
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BI-LIPSCHITZ AUTOENCODER WITH INJECTIVITY
GUARANTEE

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoencoders are widely used for dimensionality reduction, based on the assump-
tion that high-dimensional data lies on low-dimensional manifolds. Regularized
autoencoders aim to preserve manifold geometry during dimensionality reduction,
but existing approaches often suffer from non-injective mappings and overly rigid
constraints that limit their effectiveness and robustness. In this work, we identify
encoder non-injectivity as a core bottleneck that leads to poor convergence and
distorted latent representations. To ensure robustness across data distributions, we
formalize the concept of admissible regularization and provide sufficient condi-
tions for its satisfaction. In this work, we propose the Bi-Lipschitz Autoencoder
(BLAE), which introduces two key innovations: (1) an injective regularization
scheme based on a separation criterion to eliminate pathological local minima,
and (2) a bi-Lipschitz relaxation that preserves geometry and exhibits robustness
to data distribution drift. Empirical results on diverse datasets show that BLAE
consistently outperforms existing methods in preserving manifold structure while
remaining resilient to sampling sparsity and distribution shifts.

1 INTRODUCTION

Autoencoders have been established as powerful tools for dimensionality reduction and visualization.
While theoretically promising due to their universal approximation capabilities, vanilla autoencoders
often fail to preserve the geometric properties essential for meaningful latent representations. This
limitation has motivated two main approaches to regularize the latent space: 1) Gradient-based
methods (Nazari et al., 2023; Salah et al., 2011; Lim et al., 2024a; Lee et al., 2022) constrain the
Jacobian of the encoder or decoder to promote smoothness and local geometric preservation. 2)
Graph-based methods align latent representations with distance structures derived from neighborhood
graphs (Moor et al., 2020; Schönenberger et al., 2020; Singh & Nag, 2021) or pretrained embeddings
(Mishne et al., 2019; Duque et al., 2022).

Despite their distinct theoretical foundations, both approaches face substantial practical challenges.
Graph-based methods depend heavily on the graph accuracy, limiting their effectiveness under sparse
sampling conditions. Gradient-based methods exhibit robustness to sample size and yield smoother
manifolds but frequently converge to local minima during optimization, resulting in compromised
performance that falls short of theoretical expectations.

From a differential topology perspective, gradient constraints typically encode local geometric proper-
ties. For example, a mapping f : M → Rn satisfying J⊤

f Jf ≡ I is an isometric immersion. With an
additional global injectivity condition, f becomes an embedding. This motivates us to investigate the
interplay between injectivity and optimization in gradient-based autoencoders. Through theoretical
and empirical analysis, we identify the non-injectivity of the encoder as a key bottleneck in training
autoencoders effectively. To address this limitation, we propose a novel framework that guarantees
injectivity through separation criteria in the latent space, helping to avoid pathological local minima
that can trap standard gradient-based methods and enabling them to achieve their theoretical potential.

To create a geometrically consistent latent embedding that maintains intrinsic manifold structures,
robustness against distributional shifts is essential because our goal isn’t tied to specific data distribu-
tions. This requires the imposed regularization to be admissible — specifically, the targeted geometric
properties must be strictly satisfied. While prior work employs isometric constraints (Lee et al., 2022;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Gropp et al., 2020; Lim et al., 2024a), such embeddings typically demand O(m2) dimensions, where
m is the dimension of the manifold. This severely impairs the efficiency of the autoencoder. To
address this, we propose a principled relaxation through bi-Lipschitz regularization, achieving linear
complexity in manifold dimension while maintaining robustness to distribution shifts.

To validate our theoretical insights, we develop the Bi-Lipschitz Autoencoder (BLAE), which com-
bines injective and bi-Lipschitz regularization. Our experiments across multiple datasets demonstrate
that BLAE preserves manifold structure with higher fidelity than existing methods while exhibiting
significant robustness to distribution shifts and sparse sampling conditions.

The rest of this paper is organized as follows. Section 2 discusses the limitations of existing methods.
Section 3 introduces our proposed framework. Section 4 reviews related work. Section 5 presents
experimental results, and Section 6 concludes the paper.

2 BOTTLENECK OF AUTOENCODERS

Throughout this work, we assume the intrinsic data manifold M ⊂ Rm is a compact and connected
Riemannian manifold with Riemannian measure µM, unless otherwise stated. We also assume the
data distribution P on M is equivalent to µM, i.e., P ≪ µM and µM ≪ P.

2.1 AUTOENCODERS AND REGULARIZATIONS

Conventional manifold learning and dimension reduction frameworks typically assume that high-
dimensional data resides on a low-dimensional manifold M ⊂ Rm. An autoencoder learns this
intrinsic representation through a pair of parameterized mappings (Eθ,Dϕ) via neural networks:

• The encoder Eθ : Rm → Rn(n ≪ m) compresses data onto a low-dimensional latent space;
• The decoder Dϕ : Rn → Rm reconstructs the original data from the latent representation.

Training optimizes this encoder-decoder pair by minimizing the expected reconstruction error:

Lrecon = Ex∼P
∥∥x−Dϕ(Eθ(x))

∥∥2. (1)
While vanilla autoencoders effectively learn compressed representations, they often fail to preserve
essential data properties. Advanced variants have emerged to address requirements such as repre-
sentation smoothness, model robustness, and geometric preservation. Based on their regularization
mechanisms, we classify these variants into three categories.

Gradient-regularization. This category applies explicit constraints on the derivatives of network
mappings. Formally, gradient regularization is expressed as:

Lgrad = Ex∼P
[
R1(Jf (x))

]
, (2)

where R1 is a loss function, and Jf (x) represents the Jacobian matrix of a differentiable function
f at input x. The function f can be instantiated as either the encoder Eθ or the decoder Dϕ. A
canonical example is the contractive autoencoder (Salah et al., 2011), where R1(·) = ∥ · ∥2F imposes
Frobenius-norm constraints on the encoder’s Jacobian to promote local stability.

Geometry-regularization. This category preserves distance relationships when mapping from the
manifold M to the latent space N . Geometry regularization takes the form:

Lgeo = Ex,y∼P [R2(dM(x, y), dN (Eθ(x), Eθ(y)))] , (3)
where R2 is a loss function and d∗ denotes the geodesic distance on the corresponding manifold.
Implementation typically involves approximating geodesic distances dM through k-nearest neigh-
bors (k-NN) graph construction and shortest-path computations. The latent space metric dN is
conventionally defined as the Euclidean distance ∥ · ∥.

Embedding-regularization. The last category directly guides the encoder to match embeddings
produced by classical dimension reduction methods. The regularization is formulated as:

Lemb = Ex∼P∥Eθ(x)− z∥2, (4)
where z is the target embedding of x obtained from methods such as Isomap or diffusion maps.
Remark 1. Since both embedding and geometry regularizations rely on graph construction procedures
standard in conventional dimensionality reduction methods, we unify them under the framework of
Graph-Regularization.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 WHY AUTOENCODERS AND GRADIENT VARIANTS FAIL?

The universal approximation theorem grants neural network-based autoencoders significant potential
for learning effective latent representations. However, in practice, standard gradient descent optimiza-
tion frequently converges to poor local minima rather than discovering globally optimal solutions.
This convergence behavior—whether terminating in suboptimal local minima or achieving global
optimality—is fundamentally connected to the concept of injection.

Definition 1 (Injection). f is an injection (injective mapping) on M, if f(x) ̸= f(y),∀x ̸= y ∈ M.

Non-injective encoders create latent space collisions where distinct data points map to identical or
nearly identical codes, resulting in inevitable reconstruction errors and suboptimal model perfor-
mance1. In practical implementations with finite sample sets {x1, · · · , xN} ⊂ M, the point-wise
injectivity condition Eθ(xi) ̸= Eθ(xj) for all i ̸= j typically holds (w.p.1) when the encoder Eθ
avoids local constancy. However, this does not guarantee global injectivity. More precisely, even
when Eθ(xi) ̸= Eθ(xj) for distinct sample points, if disjoint neighborhoods Ui, Uj of these points
have overlapping encodes (Eθ(Ui) ∩ Eθ(Uj) ̸= ∅), the injectivity property is violated.

Figure 1 illustrates this non-injective bottleneck using a toy example of 20 points sampled from a
V-shaped manifold. We analyze three autoencoder configurations with two hidden layers of varying
capacities (hidden dimensions: 2, 16, 256). The condition Ui ∩ Uj = ∅ and Eθ(Ui) ∩ Eθ(Uj) ̸= ∅
manifests when the encoder maps points from distant manifold regions to nearby coordinates in the
latent space. Figures 1(d) (f) (h) demonstrate this distortion between red and blue classes.

To compensate for these latent space collisions, the decoder must generate sharp variations, appearing
as high local curvature, within intersection regions to minimize reconstruction error, as shown in
Figure 1(g). The required network complexity for these variations scales polynomially with the
density of encoded data points. When the decoder’s capacity cannot accommodate these geometric
demands, the optimization process becomes trapped in suboptimal local minima where gradient
signals align with the network’s expressivity boundaries (Figure 1(c)).

Training Samples
Ground Truth Manifold

(a) 2-D ground truth and training samples

(b) Ideal 1-D latent representations

Reconstructed Samples
Learned Manifold

(c) 2-D reconstruction (hid. dim. = 2)

(d) 1-D latent representations (hid. dim. = 2)

(e) 2-D reconstruction (hid. dim. = 16)

(f) 1-D latent representations (hid. dim. = 16)

(g) 2-D reconstruction (hid. dim. = 256)

(h) 1-D latent representations (hid. dim. = 256)

Figure 1: Toy example: (a) 20 training points sampled from V-shaped manifold. (b) An ideal encoder
separates red and blue classes in the latent space. (c) (e) (g) Reconstructed manifolds by autoencoders
with hidden dimensions 2, 16, 256. (d) (f) (h) Corresponding latent representations.

Notably, gradient-based regularization schemes suffer from a similar injectivity bottleneck. While
these methods effectively constrain local mapping properties through differential constraints, they
remain insufficient for ensuring global injectivity—a critical topological property that distinguishes
proper embeddings from mere immersions. In approaches like (Lim et al., 2024a; Lee et al., 2022),
isometric constraints yield locally structure-preserving encoders via isometric immersion but fail to
satisfy the additional topological requirements for genuine manifold embedding.

2.3 GRAPH REGULARIZATIONS VS. GRADIENT REGULARIZATIONS

Unlike gradient-based approaches, graph-based autoencoder variants inherently enforce injective
mapping by requiring distance preservation between manifolds M and latent space N , where
dM > 0 ⇒ dN > 0. However, these graph-driven approaches have two fundamental limitations:
i) Their discrete graph approximations become unreliable under sparse sampling conditions, as
shortest-path distances increasingly deviate from true manifold geodesics; ii) The Euclidean metric
assumption in latent space introduces systematic errors unless N satisfies strict convexity require-

1Formally, as the reconstruction loss is calculated in expectation, injective guarantees need only hold a.e..

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

ments. Comparatively, when the injectivity of the encoder is guaranteed, gradient-based methods can
achieve smoother embeddings with greater robustness to variations in sample density.

3 GRADIENT AUTOENCODER WITH INJECTIVE CONSTRAINT

3.1 SEPARATION CRITERION AND INJECTIVE REGULARIZATION

Our theoretical analysis in Section 2.2 yields two critical insights: i) Imposing injectivity constraints
on the encoder can effectively eliminate pathological local minima that trap optimization trajectories.
ii) Sample-level condition Eθ(xi) ̸= Eθ(xj) is insufficient for global injectivity. To address these
issues, we must prevent distant manifold neighborhoods from collapsing into proximal latent clusters,
leading us to enforce metric separation:
Definition 2 ((δ, ϵ)-separation). Given δ, ϵ > 0, a mapping f : M → N is (δ, ϵ)-separated if for all
x, y ∈ M satisfying dM(x, y) ≥ δ:

dN (f(x), f(y))

dM(x, y)
> ϵ. (5)

This separation criterion provides a sufficient condition for f to be injective: if f is (δ, ϵ)-separated
for any δ, ϵ > 0, then f must be an injection. Indeed, under some mild assumptions, this condition
serves as an equivalent characterization of injection:
Theorem 1. 2 Suppose f : M → N is continuous and M is compact, then f is injective if and only
if for any δ > 0, there exists ϵ > 0 such that f is (δ, ϵ)-separated.

To address the limitations of naive injectivity constraints, we propose a regularization that penalizes
sample pairs violating the separation condition:

Linj(δ, ϵ) = Ex,y∼P

[
ReLU

(
log

ϵdM(x, y)

dN (Eθ(x), Eθ(y))

)
· 1dM(x,y)>δ

]
. (6)

However, this penalty permits a trivial optimization path to zero loss: simply scaling the encoder by
a factor k = ϵ ·max

dM(xi,xj)
dN (Eθ(xi),Eθ(xj))

. To prevent this, we additionally constrain the encoder to be
non-expansive, meaning ∀x, y ∈ M, dN (Eθ(x), Eθ(y)) ≤ dM(x, y). Our final regularization term
combines both constraints:

Lreg(δ, ϵ) = Linj(δ, ϵ) + α · Ex,y∼P

[
ReLU

(
dN (Eθ(x), Eθ(y))

dM(x, y)
− 1

)
· 1dM(x,y)>δ

]
, (7)

where α (default: 5) is a weighting factor calibrating the strength of the non-expansive constraint.
Remark 2. While Theorem 1 requires validating the separation condition for all δ > 0, in practical
implementations, it suffices to validate at a threshold δmin = mini ̸=j dM(xi, xj).

Similar to graph-based approaches, we use Euclidean distance for dN and approximate dM through
graph construction. Although this approximation introduces some systematic error as discussed in
Section 2.3, our separation criterion proves remarkably resilient to such approximations compared to
other geometry-based regularizations. This robustness allows effective combination with gradient
regularization techniques (see Appendix C.3 for details).

The proposed injective regularization systematically mitigates pathological local minima in the
loss landscape. Figure 2 visualizes this effect through 2D loss landscapes comparing a standard
autoencoder with its injective-regularized counterpart. Both models were initialized at θ0 and
optimized to θ1 (vanilla autoencoder) and θ2 (our regularized autoencoder), respectively. The contour
maps represent loss values across the parameter subspace spanned by vectors θ0 − θ1 and θ0 − θ2.
Figure 2(a) reveals how the reconstruction loss landscape contains a local minima that trap the vanilla
model during optimization. In contrast, Figure 2(b) illustrates how our combined loss (reconstruction
plus injective regularization) reshapes the landscape to provide smoother optimization paths toward
the superior global minima.

2All proofs are deferred to Appendix A.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) Log-scaled reconstruction loss contour map (b) Log-scaled reconstruction loss + regularization contour map

Figure 2: Loss landscapes of autoencoders on Swiss roll data. Warmer colors indicate lower loss.
(a) Log-scale contour of reconstruction loss, showing the presence of local minima. (b) Log-scale
contour of reconstruction loss combined with regularization, where local minima are eliminated.

3.2 ROBUSTNESS TO DISTRIBUTION SHIFT AND ADMISSIBLE REGULARIZATION

When training autoencoders, both reconstruction error and regularization terms are computed as
expectations over a specific data distribution P on M. This typically causes the resulting latent space
embedding N to be influenced by P. However, our fundamental goal is to learn a low-dimensional
embedding of the manifold structure itself, independent of any particular data sampling distribution.
To achieve robustness against distribution shifts, we introduce the concept of Admissibility:

Definition 3 (Admissibility). For a regularization term Ex∼P[R(fΘ(x))], where R is a loss function
and fΘ belongs to a parameterized smooth function class FΘ (which may represent the encoder,
decoder, or their Jacobians), let

SP := arg min
fΘ∈FΘ

Ex∼P[R(fΘ(x))]. (8)

The regularization is admissible if for any probability measures P and Q which are both equivalent to
µM, SP = SQ, i.e., the set of global minima is independent of the probability measure.

The following theorem provides a constructive approach for designing admissible regularizations:

Theorem 2. Let R be a loss function that has a global minimum, and if

min
fΘ∈FΘ

Ex∼P[R(fΘ(x))] = min
u

R(u), (9)

then the corresponding regularization Ex∼P[R(fΘ(x))] is admissible.

Admissible regularizations typically enforce specific geometric or functional properties uniformly
across the manifold. Consider, for example, a regularizer of the form R(f(x)) = ∥(f(x))⊤f(x)−
I∥2F , where f represents the Jacobian of the decoder. This formulation imposes an isometric
constraint, and achieving its minimum ensures the decoder maintains local isometry at each input
point x. The admissibility of such a regularization guarantees that this isometric property is preserved
regardless of how data points are sampled from the manifold.

Remark 3. The standard reconstruction error can itself be viewed as a special case of admissible
regularization, where R = ∥ · ∥2 and FΘ = {Dθ ◦ Eϕ − id | θ, ϕ}, with ‘id’ representing the identity
mapping. This reconstruction term is inherently admissible.

3.3 BI-LIPSCHITZ RELAXATION

The injectivity property enables the integration of complementary gradient regularizations into
autoencoders, enhancing smoothness and geometric fidelity. For robustness against distribution shifts,
we need these gradient regularizations to be admissible. Previous research has explored isometric
constraints for geometric preservation, but these formulations are proven overly restrictive in practice.

According to the Nash embedding theorem (Nash, 1956), an m-dimensional compact Riemannian
manifold requires a latent dimension of O(m2) to guarantee an isometric embedding3. This quadratic

3The required latent dimension n satisfies m(m+1)
2

≤ n ≤ m(3m+11)
2

.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

scaling contradicts the fundamental purpose of autoencoders as tools for efficient dimensionality
reduction. For example, even a modest manifold of intrinsic dimension 10 would theoretically require
over 50 dimensions for isometric embedding, introducing substantial representational redundancy.

Furthermore, when the latent dimension fails to meet the requirements for isometric embedding, the
corresponding regularization becomes non-admissible, which motivates us to introduce bi-Lipschitz
regularization, a principled relaxation scheme that balances geometric preservation with admissibility.

Definition 4 (Bi-Lipschitz). A mapping f : M → N is κ-Bi-Lipschitz, where κ ≥ 1, if

1

κ
· dM(x, y) ≤ dN (f(x), f(y)) ≤ κ · dM(x, y), ∀x, y ∈ M. (10)

While geodesic distance approximation introduces estimation errors, we can establish the bi-Lipschitz
property through differential analysis using the gradient of f . Let fM denote f restricted to M, and
JM
f (x) be the Jacobian of f restricted to the tangent space TxM. We then have:

Theorem 3. Let f : M → Rn be a smooth mapping. If M is connected and f is a diffeomorphism,
then f is κ-bi-Lipschitz if and only if

1

κ
≤ σmin(J

M
f (x)) ≤ σmax(J

M
f (x)) ≤ κ, ∀x ∈ M (11)

where σmin(J
M
f (x)), σmax(J

M
f (x)) are the minimum and maximum singular values of JM

f (x).

Theorem 3 provides a principled approach to rigorously analyze bi-Lipschitz properties without
requiring explicit geodesic distance computation. However, computing singular values of JM

f (x)
requires knowledge of the tangent space, and existing methods (Lim et al., 2024b; Wang & Wang,
2012) for estimating tangent spaces from empirical data introduce additional errors.

Two key insights help address these challenges: i) When f is bi-Lipschitz on Rm, it is naturally
bi-Lipschitz on any sub-manifold M. This allows substituting M with Rm in Theorem 3. ii)
When m > n (as in typical encoding scenarios), f cannot be a diffeomorphism due to dimensional
incompatibility. Therefore, we apply condition equation 11 to the decoder Dϕ : Rn → Rm rather
than the encoder Eθ : Rm → Rn, since f is κ-bi-Lipschitz if and only if f−1 is κ-bi-Lipschitz.

Our proposed bi-Lipschitz regularization is formulated as:

Lbi-Lip(κ) = Ex∼P
[
ReLU(

1

κ
− σmin(x))

2 + ReLU(σmax(x)− κ)2
]
, (12)

where σmin(x) and σmax(x) represent the smallest and largest singular values of JDϕ
(x), respectively.

This regularization retains admissibility even with relatively low embedding dimensions (O(m)):

Theorem 4. Suppose M ⊂ Rm is a connected compact k-dimensional Riemannian manifold. Then
there exists a κ-bi-Lipschitz mapping that embeds M into Rn for some κ ≥ 1 and k ≤ n ≤ 2k.

When the manifold M admits a κ-bi-Lipschitz embedding in Rn, the corresponding loss function
achieves its minimum (zero) and hence satisfies the assumption of Theorem 2. Consequently, the
bi-Lipschitz regularization is admissible.

We refer to an autoencoder regularized by both bi-Lipschitz and injective constraints as a Bi-Lipschitz
Autoencoder (BLAE):

LBLAE = Lrecon + λreg · Lreg + λbi-Lip · Lbi-Lip, (BLAE)

where λreg and λbi-Lip are weighting factors. The injective term eliminates local minima caused by
non-injective encoders, while the bi-Lipschitz term ensures consistent geometric mapping regardless
of data distribution. Together, these constraints enable BLAE to preserve manifold structure with
higher fidelity and robustness than existing methods.

Remark 4. While Theorem 3 assumes smoothness (satisfied by neural networks using activation
functions like tanh, sigmoid, ELU), our framework naturally extends to continuous piecewise-smooth
mappings. This preserves the theoretical conclusions even with non-smooth activation functions like
ReLU, demonstrating the universal applicability of our results across neural network architectures.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 RELATED WORK

Standard autoencoders often exhibit geometric distortion in the latent space. To address this, regular-
ized methods have been proposed to preserve geometric structure, which can be grouped into three
main paradigms based on their regularization mechanisms:

Embedding-regularized autoencoder. Conventional dimensionality reduction techniques such
as ISOMAP (Tenenbaum et al., 2000), LLE (Roweis & Saul, 2000), t-SNE (Van der Maaten &
Hinton, 2008), and UMAP (McInnes et al., 2018) effectively preserve geometric structures through
neighborhood graphs. However, these methods lack explicit mappings between the original and latent
spaces, limiting their ability to generalize to new data points. To overcome this, Duque et al. (2022)
introduced the Geometry Regularized Autoencoder, a unified framework that integrates autoencoders
with classical dimensionality reduction methods to enable robust extension to unseen data. Similarly,
Diffusion Nets (Mishne et al., 2019) enhances autoencoders by learning embedding geometry from
Diffusion Maps (Coifman & Lafon, 2006) through additional eigenvector constraints.

Geometry-regularized autoencoder. This approach enforces geometric properties in the latent
space via graph-based regularizations. Neighborhood Reconstructing Autoencoders (Lee et al.,
2021) reduce overfitting and connectivity errors by enforcing correctly reconstructed neighborhoods.
Structure-Preserving Autoencoders (Singh & Nag, 2021) maintain consistent distance ratios between
ambient and latent spaces. Topological Autoencoders (Moor et al., 2020) capture data’s topological
signature through homology groups. While initially developed for Euclidean spaces, these methods
can be adapted to non-Euclidean manifolds by constructing neighborhood graphs and computing
geodesic distances through shortest paths.

Gradient-regularized autoencoder. This paradigm directly constrains on the derivatives of the
network mappings. Contractive Autoencoder (Salah et al., 2011) penalizes the Frobenius norm of
the encoder’s Jacobian matrix, enforcing local stability and enhancing feature robustness. Chen et al.
(2020) proposed regularizing the decoder’s induced metric tensor to learn flat manifold representations.
Geometric Autoencoders (Nazari et al., 2023) preserve volume form in latent space by regularizing
the determinant of the decoder’s metric tensor, improving data visualization.

Recent advances focus on learning isometric embeddings: Gropp et al. (2020) enforces identity
metric tensors stochastically, while Lee et al. (2022) achieves coordinate invariance through spectral
constraints. Graph Geometry-Preserving Autoencoders (Lim et al., 2024a) bridge graph-based and
gradient-based approaches by leveraging graph Laplacian spectral properties to approximate the
underlying Riemannian metric.

5 EXPERIMENTS

Experimental setup. We evaluate our approach against nine baselines: (1) geometry-based autoen-
coders (SPAE (Singh & Nag, 2021), TAE (Moor et al., 2020)), (2) gradient-based autoencoders
(IRAE (Lee et al., 2022), GAE (Nazari et al., 2023), CAE (Salah et al., 2011)), (3) embedding-based
autoencoders (GRAE (Duque et al., 2022), Diffusion Net (DN) (Mishne et al., 2019)), (4) a hybrid
approach combining graph and gradient regularization (GGAE (Lim et al., 2024a)), and (5) a vanilla
autoencoder. We conduct a grid search over hyperparameters for each model-dataset combination
and report the best performance. Detailed implementation settings are provided in Appendix B.1.

Evaluation metric. We assess model performance through both reconstruction accuracy and geo-
metric preservation. Reconstruction fidelity is quantified by Mean Squared Error (MSE) between
original samples and reconstructions. Geometric preservation is evaluated using two metrics: (1)
k-NN recall (Sainburg et al., 2021; Kobak et al., 2019), measuring neighborhood correspondence
between latent and original spaces, and (2) KLσ divergence (Chazal et al., 2011) with bandwidths
σ ∈ {0.01, 0.1, 1}, assessing similarity of distance distributions across scales. To better evaluate
manifold structures, we adapt these metrics to use geodesic distances derived from similarity graphs
rather than the original Euclidean formulations. See Appendix B.2 for details.

Table 1 reports the average ranks of all methods across metrics and datasets, providing a compact
overview of overall performance that complements the per-dataset comparisons. BLAE achieves
the highest average ranking on key metrics, reflecting superior performance in graph geometry
preservation, reconstruction fidelity, and downstream task accuracy.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Average ranks of evaluation metrics across all datasets (lower is better). Detailed metric
values for each dataset are provided in Appendix B.4 and Appendix C.4. The best is shown in bold.

Measure BLAE SPAE TAE DN GRAE CAE GGAE IRAE GAE Vanilla AE

kNN 1.8 ± 1.3 3.2 ± 1.3 3.8 ± 0.8 4.5 ± 2.7 4.0 ± 2.7 5.8 ± 1.8 7.5 ± 2.1 7.2 ± 0.4 9.0 ± 1.7 7.8 ± 0.8
KL0.01 1.0 ± 0.0 3.0 ± 0.0 2.5 ± 0.9 6.0 ± 1.2 4.5 ± 1.5 7.0 ± 0.7 8.2 ± 2.5 6.8 ± 2.4 6.5 ± 1.1 9.2 ± 0.4
KL0.1 1.0 ± 0.0 3.2 ± 1.1 2.8 ± 0.8 5.5 ± 2.2 3.5 ± 0.9 7.5 ± 0.9 9.0 ± 1.7 7.2 ± 1.6 6.5 ± 0.9 8.8 ± 0.4
KL1 1.0 ± 0.0 4.2 ± 2.3 3.2 ± 1.3 5.2 ± 2.8 4.2 ± 1.9 7.0 ± 1.6 8.0 ± 1.6 7.2 ± 1.3 6.0 ± 2.2 8.2 ± 0.8
MSE 1.2 ± 0.4 4.8 ± 3.3 4.0 ± 0.7 5.2 ± 3.1 4.5 ± 3.0 5.5 ± 1.5 7.5 ± 2.1 7.0 ± 2.1 8.0 ± 1.6 7.2 ± 1.3
Accuracy 1 5 7 4 6 2 10 8 3 9

Swiss Roll. The Swiss Roll dataset consists of a synthetic 2-dimensional manifold embedded in R3.
We construct it by uniformly sampling points from [−2, 10]× [0, 6] and isometrically mapping them
to R3. To create a meaningful contrast between Euclidean and geodesic distances, we remove a strip
[1.5, 6.5]× [2.5, 3.5] from the data (see Appendix B.3 for details).

As shown in Figure 3, our BLAE method correctly preserves the geometric structure in latent space.
Graph-based architectures (SPAE, TAE, GRAE, DN) successfully unroll the manifold but distort its
geometry due to discrepancies between geodesic and Euclidean distances near the removed strip.
All gradient-driven models without injectivity constraints fail to preserve the topological structure
of the manifold, stemming from their non-injective encoders. Further analysis (Appendix C.1 and
C.2) reveals that gradient-based baselines exhibit strong dependence on the Swiss roll’s geometry
(curvature and axis length), while graph-based methods vary with sample size. In contrast, BLAE
consistently preserves topology across both geometric and population variations.

Figure 3: (a) 3-D Swiss roll data. (b) Ground truth: 2-D latent representations to generate a Swiss
roll. Others: 2-D latent representations learned by BLAE and other baseline methods.

dSprites. The dSprites dataset (Matthey et al., 2017) serves as a benchmark for evaluating disen-
tangled representations. It contains 64×64 binary images of three geometric primitives (squares,
ellipses, and hearts) generated through systematic variation of five factors: shape, color, orientation,
scale, and position (x, y). In our experiments, we fix color, scale, and orientation to (white, 1, 0) and
select squares and hearts with all possible positions except a cross-shaped region in the center.

We conduct semi-supervised autoencoder training on this shape-partitioned dataset, creating two
distinct data clusters by adding a constant value of 1 to all pixels in square images. Figure 4 shows
that only BLAE, SPAE, TAE, CAE, and IRAE successfully reconstruct the topological structure
of both clusters, with BLAE exhibiting the least geometric distortion between the parallel planes
representing the two shape classes.

Figure 4: (a) Two parallel planes: 3-D latent representation of square (blue) and heart (red) clusters.
Others: 2-D latent representations learned by BLAE and other baseline methods.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

MNIST. To evaluate robustness against distribution shift, we train models using two different
sampling distributions from the same underlying manifold. We generate these datasets using distinct
rotation strategies on a 28×28 handwritten digit ‘3’:

1. Uniform: Rotate the image in 1◦ increments over the range (0◦, 360◦], and uniformly sample
25% of these rotations as the training set (Figure 5(b)). The remaining are used as the testing set.

2. Non-uniform: Apply 1◦ rotation steps within the ranges (0◦, 30◦] ∪ (180◦, 210◦], and 10◦ steps
within (30◦, 180◦] ∪ (210◦, 360◦] to obtain the training set, as illustrated in Figure 5(c). The
remaining rotation angles constitute the testing set.

Each rotated image is zoomed to five scales (0.8×, 0.9×, 1.0×, 1.1×, 1.2×), generating 450
samples distributed across an annular manifold (Figure 5(b) (c)). Figure 5 illustrates the results.
Gradient-based models without injectivity constraints struggle to capture the manifold topology,
while graph-based methods demonstrate better performance. Notably, although Diffusion Net and
TAE preserve topological structure in their latent representations, only BLAE achieves consistent
embedding structures—forming concentric circles—across both training distributions, demonstrating
its invariance to sampling density variations.

Figure 5: (a) Digit ‘3’ at various scales and rotations. (b) (c) Ground truth: 2D concentric circle latent
representation for uniform and non-uniform training sets. Others: 2D latent representations learned
by BLAE and baseline methods on uniform (left) and non-uniform (right) training sets.

For completeness, Appendix B.4 presents the numerical results for all experiments, Appendix B.5
analyzes the computational complexity, and Appendix C includes extended experiments such as
sensitivity analysis, ablation studies, and downstream classification on additional real-world datasets.

6 CONCLUSION

This work provides both theoretical and empirical foundations for understanding optimization
bottlenecks in autoencoders. We demonstrate that the non-injective nature of standard encoders
fundamentally induces local minima entrapment, explaining the suboptimal convergence observed in
conventional formulations. To address this fundamental limitation, we introduce two key innovations.
First, a novel injective regularization framework based on separation criteria that enforces topological
consistency between input and latent spaces. Second, a bi-Lipschitz geometric constraint that ensures
admissible latent space construction even under aggressive dimensionality reduction, balancing
flexibility with structure preservation. Our Bi-Lipschitz Autoencoder (BLAE) demonstrates state-of-
the-art performance in geometric structure preservation across multiple datasets. Importantly, BLAE
exhibits significantly enhanced robustness to distribution shifts and low-sample regimes compared to
existing approaches, validating our theoretical analysis.

A primary challenge in BLAE implementation stems from the absence of systematic methods for
determining the optimal bi-Lipschitz constant κ. Insufficiently small κ values may compromise
admissibility conditions, whereas excessively large κ values could induce undesirable geometric
distortions. This critical hyperparameter inherently depends on both the intrinsic geometry of the data
manifold and the target embedding space’s dimensionality. Current practice necessitates empirical
determination through computationally intensive grid search procedures.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Frédéric Chazal, David Cohen-Steiner, and Quentin Mérigot. Geometric inference for probability
measures. Foundations of Computational Mathematics, 11:733–751, 2011.

Nutan Chen, Alexej Klushyn, Francesco Ferroni, Justin Bayer, and Patrick Van Der Smagt. Learning
flat latent manifolds with vaes. arXiv preprint arXiv:2002.04881, 2020.

Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and computational harmonic
analysis, 21(1):5–30, 2006.

Andres F Duque, Sacha Morin, Guy Wolf, and Kevin R Moon. Geometry regularized autoencoders.
IEEE transactions on pattern analysis and machine intelligence, 45(6):7381–7394, 2022.

Amos Gropp, Matan Atzmon, and Yaron Lipman. Isometric autoencoders. arXiv preprint
arXiv:2006.09289, 2020.

Dmitry Kobak, George Linderman, Stefan Steinerberger, Yuval Kluger, and Philipp Berens. Heavy-
tailed kernels reveal a finer cluster structure in t-sne visualisations. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pp. 124–139. Springer, 2019.

John M Lee. Smooth manifolds. In Introduction to smooth manifolds, pp. 1–29. Springer, 2003.

Yonghyeon Lee, Hyeokjun Kwon, and Frank Park. Neighborhood reconstructing autoencoders.
Advances in Neural Information Processing Systems, 34:536–546, 2021.

Yonghyeon Lee, Sangwoong Yoon, MinJun Son, and Frank C Park. Regularized autoencoders for
isometric representation learning. In International Conference on Learning Representations, 2022.

Jungbin Lim, Jihwan Kim, Yonghyeon Lee, Cheongjae Jang, and Frank C Park. Graph geometry-
preserving autoencoders. In Forty-first International Conference on Machine Learning, 2024a.

Uzu Lim, Harald Oberhauser, and Vidit Nanda. Tangent space and dimension estimation with the
wasserstein distance. SIAM Journal on Applied Algebra and Geometry, 8(3):650–685, 2024b.

Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disentanglement
testing sprites dataset, 2017.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Gal Mishne, Uri Shaham, Alexander Cloninger, and Israel Cohen. Diffusion nets. Applied and
Computational Harmonic Analysis, 47(2):259–285, 2019.

Michael Moor, Max Horn, Bastian Rieck, and Karsten Borgwardt. Topological autoencoders. In
International conference on machine learning, pp. 7045–7054. PMLR, 2020.

John Nash. The imbedding problem for riemannian manifolds. Annals of Mathematics, 63(1):20–63,
1956. ISSN 0003486X. URL http://www.jstor.org/stable/1969989.

Philipp Nazari, Sebastian Damrich, and Fred A Hamprecht. Geometric autoencoders–what you see is
what you decode. arXiv preprint arXiv:2306.17638, 2023.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embedding.
science, 290(5500):2323–2326, 2000.

Tim Sainburg, Leland McInnes, and Timothy Q Gentner. Parametric umap embeddings for represen-
tation and semisupervised learning. Neural Computation, 33(11):2881–2907, 2021.

Rifai Salah, P Vincent, X Muller, X Gloro, and Y Bengio. Contractive auto-encoders: Explicit
invariance during feature extraction. In Proc. of the 28th International Conference on Machine
Learning, pp. 833–840, 2011.

Simon Till Schönenberger, Anastasiia Varava, Vladislav Polianskii, Jen Jen Chung, Danica Kragic,
and Roland Siegwart. Witness autoencoder: Shaping the latent space with witness complexes. In
TDA {\&} Beyond, 2020.

10

http://www.jstor.org/stable/1969989

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ayushman Singh and Kaustuv Nag. Structure-preserving deep autoencoder-based dimensionality
reduction for data visualization. In 2021 IEEE/ACIS 22nd International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), pp.
43–48. IEEE, 2021.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Jianzhong Wang and Jianzhong Wang. Local tangent space alignment. Geometric structure of
high-dimensional data and dimensionality reduction, pp. 221–234, 2012.

A THEORETICAL PROOFS

A.1 PROOF OF THEOREM 1

Proof. (⇐) ∀x ̸= y ∈ M, choose δ = dM(x, y), there exists ϵ > 0, such that f is (δ, ϵ)-separated,
then

dN (f(x), f(y))

dM(x, y)
> ϵ. (13)

Therefore, dN (f(x), f(y)) > ϵ · dM(x, y) = ϵ · δ > 0, i.e. f(x) ̸= f(y). So f is an injection. Note
that the sufficiency does not require any assumption.

(⇒) Because M is compact, M×M is compact as well. For any δ > 0, let

Cδ :=
{
(x, y) ∈ M×M

∣∣ dM(x, y) ≥ δ
}
. (14)

The continuity and injectivity of f imply that dN (f(x), f(y))/dM(x, y) is continuous and positive
on Cδ . Note that Cδ is a closed subset of M×M, and hence also compact. Therefore, there exists
(x∗, y∗) ∈ Cδ such that

dN (f(x∗), f(y∗))

dM(x∗, y∗)
= inf

(x,y)∈Cδ

dN (f(x), f(y))

dM(x, y)
. (15)

Let ϵ = dN (f(x∗), f(y∗))/(2dM(x∗, y∗)), then f is (δ, ϵ)-separated.

A.2 PROOF OF THEOREM 2

Proof. Because R has a global minimum, we know that

Umin = argmin
u

R(u) ̸= ∅. (16)

∀u∗ ∈ Umin, we have R(f(x))−R(u∗) ≥ 0 for any x ∈ M. Let f be a minimizer of

min
fΘ∈FΘ

Ex∼P
[
R(fΘ(x))

]
, (17)

then

0 = Ex∼P
[
R(f(x))

]
−R(u∗) = Ex∼P

[
R(fΘ(x))−R(u∗)

]
≥ 0. (18)

This implies that R(f(x)) − R(u∗) = 0 a.s.-P, which means f(x) ∈ Umin a.s. on M, since P is
strictly positive. Therefore, f(x) ∈ Umin a.s. on M. On the other hand, if f(x) ∈ Umin a.s. on M,
then since P is absolutely continuous, we have that f(x) ∈ Umin a.s.-P. Hence, it is obvious that f is
a minimizer of equation 17, so

SP = {fΘ ∈ FΘ | fΘ(x) ∈ Umin a.s. on M}. (19)

Similarly, for another strictly positive and absolutely continuous probability measure Q,

SQ = {fΘ ∈ FΘ | fΘ(x) ∈ Umin a.s. on M}, (20)

i.e. SP = SQ which proves the admissibility.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A.3 PROOF OF THEOREM 3

Before proving Theorem 3, we first introduce a auxiliary lemma:
Lemma 1. Given the assumptions in Theorem 3, we have

σmax(J
M
f (x)) = max

v∈TxM\{0}

∥Jf (x)v∥
∥v∥

, (21)

σmin(J
M
f (x)) = min

v∈TxM\{0}

∥Jf (x)v∥
∥v∥

. (22)

Proof. Let k = dim(TxM), choose {v1, · · · , vk} as an orthonormal basis of TxM. Then we have
the following (basis-dependent) representation:

JM
f (x) =

[
Jf (x)v1| · · · |Jf (x)vk

]
= Jf (x)V. (23)

Note that JM
f (x) is an n× k matrix and k ≤ n because f |M is a diffeomorphism, so it has exactly k

singular values. We denote them as σ1 ≥ · · · ≥ σk. By singular value decomposition

JM
f (x) = Pn×nΣn×kQ

⊤
k×k, (24)

where P,Q are orthonormal matrices and Σ = diag(σ1, · · · , σk). Then

V ⊤Jf (x)
⊤Jf (x)V = JM

f (x)⊤JM
f (x) = QΣ⊤ΣQ⊤. (25)

So by eigenvalue decomposition,

σ2
max(J

M
f (x)) = max

u∈Rk\{0}

u⊤Σ⊤Σu

∥u∥2

= max
w∈Rk\{0}

w⊤QΣ⊤ΣQ⊤w

∥w∥2

= max
w∈Rk\{0}

w⊤V ⊤Jf (x)
⊤Jf (x)V w

∥w∥2

= max
v∈TxM\{0}

v⊤Jf (x)
⊤Jf (x)v

∥v∥2

= max
v∈TxM\{0}

∥Jf (x)v∥2

∥v∥2
,

(26)

i.e.

σmax(J
M
f (x)) = max

v∈TxM\{0}

∥Jf (x)v∥
∥v∥

. (27)

Similarly,

σmin(J
M
f (x)) = min

v∈TxM\{0}

∥Jf (x)v∥
∥v∥

. (28)

Proof of Theorem 3. (⇒) Suppose f is κ-bi-Lipschitz, ∀x ∈ int M, consider a unit vector v ∈ TxM.
Let γ : (−ε, ε) → M be a smooth curve with γ(0) = x and γ′(0) = v. By the chain rule:

(f ◦ γ)′(0) = Jf (x)v. (29)

For |t| < ε, the bi-Lipschitz condition implies that

1

κ
· dM(γ(t), x) ≤ dN (f(γ(t)), f(x)) ≤ κ · dM(γ(t), x). (30)

Through dividing by |t| and taking t → 0, we obtain:

1

κ
∥v∥ ≤ ∥Jf (x)v∥ ≤ κ∥v∥, ∀v ∈ TxM. (31)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

For v ̸= 0, dividing equation 31 by ∥v∥ and taking maximum (minimum) give:

1

κ
≤ min

v∈TxM\{0}

∥Jf (x)v∥
∥v∥

≤ max
v∈TxM\{0}

∥Jf (x)v∥
∥v∥

≤ κ. (32)

By lemma 1,

1

κ
≤ σmin(Jf (x)) ≤ σmax(Jf (x)) ≤ κ, ∀x ∈ int M. (33)

By Weyl’s inequality, equation 33 holds for all x ∈ int M = M.

(⇐) Let x, y ∈ M and suppose γ : [0, 1] → M is a smooth path from x to y with ∥γ′∥ > 0 (such
path must exist because M is path-connected). Then the image of γ is a path from f(x) to f(y).

Length(f |M ◦ γ) =
∫ 1

0

∥(f |M ◦ γ)′(s)∥ds

=

∫ 1

0

∥Jf (γ(s))γ′(s)∥ds (γ′(s) ∈ TsM)

=

∫ 1

0

∥Jf (γ(s))γ′(s)∥
∥γ′(s)∥

· ∥γ′(s)∥ds

≤
∫ 1

0

max
v∈TsM\{0}

∥Jf (γ(s))v∥
∥v∥

· ∥γ′(s)∥ds

≤
∫ 1

0

κ · ∥γ′(s)∥ds

= κ · Length(γ).

(34)

Because f |M is a diffeomorphism, f |−1
M exists and is smooth, hence for any smooth path β : [0, 1] →

f(M) from f(x) to f(y), f−1|M ◦ β must be a smooth path from x to y. So, by the definition of
geodesic distance,

dN (f(x), f(y)) = inf
β

Length(β)

= inf
β

Length(f |M ◦ f |−1
M ◦ β)

= inf
γ

Length(f |M ◦ γ)

≤ κ · inf
γ

Length(γ)

= κ · dM(x, y).

(35)

Similarly, we can prove that dN (f(x), f(y)) ≥ 1
κ · dM(x, y) which completes the proof.

A.4 PROOF OF THEOREM 4

Although this theorem can be proved in just a few lines using Proposition C.29 and the Inverse
Function Theorem in (Lee, 2003), for the sake of completeness we present here a more detailed proof.

Proof. Suppose f embeds M into Rn. The Whitney’s embedding theorem guarantees that such an
embedding exists and n ≤ 2k. On the other hand, the embedding dimension obviously cannot be
less than k. It remains to show that f is bi-Lipschitz. Since f is an embedding, we know that the
linear mapping Jf (x) : TxM → Tf(x)f(M) is injective at every point x ∈ M. Thereby, for any
unit vector v ∈ TxM,

∥Jf (x)v∥ > 0, (36)

Because V := {v :
∣∣ v ∈ TxM, ∥v∥ = 1} is compact, there must exist a v∗ ∈ V such that

σmin(J
M
f (x)) = min

v∈TxM\{0}

∥Jf (x)v∥
∥v∥

= min
v∈V

∥Jf (x)v∥ = ∥Jf (x)v∗∥ > 0. (37)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

By Weyl’s inequality (which implies the continuity of singular values of Jf), there exists a neighbor-
hood Ux of x, such that ∀y ∈ Ux,

σmin(J
M
f (y)) ≥ 1

2
σmin(J

M
f (x)), (38)

σmax(J
M
f (y)) ≤ 2σmax(J

M
f (x)). (39)

Choose κ(x) = max{2σmax(J
M
f (x)), 2/σmin(J

M
f (x))}, it is easy to see that κ(x) ≥ 1, we have:

1

κ(x)
≤ σmin(J

M
f (y)) ≤ σmax(J

M
f (y)) ≤ κ(x), ∀y ∈ Ux. (40)

Notice that {Ux|x ∈ M} is a open cover of M, since M is compact, we can find a finite sub-cover
{Ux1 , · · · , UxN

}. Choose κ = max{κ(x1), · · · , κ(xN)}, then,

1

κ
≤ σmin(J

M
f (y)) ≤ σmax(J

M
f (y)) ≤ κ, ∀y ∈ M. (41)

By Theorem 3, f is κ-bi-Lipschitz.

B EXPERIMENTAL DETAILS

B.1 HYPERPARAMETER

We implemented dataset-specific autoencoders tailored to the structural characteristics of each dataset.
For the Swiss Roll and ssREAD datasets, we used a fully connected autoencoder with two hidden
layers of 256 units and ELU activations in both the encoder and decoder. The encoder projected the
input—either 3D coordinates (Swiss Roll) or 50-dimensional PCA-reduced features (ssREAD)—into
a 2-dimensional latent space, which the decoder then used to reconstruct the original input. For Swiss
Roll, models were trained for 3000 epochs using the Adam optimizer with weight decay 1× 10−5

and an initial learning rate of 2× 10−3, reduced by a factor of 0.1 every 1000 epochs. For ssREAD,
models were trained for 1500 epochs with Adam, weight decay 1× 10−5, and an initial learning rate
of 1× 10−3, reduced by a factor of 0.1 every 500 epochs.

For the dSprites dataset, which is detailed in Appendix C.4, we adopted a convolutional autoencoder
based on the ConvNet64 and DeConvNet64 architectures. The encoder consisted of five convolutional
layers with increasing channel widths—from nh to 4× nh—followed by a 1× 1 convolution that
mapped the feature maps to a 2D latent representation. The decoder mirrored this structure using
transposed convolutions to reconstruct the original 64× 64 binary image. Training was conducted
for 1000 epochs using Adam with weight decay 1× 10−5 and an initial learning rate of 1× 10−3.

For the MNIST dataset, we employed a convolutional autoencoder optimized for 28× 28 grayscale
images. The encoder consisted of two convolutional layers with ReLU activations and max pooling,
followed by fully connected layers that compressed the input into a 2D latent vector. The decoder
performed the inverse, using fully connected layers and transposed convolutions to reconstruct the
image. Models were trained for 3000 epochs with Adam, weight decay 1 × 10−5, and an initial
learning rate of 1× 10−2, reduced by a factor of 0.5 every 300 epochs.

All models were designed to produce a 2-dimensional latent space to facilitate direct visualization
and consistent comparison.

The hyperparameters used for the baseline models on each dataset are listed in Table 2. These were
selected via grid search: λ ∈ {0.01, 0.1, 1, 2, 5, 10, 100}, η ∈ {0.001, 0.01, 0.1, 0.2, 0.5, 1}, number
of neighbors ∈ {5, 6, 7, 8, 9, 10, 15, 50, 100, 1000}, and GGAE bandwidth ∈ {0.01, 0.1, 1, 2, 5, 10}.

In our method, κ is treated as a tunable hyperparameter. A simple approach is to apply a standard
grid search, but a more efficient alternative is to use a binary search over a given interval (e.g., [1, 5]).
Starting from the midpoint, if the trained model produces a nonzero Bi-Lipschitz loss (above a
tolerance such as 10−4), this indicates that the current κ is too small and should be increased; if the
loss is effectively zero, the condition is satisfied and κ can be accepted or further reduced. In practice,
the guiding principle is to select the smallest κ for which the Bi-Lipschitz loss remains below the
threshold. Alternatively, if one wishes to enforce a specific distortion bound K between the latent

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 2: Hyperparameter settings for baselines across all evaluated datasets.
Dataset Parameter SPAE TAE DN GRAE CAE GGAE IRAE GAE

Swiss Roll

λ 2 5 100 100 0.1 1 0.01 0.01
η / / 0.001 / / / 0 /

n_neighbor / / 10 5 / 10 / /
bandwidth / / / / / 2 / /

dSprites

λ 10 0.01 0.001 0.1 0.1 0.1 0.1 0.01
η / / 0.1 / / / 0 /

n_neighbor / / 1000 6 / 5 / /
bandwidth / / / / / 5 / /

MNIST

λ 5 10 0.01 0.01 0.1 0.1 0.1 0.01
η / / 0.1 / / / 0 /

n_neighbor / / 50 5 / 15 / /
bandwidth / / / / / 0.01 / /

ssREAD

λ 10 100 0.01 0.01 1 0.01 1 1
η / / 0.1 / / / 0.2 /

n_neighbor / / 5 5 / 10 / /
bandwidth / / / / / 0.01 / /

representations and the input space, κ can be directly set to K, thereby ensuring the constraint while
maintaining robustness to distributional shift.

The hyperparameters used for our model (BLAE) are provided in Table 3.

Table 3: Hyperparameter settings for BLAE across all evaluated datasets.
Datasets Swiss Roll dSprites MNIST ssREAD

λreg 1 2 30 2
λbi-Lip 0.3 0.1 0.1 0.1
κ 1 1.1 2 1.2
ϵ 0.3 0.3 0.6 0.6

B.2 EVALUATION METRICS

We evaluate the performance of each model using three metrics: mean squared error (MSE), k-NN
recall (Sainburg et al., 2021; Kobak et al., 2019), and KLσ divergence (Chazal et al., 2011), where
σ ∈ 0.01, 0.1, 1. While these metrics are traditionally defined using Euclidean distance, we adapt
them to better capture the underlying manifold structure. Specifically, we compute distances using
geodesic metrics: dM on the data manifold and dN in the latent space. These geodesic distances
are approximated by first constructing a neighborhood graph and then computing the shortest paths
between node pairs.

B.2.1 k-NN RECALL

The k-NN recall metric quantifies how well the local neighborhood structure is preserved in the latent
space. It measures the proportion of k-nearest neighbors on the data manifold that remain among the
k-nearest neighbors in the latent space. For the Swiss Roll dataset, we report the average k-NN recall
over k ∈ {5, 10, . . . , 50}. For MNIST and dSprites, we use k ∈ {2, 4, . . . , 10}.

B.2.2 KLσ DIVERGENCE

The KLσ metric computes the Kullback-Leibler divergence between the normalized density estimates
on the data manifold and in the latent space. Let X = {x1, . . . , xN} denote the original data and

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Z = {z1, . . . , zN} their corresponding latent representations. The density at each point is defined by:

pX,σ(xi) =
fX,σ(xi)∑
j fX,σ(xj)

, pZ,σ(zi) =
fZ,σ(zi)∑
j fZ,σ(zj)

, (42)

where the unnormalized densities are computed as:

fX,σ(xi) =
∑
j

exp

(
− 1

σ

(
dM(xi, xj)

maxi,j dM(xi, xj)

)2
)
,

fZ,σ(zi) =
∑
j

exp

(
− 1

σ

(
dN (zi, zj)

maxi,j dN (zi, zj)

)2
)
.

(43)

The final metric is given by KLσ = DKL(pX,σ∥pZ,σ). Smaller values of σ emphasize local structure,
while larger values reflect global geometry.

B.3 GENERATION OF SWISS ROLL DATA

We use the logarithmic spiral r = ebθ (b ̸= 0) to construct the Swiss Roll dataset. The arc length of
the spiral from angle θ1 to θ2 is given by:

s(θ2)− s(θ1) =

∫ θ2

θ1

1 ds

=

∫ θ2

θ1

√
r2(θ) + r′2(θ)dθ

=

∫ θ2

θ1

ebθ
√
1 + b2dθ

=

√
1 + b2

b
(ebθ2 − ebθ1).

(44)

Fixing the starting point at θ1 = 0 and allowing the negative arc length to be negative, we obtain the
arc length as a function of θ:

s(θ) =

√
1 + b2

b
(ebθ − 1), (45)

which leads to the inverse function:

θ(s) =
1

b
log(

bs√
1 + b2

+ 1). (46)

This yields an isometric parameterization of the logarithmic spiral over the interval (−
√
1+b2

b ,+∞):

r(s) = ebθ(s). (47)

To generate the Swiss Roll, we first uniformly sample points (s, z) ∈ [−2, 10] × [0, 6], then re-
move points within the rectangular strip [1.5, 6.5]× [2.5, 3.5]. The remaining points are embedded
isometrically into R3 via:

(s, z) → (ebθ(s) cos(θ(s)), ebθ(s) sin(θ(s)), z). (48)

In Section 5, we set b = 0.1.

B.4 QUANTITATIVE RESULTS

In this section, we present quantitative results, including mean squared error (MSE), k-nearest-
neighbor (k-NN) recall, and KL divergence (KLσ) under multiple bandwidths σ ∈ {0.01, 0.1, 1},
for the Swiss Roll (Table 4), dSprites (Table 5), and MNIST datasets(Table 6 and Table 7). For
dSprites, evaluation is performed specifically on the withheld cross-shaped regions to assess model

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 4: Evaluation metrics (mean ± standard deviation over 5 runs) on the Swiss Roll dataset. For
MSE and KL metrics, lower values are better; for k-NN, higher values are better.

Model k-NN(↑) KL0.01(↓) KL0.1(↓) KL1(↓) MSE(↓)

BLAE 9.61e-01 ± 3.59e-03 1.28e-04 ± 2.95e-05 1.78e-05 ± 5.98e-06 1.39e-06 ± 1.02e-06 9.36e-05 ± 1.92e-05
SPAE 8.95e-01 ± 2.90e-02 7.95e-03 ± 1.13e-02 5.15e-03 ± 8.95e-03 4.73e-04 ± 8.81e-04 2.10e-03 ± 3.25e-03
TAE 8.14e-01 ± 1.54e-02 4.28e-03 ± 7.20e-04 1.57e-03 ± 6.38e-04 5.64e-05 ± 1.72e-05 6.94e-03 ± 5.07e-03
DN 7.22e-01 ± 1.58e-02 5.26e-02 ± 7.95e-03 1.32e-02 ± 7.50e-03 7.43e-04 ± 7.03e-04 1.02e-01 ± 1.73e-02
GRAE 5.70e-01 ± 3.03e-02 4.09e-02 ± 1.26e-02 9.94e-03 ± 4.36e-03 8.34e-04 ± 4.11e-04 7.72e-02 ± 2.16e-02
CAE 6.14e-01 ± 1.71e-02 6.11e-02 ± 1.66e-02 4.10e-02 ± 7.76e-03 2.31e-03 ± 4.27e-04 5.37e-02 ± 7.41e-03
GGAE 6.61e-01 ± 1.22e-01 4.04e-02 ± 2.52e-02 1.80e-02 ± 1.09e-02 1.18e-03 ± 7.70e-04 7.28e-02 ± 4.96e-02
IRAE 5.88e-01 ± 1.45e-02 2.55e-01 ± 2.15e-02 6.75e-02 ± 8.34e-03 2.31e-03 ± 4.82e-04 4.06e-02 ± 2.08e-03
GAE 5.03e-01 ± 3.21e-02 6.96e-02 ± 3.56e-02 2.73e-02 ± 1.28e-02 1.92e-03 ± 4.27e-04 4.80e-02 ± 6.22e-04
Vanilla AE 5.18e-01 ± 2.90e-02 2.00e-01 ± 9.14e-02 5.41e-02 ± 2.07e-02 2.05e-03 ± 6.25e-04 4.14e-02 ± 3.09e-03

Table 5: Evaluation metrics (mean ± standard deviation over 5 runs) on the dSprites dataset. For
MSE and KL metrics, lower values are better; for k-NN, higher values are better.

Model k-NN(↑) KL0.01(↓) KL0.1(↓) KL1(↓) MSE(↓)

BLAE 7.39e-01 ± 5.17e-03 6.42e-03 ± 9.52e-04 3.98e-03 ± 1.84e-04 3.79e-05 ± 1.74e-06 1.69e-02 ± 1.46e-03
SPAE 7.24e-01 ± 4.60e-03 2.95e-02 ± 4.67e-04 9.11e-03 ± 5.36e-05 7.83e-05 ± 4.92e-07 1.72e-02 ± 1.02e-03
TAE 5.58e-01 ± 5.09e-02 3.15e-02 ± 2.44e-02 1.46e-02 ± 5.37e-03 1.25e-03 ± 2.23e-03 2.84e-02 ± 4.65e-03
DN 4.81e-01 ± 4.59e-02 8.41e-02 ± 4.45e-02 7.32e-02 ± 5.16e-02 6.38e-03 ± 5.67e-03 3.47e-02 ± 3.55e-03
GRAE 5.23e-01 ± 1.99e-02 2.94e-02 ± 4.97e-04 9.10e-03 ± 5.59e-05 7.84e-05 ± 4.72e-07 3.06e-02 ± 8.94e-03
CAE 6.79e-01 ± 6.31e-02 3.99e-02 ± 2.38e-02 2.05e-02 ± 2.54e-02 1.79e-03 ± 3.83e-03 2.59e-02 ± 8.76e-03
GGAE 4.36e-01 ± 1.10e-01 1.83e-01 ± 5.64e-02 2.95e-01 ± 1.33e-01 2.72e-03 ± 1.57e-03 5.19e-02 ± 6.98e-03
IRAE 4.89e-01 ± 2.25e-02 1.11e-01 ± 3.51e-02 3.13e-02 ± 1.98e-02 3.32e-03 ± 1.84e-03 5.57e-02 ± 3.09e-03
GAE 4.99e-01 ± 1.12e-01 3.73e-02 ± 2.35e-02 1.79e-02 ± 1.84e-02 1.68e-03 ± 3.57e-03 4.36e-02 ± 8.35e-03
Vanilla AE 4.89e-01 ± 6.01e-02 1.21e-01 ± 7.22e-02 5.23e-02 ± 3.44e-02 4.71e-03 ± 5.16e-03 4.79e-02 ± 4.05e-03

Table 6: Evaluation metrics (mean ± standard deviation over 5 runs) on the (Uniform) MNIST dataset.
For MSE and KL metrics, lower values are better; for k-NN, higher values are better.

Model k-NN(↑) KL0.01(↓) KL0.1(↓) KL1(↓) MSE(↓)

BLAE 9.03e-01 ± 9.38e-03 4.79e-02 ± 5.32e-03 4.01e-02 ± 1.39e-02 1.22e-02 ± 6.28e-03 2.92e-03 ± 1.53e-03
SPAE 8.59e-01 ± 3.10e-02 7.50e-02 ± 1.71e-02 6.35e-02 ± 1.42e-02 1.58e-02 ± 7.63e-03 6.91e-03 ± 2.29e-03
TAE 8.29e-01 ± 2.68e-02 5.17e-02 ± 9.51e-03 6.69e-02 ± 1.99e-02 1.64e-02 ± 8.08e-03 4.93e-03 ± 6.78e-04
DN 8.64e-01 ± 3.17e-02 1.33e-01 ± 4.48e-02 9.15e-02 ± 3.60e-02 1.49e-02 ± 6.72e-03 3.43e-03 ± 9.97e-04
GRAE 8.70e-01 ± 5.67e-02 1.11e-01 ± 5.63e-02 6.87e-02 ± 2.43e-02 1.41e-02 ± 7.06e-03 3.51e-03 ± 1.32e-03
CAE 7.69e-01 ± 3.23e-02 2.58e-01 ± 3.32e-02 1.62e-01 ± 4.66e-02 1.93e-02 ± 8.74e-03 5.54e-03 ± 8.10e-04
GGAE 8.11e-01 ± 4.09e-02 4.95e-01 ± 1.54e-01 1.95e-01 ± 4.04e-02 1.96e-02 ± 8.65e-03 4.33e-03 ± 1.69e-03
IRAE 7.82e-01 ± 4.04e-02 1.04e-01 ± 3.58e-02 9.41e-02 ± 2.13e-02 1.65e-02 ± 8.70e-03 6.17e-03 ± 4.27e-04
GAE 7.03e-01 ± 3.81e-02 1.31e-01 ± 4.19e-02 1.31e-01 ± 4.31e-02 1.96e-02 ± 9.24e-03 6.59e-03 ± 1.27e-03
Vanilla AE 7.69e-01 ± 6.32e-02 4.27e-01 ± 1.65e-01 1.76e-01 ± 4.96e-02 1.85e-02 ± 8.32e-03 6.58e-03 ± 4.79e-03

Table 7: Evaluation metrics (mean ± standard deviation over 5 runs) on the (non-uniform) MNIST
dataset. For MSE and KL metrics, lower values are better; for k-NN, higher values are better.

Model k-NN(↑) KL0.01(↓) KL0.1(↓) KL1(↓) MSE(↓)

BLAE 8.65e-01 ± 4.50e-02 2.89e-02 ± 1.80e-02 1.66e-02 ± 2.60e-03 1.19e-03 ± 7.91e-05 3.88e-03 ± 7.87e-04
SPAE 8.22e-01 ± 1.05e-01 5.59e-02 ± 3.13e-02 6.11e-02 ± 4.39e-02 5.44e-03 ± 5.09e-03 7.78e-03 ± 2.90e-03
TAE 8.77e-01 ± 1.22e-02 3.35e-02 ± 8.59e-03 2.23e-02 ± 1.01e-03 1.32e-03 ± 1.66e-05 5.61e-03 ± 1.88e-03
DN 8.81e-01 ± 6.48e-02 7.19e-02 ± 4.58e-02 4.10e-02 ± 1.74e-02 4.23e-03 ± 2.03e-03 5.48e-03 ± 1.65e-03
GRAE 9.14e-01 ± 2.22e-02 1.06e-01 ± 1.57e-02 4.84e-02 ± 1.72e-02 5.23e-03 ± 1.30e-03 3.08e-03 ± 8.84e-04
CAE 7.58e-01 ± 4.05e-02 1.48e-01 ± 1.95e-02 1.12e-01 ± 5.71e-03 4.55e-03 ± 2.44e-04 8.50e-03 ± 1.33e-03
GGAE 7.15e-01 ± 4.59e-02 2.63e-01 ± 9.76e-02 1.52e-01 ± 1.06e-01 8.92e-03 ± 1.03e-02 9.75e-03 ± 2.48e-03
IRAE 7.36e-01 ± 6.63e-02 7.25e-02 ± 1.85e-02 7.93e-02 ± 2.35e-02 5.17e-03 ± 3.55e-03 8.75e-03 ± 2.46e-03
GAE 6.82e-01 ± 1.94e-01 1.48e-01 ± 6.16e-02 9.22e-02 ± 2.45e-02 4.13e-03 ± 8.02e-04 1.45e-02 ± 1.90e-02
Vanilla AE 7.49e-01 ± 4.75e-02 2.76e-01 ± 1.07e-01 1.48e-01 ± 3.72e-02 7.74e-03 ± 3.39e-03 9.70e-03 ± 1.75e-03

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

generalization to out-of-distribution samples. For each cluster, we compute MSE, k-NN recall, and
KLσ, and report the results as the mean ± standard deviation over five independent runs, with the
final score for each model given by the average across clusters. The best performance for each metric
is highlighted in bold.

The Swiss Roll results show that BLAE attains the lowest reconstruction error and KL divergence
across all bandwidths, together with the highest k-NN recall, indicating both accurate geometry
recovery and strong neighborhood preservation. On dSprites, BLAE also achieves the best scores
across metrics, with particularly large margins on KLσ, demonstrating generalization to out-of-
distribution regions. For uniform MNIST, BLAE remains competitive on all measures, leading in
MSE, k-NN, and KL at three bandwidths. On the more challenging non-uniform MNIST, although
some baselines approach similar k-NN performance, BLAE secures the best results on three of the
five metrics, and the embeddings in Figure 5 show markedly greater robustness to distributional shift.

B.5 COMPUTATIONAL COMPLEXITY

BLAE, along with other graph-based autoencoders, begins by constructing a neighborhood graph and
computing pairwise shortest paths to approximate geodesic distances. This preprocessing step has
a time complexity of O(n2 log n), but it is performed only once and thus does not impact training
efficiency. During training, each mini-batch only requires slicing the precomputed geodesic distance
matrix to extract the relevant submatrix. For instance, in the Swiss Roll experiment, computing the
full geodesic distance matrix took only 0.3 seconds.

Although BLAE integrates both graph-based (injective) and gradient-based (bi-Lipschitz) regular-
ization mechanisms, its computational complexity does not significantly exceed that of employing
either regularization approach in isolation. This efficiency stems from the fact that only a small
subset of samples activate the regularization terms during practical training. Specifically, for data
pair (x, x′) satisfying dN (x, x′)/dM(x, x′) ∈ (ϵ, 1) or data point x where 1/κ < σmin(JDϕ

(x)) ≤
σmax(JDϕ

(x)) < κ, the corresponding gradients of regularization vanish identically.

Table 8: Runtime for training BLAE and other baseline models. All experiments were conducted on
a Mac Mini equipped with an Apple M4 chip (16GB RAM).

Model BLAE SPAE TAE DN GRAE CAE GGAE IRAE GAE Vanilla AE

Runtime (s) 170.9 162.1 601.3 204.4 147.3 199.6 415.8 189.3 207.6 136.2

Consequently, these inactive components are naturally excluded from backpropagation computations.
To benchmark, we measured the runtime for training the Swiss Roll dataset in 3000 training steps
with 1500 samples divided into three batches (batch size=500). Notably, considering the robustness of
gradient-based regularization under limited sample sizes, we implemented a partial sampling strategy
where only 10% of data points within each training batch are utilized for computing the Jacobian
matrix and the corresponding regularization. As shown in Table 8, BLAE exhibits comparable time
complexity to other baselines.

C EXTENTED EXPERIMENTS

C.1 SENSITIVITY ANALYSIS OF b AND LENGTH

In this section, we conduct a sensitivity analysis on the Swiss Roll dataset with respect to two
key parameters: the spiral factor b and the manifold length, both of which influence the geometric
complexity of the data manifold.

In logarithmic spirals, the curvature is inversely related to |b|: smaller values of |b| correspond to
tighter coiling of the spiral. During experiments, we observed that gradient-based autoencoders, such
as TAE, SPAE, and GGAE, are more prone to converge to suboptimal local minima as |b| decreases.
To assess this behavior systematically, we varied b while keeping all other parameters fixed. As
shown in Figure 6, when b = 0.1, the baseline models struggle to fully unfold the manifold structure.
Interestingly, at b = 0.12, GGAE shows earlier signs of escaping non-injective regimes, likely due

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 6: 2-D latent representations of Swiss Roll data learned by BLAE and gradient-based baselines
trained with different values of b (0.1, 0.12, 0.15) on the Swiss Roll data. All models were trained
using 1500 sample points, and all figures were plotted using the entire 10,000 sample points.

to its hybrid design that combines gradient-based regularization with structural information from a
graph. Full unfolding of the spiral is achieved by all models once b increases to 0.15.

Figure 7: 2-D latent representations learned of Swiss Roll data by BLAE and graph-based baselines
trained with different lengths ([-2, 10], [1, 10]) on the Swiss Roll data. All models were trained using
1500 sample points, and all figures were plotted using the entire 10,000 sample points.

The manifold length is another important factor influencing unfolding quality. Empirical evidence
suggests that gradient-based models tend to perform better on shorter Swiss Roll configurations.
To evaluate this, we fixed b = 0.1 and generated two versions of the Swiss Roll: (1) a longer
manifold defined over [−2, 10] × [0, 6] \ [1.5, 6.5] × [2.5, 3.5], and (2) a shorter manifold over
[1, 10]× [0, 6] \ [3.5, 7.5]× [2.5, 3.5]. As shown in Figure 7, the shorter configuration leads to more
effective unfolding for most models, particularly those graph-based baseline methods.

C.2 SENSITIVITY ANALYSIS OF SAMPLE SIZE

The performance of graph-based methods is highly sensitive to sample density, as the quality of the
neighborhood graph—and hence the accuracy of geodesic distance estimation—directly depends on
the number of training points. In this section, we systematically analyze how the training sample size
affects the behavior of graph-based autoencoders.

We generated 10,000 Swiss Roll samples using fixed parameters (b = 0.15, latent domain [−2, 10]×
[0, 6]), and trained models using subsets of 400, 1000, and 3000 samples. To maintain consistency
and isolate the effect of sample size, we avoided removing any subregions from the latent space,
ensuring a smooth geodesic-Euclidean correspondence.

As shown in Figure 8, graph-based baselines exhibit increasing distortion in the latent representa-
tions as the sample size decreases, reflecting their reliance on high-resolution graphs for structural

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 8: 2-D latent representations learned by BLAE and graph-based baselines trained with different
sample sizes (400, 1000, 3000) on the Swiss Roll data. All models were trained on the indicated
sample sizes, while visualizations use the full set of 10,000 data points.

Table 9: Evaluation metrics (over 5 runs) of BLAE and graph-based baselines trained with different
sample sizes (400, 1000, 3000) on the Swiss Roll data. For MSE and KL metrics, lower values are
better; for k-NN, higher values are better. The best performance for each metric is shown in bold.

Measure BLAE GGAE SPAE TAE Diffusion Net GRAE

Sample size = 400
MSE(↓) 1.52e-03±1.07e-04 9.69e-02±7.98e-03 1.86e-02±6.07e-03 5.39e-02±2.96e-03 1.34e-01±2.84e-02 1.80e-01±3.93e-03
k-NN(↑) 9.19e-01±3.10e-03 4.55e-01±2.89e-02 7.30e-01±2.38e-02 6.81e-01±4.18e-03 5.73e-01±3.05e-02 4.76e-01±6.31e-03
KL0.01(↓) 2.49e-03±2.25e-04 1.14e-01±1.08e-02 2.39e-02±4.56e-03 3.01e-02±1.52e-03 4.41e-02±1.23e-02 1.01e-01±3.86e-03
KL0.1(↓) 3.55e-04±3.89e-05 1.81e-02±1.84e-03 5.85e-03±9.64e-04 7.37e-03±3.53e-04 3.83e-02±4.01e-03 2.29e-02±1.56e-04
KL1(↓) 1.78e-05±2.22e-06 1.52e-03±6.69e-05 2.57e-04±1.94e-04 2.56e-04±6.34e-06 2.21e-03±7.78e-05 2.30e-03±7.54e-05
Runtime (s) 8.28e+01±5.82e-01 1.32e+02±9.88e-01 7.79e+01±2.10e+00 1.83e+02±1.96e+00 9.24e+01±1.57e+00 7.55e+01±1.18e+00

Sample size = 1000
MSE(↓) 8.55e-05±7.64e-06 3.96e-02±1.18e-02 3.01e-04±6.52e-05 1.72e-03±4.61e-04 2.42e-01±3.95e-02 5.64e-03±1.50e-03
k-NN(↑) 9.81e-01±2.06e-03 4.87e-01±4.48e-02 9.35e-01±4.40e-03 7.16e-01±2.59e-03 5.03e-01±4.41e-02 6.25e-01±3.24e-02
KL0.01(↓) 1.07e-04±4.28e-05 1.59e-01±1.72e-02 1.29e-03±2.95e-04 2.22e-03±7.23e-04 3.75e-02±1.41e-02 6.31e-02±2.97e-02
KL0.1(↓) 1.14e-05±3.96e-06 2.28e-02±3.33e-03 2.02e-04±8.80e-05 2.22e-03±7.23e-04 3.05e-02±4.70e-03 1.24e-02±8.16e-03
KL1(↓) 8.63e-07±3.32e-07 1.43e-03±9.01e-05 8.82e-06±4.38e-06 2.22e-03±7.23e-04 2.04e-03±1.75e-04 1.00e-03±6.53e-04
Runtime (s) 1.13e+02±4.14e+00 2.17e+02±3.45e+00 1.02e+02±3.70e+00 3.05e+02±3.68e+00 1.18e+02±4.39e+00 9.85e+01±4.99e-01

Sample size = 3000
MSE(↓) 6.42e-05±6.57e-06 1.50e-02±1.17e-02 1.29e-04±2.66e-05 5.72e-04±1.28e-04 2.96e-01±3.01e-03 3.16e-03±3.15e-04
k-NN(↑) 9.81e-01±3.32e-03 6.50e-01±7.56e-02 9.53e-01±4.06e-03 9.31e-01±6.14e-03 4.37e-01±4.87e-03 6.79e-01±6.40e-03
KL0.01(↓) 4.49e-04±2.25e-05 8.68e-02±7.70e-02 7.03e-04±1.94e-04 2.49e-03±2.25e-04 2.07e-02±1.86e-03 9.30e-02±5.89e-03
KL0.1(↓) 5.75e-05±1.01e-05 2.70e-02±8.78e-03 8.28e-05±2.45e-05 3.55e-04±3.89e-05 2.77e-02±1.76e-03 8.81e-03±9.79e-04
KL1(↓) 1.98e-06±1.88e-07 1.31e-03±1.12e-03 3.34e-06±3.89e-07 1.78e-05±2.22e-06 2.08e-03±8.74e-05 7.29e-04±6.71e-05
Runtime (s) 1.88e+02±1.47e+00 1.97e+03±1.72e+01 1.82e+02±1.42e+00 2.16e+03±1.00e+02 1.94e+02±1.75e+00 3.37e+02±8.01e+00

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

accuracy. In contrast, BLAE consistently preserves the underlying geometry across all sample sizes,
demonstrating strong robustness to data sparsity and limited supervision.

C.3 COMPARISON OF INJECTIVE REGULARIZATION AND SPAE REGULARIZATIONS

Our injective regularization shares structural similarities with SPAE’s regularization in their formal
use of geodesic distance ratios between the data manifold M and the latent space N . Both frameworks
impose constraints involving dM/dN . However, their underlying philosophies differ significantly.

SPAE enforces a strict constraint of dM/dN = constant, relying on a graph-based approximation
d̂M that introduces systematic bias under finite sampling. Additionally, SPAE substitutes dN with the
Euclidean norm ∥ · ∥2, which inherently underestimates geodesic distances—especially in non-convex
latent spaces, where equality ∥ · ∥2 = dN holds only in convex settings. For example, in the Swiss
Roll dataset, points located on opposite sides of the removed strip exhibit large geodesic distances,
yet are deceptively close in Euclidean space.

In contrast, our injective regularization selectively penalizes extreme distortions in the dM/dN ratio,
and is inherently more tolerant to approximation errors. Rather than enforcing a global constraint,
it activates only when a specific geometric violation is detected, enabling targeted regularization
through appropriate gradient signals.

Notably, combining SPAE with gradient-based (bi-Lipschitz) regularization results in inferior perfor-
mance. This degradation arises from the compounded effects of distance approximation errors and
the rigid constraints enforced by SPAE. As shown in Figure 9, integrating our injective regulariza-
tion with bi-Lipschitz constraints yields superior latent space structure, maintaining both injectivity
and smoothness. In contrast, the SPAE-based combination proves less effective, underscoring the
limitations of strict graph-based regularization under approximate distance computation.

Figure 9: 2-D latent representation of Swiss Roll data learned by autoencoders with (a) only injective
regularization, (b) only SPAE regularization, (c) injective + 1-bi-Lipschitz regularization, (d) SPAE +
1-bi-Lipschitz regularization. All models were trained using 1500 sample points, and all figures were
plotted using the entire 10,000 sample points.

C.4 EXTRA DATASETS AND EXPERIMENTS

Figure 10: Left: Single cell type in the AD00109 dataset from the ssREAD database. Others: 2-D
latent representations learned by BLAE and other baseline methods.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

We utilize the AD00109 dataset from the ssREAD database, which provides single-nucleus RNA
sequencing (snRNA-seq) data from brain tissue of Alzheimer’s disease (AD) patients. This dataset
contains transcriptomic profiles from the prefrontal cortex of several female AD patients, aged
between 77 and over 90. Sequencing was performed using the 10x Genomics Chromium platform.
Standard preprocessing steps were applied, including quality control, normalization, dimensionality
reduction, and unsupervised clustering. The resulting dataset consists of 9,891 cells and 27,801 genes,
annotated into seven distinct cell types.

For downstream analysis, we apply principal component analysis (PCA) and retain the top 50
principal components. We split the data by using 25% of the cells for training and the remaining
75% for evaluation. Figure 10 shows the 2D latent representations learned by BLAE and several
baseline methods. Among these, BLAE, SPAE, TAE, and GAE better preserve the distinct boundaries
between different cell types. To quantitatively assess representation quality, we train a Support Vector
Machine (SVM) classifier on the latent representations (latent dimension = 2, 32) of the training set
and report classification accuracy on the evaluation set. Results are summarized in Table 10, where
BLAE achieves the highest accuracy on both latent dimensions, indicating that it learns the most
discriminative latent representations for single-cell type identification.

Table 10: Classification accuracy (over 5 runs) of SVM trained on latent representations learned
by different models. BLAE achieves the highest accuracy, demonstrating better preservation of
cell-type-specific information in the latent space. The best performance is shown in bold.

Model Latent dimension = 2 Latent dimension = 32

BLAE 0.9250 ± 0.0033 0.9626 ± 0.0013
SPAE 0.9146± 0.0206 0.9576± 0.0019
TAE 0.9107± 0.0121 0.9524± 0.0026
DN 0.9167± 0.0064 0.4200± 0.0821
GRAE 0.9131± 0.0119 0.9476± 0.0022
CAE 0.9222± 0.0030 0.9517± 0.0025
GGAE 0.8855± 0.0161 0.9556± 0.0017
IRAE 0.9066± 0.0200 0.9605± 0.0016
GAE 0.9185± 0.0113 0.9575± 0.0022
Vanilla AE 0.8996± 0.0172 0.9557± 0.0017

D USAGE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models as a general-purpose writing assistant. Its role was limited to
grammar checking, minor stylistic polishing, and improving the clarity of phrasing in some parts of
the manuscript. The authors made all substantive contributions to the research and writing.

22

	Introduction
	Bottleneck of autoencoders
	Autoencoders and regularizations
	Why autoencoders and gradient variants fail?
	Graph regularizations vs. gradient regularizations

	Gradient autoencoder with injective constraint
	Separation criterion and injective regularization
	Robustness to distribution shift and admissible regularization
	Bi-Lipschitz relaxation

	Related work
	Experiments
	Conclusion
	Theoretical Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Experimental Details
	Hyperparameter
	Evaluation Metrics
	k-NN recall
	KL-sigma Divergence

	Generation of Swiss Roll Data
	Quantitative results
	Computational complexity

	Extented experiments
	Sensitivity analysis of b and length
	Sensitivity analysis of sample size
	Comparison of injective regularization and SPAE regularizations
	Extra datasets and experiments

	Usage of Large Language Models (LLMs)

