Similarly, the number of MCTS iterations
nitr affects planning quality versus compute time. While the ensemble approach generally stabilizes,
convergence assessment in complex state spaces remains empirical.
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Another important limitation lies in the framework’s reliance on the quality and coverage of the
historical data D and the chosen similarity metric. The heuristic belief update’s effectiveness depends
on these components. Although leveraging historical data helps to integrate similarity-based metrics
for decision-making, it may not sufficiently account for novel scenarios in real-world experiments.
Future extensions of the IB-MDP framework could incorporate more flexible strategies, such as
adaptive similarity metrics (cf. Bellet et al., 2013) or hybrid approaches integrating deep learning
components (e.g., for feature extraction or value estimation, cf. Blau et al., 2022), to extrapolate to
states not represented in the existing dataset.

Furthermore, the current study lacks direct experimental comparisons with state-of-the-art BRL (e.g.,
PSRL variants (Osband et al., 2013; Agrawal & Jia, 2017)) or recent BED/RL methods specifically
tailored for implicit models or sequential design (Ivanova et al., 2021; Blau et al., 2022). Such
benchmarking is essential future work to rigorously assess relative performance.

Finally, while likelihood thresholds (τ ) guide the MLASP, further exploration of the interplay
between uncertainty reduction (H) and likelihood (L) dynamics could yield insights for refining
policy generation and ensemble aggregation, potentially improving performance in complex dynamic
environments.
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