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ABSTRACT

Autoencoders are widely used for dimensionality reduction, based on the assump-
tion that high-dimensional data lies on low-dimensional manifolds. Regularized
autoencoders aim to preserve manifold geometry during dimensionality reduction,
but existing approaches often suffer from non-injective mappings and overly rigid
constraints that limit their effectiveness and robustness. In this work, we identify
encoder non-injectivity as a core bottleneck that leads to poor convergence and
distorted latent representations. To ensure robustness across data distributions, we
formalize the concept of admissible regularization and provide sufficient condi-
tions for its satisfaction. In this work, we propose the Bi-Lipschitz Autoencoder
(BLAE), which introduces two key innovations: (1) an injective regularization
scheme based on a separation criterion to eliminate pathological local minima,
and (2) a bi-Lipschitz relaxation that preserves geometry and exhibits robustness
to data distribution drift. Empirical results on diverse datasets show that BLAE
consistently outperforms existing methods in preserving manifold structure while
remaining resilient to sampling sparsity and distribution shifts.

1 INTRODUCTION

Autoencoders have been established as powerful tools for dimensionality reduction and visualization.
While theoretically promising due to their universal approximation capabilities, vanilla autoencoders
often fail to preserve the geometric properties essential for meaningful latent representations. This
limitation has motivated two main approaches to regularize the latent space: 1) Gradient-based
methods (Nazari et al., [2023; |Salah et al., 2011; Lim et al., 2024a; [Lee et al., 2022)) constrain the
Jacobian of the encoder or decoder to promote smoothness and local geometric preservation. 2)
Graph-based methods align latent representations with distance structures derived from neighborhood
graphs (Moor et al.|, 20205 |Schonenberger et al., 2020} [Singh & Nag [2021)) or pretrained embeddings
(Mishne et al.| [2019]; |[Duque et al.} 2022).

Despite their distinct theoretical foundations, both approaches face substantial practical challenges.
Graph-based methods depend heavily on the graph accuracy, limiting their effectiveness under sparse
sampling conditions. Gradient-based methods exhibit robustness to sample size and yield smoother
manifolds but frequently converge to local minima during optimization, resulting in compromised
performance that falls short of theoretical expectations.

From a differential topology perspective, gradient constraints typically encode local geometric proper-
ties. For example, a mapping f : M — R" satisfying JfT Jy = I is an isometric immersion. With an
additional global injectivity condition, f becomes an embedding. This motivates us to investigate the
interplay between injectivity and optimization in gradient-based autoencoders. Through theoretical
and empirical analysis, we identify the non-injectivity of the encoder as a key bottleneck in training
autoencoders effectively. To address this limitation, we propose a novel framework that guarantees
injectivity through separation criteria in the latent space, helping to avoid pathological local minima
that can trap standard gradient-based methods and enabling them to achieve their theoretical potential.

To create a geometrically consistent latent embedding that maintains intrinsic manifold structures,
robustness against distributional shifts is essential because our goal isn’t tied to specific data distribu-
tions. This requires the imposed regularization to be admissible — specifically, the targeted geometric
properties must be strictly satisfied. While prior work employs isometric constraints (Lee et al., 2022
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Gropp et al., 2020; Lim et al., [2024a)), such embeddings typically demand (’)(mg) dimensions, where
m is the dimension of the manifold. This severely impairs the efficiency of the autoencoder. To
address this, we propose a principled relaxation through bi-Lipschitz regularization, achieving linear
complexity in manifold dimension while maintaining robustness to distribution shifts.

To validate our theoretical insights, we develop the Bi-Lipschitz Autoencoder (BLAE), which com-
bines injective and bi-Lipschitz regularization. Our experiments across multiple datasets demonstrate
that BLAE preserves manifold structure with higher fidelity than existing methods while exhibiting
significant robustness to distribution shifts and sparse sampling conditions.

The rest of this paper is organized as follows. Section [2]discusses the limitations of existing methods.
Section [3]introduces our proposed framework. Section f]reviews related work. Section [5 presents
experimental results, and Section [6]concludes the paper.

2 BOTTLENECK OF AUTOENCODERS

Throughout this work, we assume the intrinsic data manifold M C R™ is a compact and connected
Riemannian manifold with Riemannian measure j ¢, unless otherwise stated. We also assume the
data distribution P on M is equivalent to g, i.e., P < paq and ppg < P.

2.1 AUTOENCODERS AND REGULARIZATIONS

Conventional manifold learning and dimension reduction frameworks typically assume that high-
dimensional data resides on a low-dimensional manifold M C R™. An autoencoder learns this
intrinsic representation through a pair of parameterized mappings (€, D) via neural networks:

* The encoder & : R™ — R™(n < m) compresses data onto a low-dimensional latent space;
* The decoder Dy, : R™ — R™ reconstructs the original data from the latent representation.

Training optimizes this encoder-decoder pair by minimizing the expected reconstruction error:

Liecon = ExNJP’HZ‘ - D¢(5@(£))H2 (1)
While vanilla autoencoders effectively learn compressed representations, they often fail to preserve
essential data properties. Advanced variants have emerged to address requirements such as repre-
sentation smoothness, model robustness, and geometric preservation. Based on their regularization
mechanisms, we classify these variants into three categories.

Gradient-regularization. This category applies explicit constraints on the derivatives of network
mappings. Formally, gradient regularization is expressed as:

Egrad = EIN]P [Rl (Jf (1'))] ) (2)
where R is a loss function, and J;(z) represents the Jacobian matrix of a differentiable function
f at input z. The function f can be instantiated as either the encoder & or the decoder D,. A

canonical example is the contractive autoencoder (Salah et al.l 2011), where R (-) = || - |3 imposes
Frobenius-norm constraints on the encoder’s Jacobian to promote local stability.

Geometry-regularization. This category preserves distance relationships when mapping from the
manifold M to the latent space N'. Geometry regularization takes the form:

L:geo = Em,wa [R2 (dM (1’7 y)a d_/\[(gg (x)v 59 (y)))] ) (3)
where Ry is a loss function and d, denotes the geodesic distance on the corresponding manifold.
Implementation typically involves approximating geodesic distances d ¢ through k-nearest neigh-
bors (k-NN) graph construction and shortest-path computations. The latent space metric dus is
conventionally defined as the Euclidean distance || - ||.

Embedding-regularization. The last category directly guides the encoder to match embeddings
produced by classical dimension reduction methods. The regularization is formulated as:

Lemb = Eznpl|Eo(x) — 2|1, “4)
where z is the target embedding of  obtained from methods such as Isomap or diffusion maps.

Remark 1. Since both embedding and geometry regularizations rely on graph construction procedures
standard in conventional dimensionality reduction methods, we unify them under the framework of
Graph-Regularization.
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2.2 WHY AUTOENCODERS AND GRADIENT VARIANTS FAIL?

The universal approximation theorem grants neural network-based autoencoders significant potential
for learning effective latent representations. However, in practice, standard gradient descent optimiza-
tion frequently converges to poor local minima rather than discovering globally optimal solutions.
This convergence behavior—whether terminating in suboptimal local minima or achieving global
optimality—is fundamentally connected to the concept of injection.

Definition 1 (Injection). f is an injection (injective mapping) on M, if f(z) # f(y),Va # y € M.

Non-injective encoders create latent space collisions where distinct data points map to identical or
nearly identical codes, resulting in inevitable reconstruction errors and suboptimal model perfor-
manc In practical implementations with finite sample sets {x1,--- ,xy} C M, the point-wise
injectivity condition & (z;) # Ep(x;) for all ¢ # j typically holds (w.p.1) when the encoder &g
avoids local constancy. However, this does not guarantee global injectivity. More precisely, even
when & (x;) # Eg(«;) for distinct sample points, if disjoint neighborhoods U;, U; of these points
have overlapping encodes (Eg(U;) N E(U;) # @), the injectivity property is violated.

Figure [T illustrates this non-injective bottleneck using a toy example of 20 points sampled from a
V-shaped manifold. We analyze three autoencoder configurations with two hidden layers of varying
capacities (hidden dimensions: 2, 16, 256). The condition U; N U; = @ and Eg(U;) N Ey(U;) # @
manifests when the encoder maps points from distant manifold regions to nearby coordinates in the
latent space. Figures [I](h) (j) (I) demonstrate this distortion between red and blue classes.

To compensate for these latent space collisions, the decoder must generate sharp variations, appearing
as high local curvature, within intersection regions to minimize reconstruction error, as shown in
Figure [I] (k). The required network complexity for these variations scales polynomially with the
density of encoded data points. When the decoder’s capacity cannot accommodate these geometric
demands, the optimization process becomes trapped in suboptimal local minima where gradient
signals align with the network’s expressivity boundaries (Figure [T] (g)).

Notably, gradient-based regularization schemes suffer from a similar injectivity bottleneck. While
these methods effectively constrain local mapping properties through differential constraints, they
remain insufficient for ensuring global injectivity—a critical topological property that distinguishes
proper embeddings from mere immersions. In approaches like (Lim et al.,[2024a; |Lee et al., 2022),
isometric constraints yield locally structure-preserving encoders via isometric immersion but fail to
satisfy the additional topological requirements for genuine manifold embedding.

2.3  GRAPH REGULARIZATIONS VS. GRADIENT REGULARIZATIONS

Unlike gradient-based approaches, graph-based autoencoder variants inherently enforce injective
mapping by requiring distance preservation between manifolds M and latent space N, where
dap > 0 = dpa > 0. However, these graph-driven approaches have two fundamental limitations:
i) Their discrete graph approximations become unreliable under sparse sampling conditions, as
shortest-path distances increasingly deviate from true manifold geodesics; ii) The Euclidean metric
assumption in latent space introduces systematic errors unless N satisfies strict convexity require-
ments. Comparatively, when the injectivity of the encoder is guaranteed, gradient-based methods can
achieve smoother embeddings with greater robustness to variations in sample density.

3 GRADIENT AUTOENCODER WITH INJECTIVE CONSTRAINT

3.1 SEPARATION CRITERION AND INJECTIVE REGULARIZATION

Our theoretical analysis in Section [2.2]yields two critical insights: i) Imposing injectivity constraints
on the encoder can effectively eliminate pathological local minima that trap optimization trajectories.
ii) Sample-level condition & (x;) # E¢(x;) is insufficient for global injectivity. To address these
issues, we must prevent distant manifold neighborhoods from collapsing into proximal latent clusters,
leading us to enforce metric separation:

"Formally, as the reconstruction loss is calculated in expectation, injective guarantees need only hold a.e..
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Figure 1: Toy example demonstrating the non-injective encoder bottleneck. (a) 20 training points
sampled from a V-shaped manifold with two classes (red and blue). (b) Ground truth: an ideal
encoder separates the two classes in a 1D latent space. (c) (e) Reconstructed manifolds by BLAE
(ours) with hidden dimensions 16 and 256, respectively. (d) (f) Corresponding latent representations
learned by BLAE showing proper class separation. (g) (i) (k) Reconstructed manifolds by vanilla
autoencoders with hidden dimensions 2, 16, and 256. (h) (j) (1) Corresponding latent representations
showing non-injective collapse, where distant manifold regions (red vs. blue) map to overlapping
latent codes, resulting in pathological local minima.

Definition 2 ((4, ¢)-separation). Given §, e > 0, a mapping f : M — N is (, €)-separated if for all
x,y € M satisfying dpyq(z,y) > d:

dy (f(2), f(y))

> €. 5)

dM ({E ) y)
This separation criterion provides a sufficient condition for f to be injective: if f is (9, €)-separated
for any 6, ¢ > 0, then f must be an injection. Indeed, under some mild assumptions, this condition
serves as an equivalent characterization of injection:

Theorem 1. E|Supp0se f: M — N is continuous and M is compact, then f is injective if and only
if for any § > 0, there exists € > 0 such that f is (0, €)-separated.

To address the limitations of naive injectivity constraints, we propose a regularization that penalizes
sample pairs violating the separation condition:

6d/\/l (.’E, y)

Lini(6,€) =E; yop |[ReLU [ log ———F———=——— ] - 1 . 6
00 = Beyer [ReL (lo GRS ) Lt @

However, this penalty permits a trivial optimization path to zero loss: simply scaling the encoder by

a factor k = € - max % To prevent this, we additionally constrain the encoder to be

i)s J
non-expansive, meaning Vz,y € M, da(Eg(x), Eo(y)) < dp(x,y). Our final regularization term
combines both constraints:

o)) ).
dpm(z,y) 1) 1dM(I’y)>6}, )

where a (default: 5) is a weighting factor calibrating the strength of the non-expansive constraint.

Lieg(0,€) = Linj(d,€) + - Eg yop [ReLU (

2All proofs are deferred to Appendix
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Remark 2. While Theorem [I]requires validating the separation condition for all § > 0, in practical
implementations, it suffices to validate at a threshold 0y, = min;; dag (s, ;).

Similar to graph-based approaches, we use Euclidean distance for ds and approximate d x4 through
graph construction. Although this approximation introduces some systematic error as discussed in
Section [2.3] our separation criterion proves remarkably resilient to such approximations compared to
other geometry-based regularizations. This robustness allows effective combination with gradient
regularization techniques (see Appendix [C.3|for details).

The proposed injective regularization systematically mitigates pathological local minima in the
loss landscape. Figure 2] visualizes this effect through 2D loss landscapes comparing a standard
autoencoder with its injective-regularized counterpart. Both models were initialized at 6y and
optimized to #; (vanilla autoencoder) and 65 (our regularized autoencoder), respectively. The contour
maps represent loss values across the parameter subspace spanned by vectors 6y — 61 and 6y — 65.
Figure 2{a) reveals how the reconstruction loss landscape contains a local minima that trap the vanilla
model during optimization. In contrast, Figure |Zkb) illustrates how our combined loss (reconstruction
plus injective regularization) reshapes the landscape to provide smoother optimization paths toward
the superior global minima.

(a) Log-scaled reconstruction loss contour map (b) Log-scaled reconstruction loss + regularization contour map

Figure 2: Loss landscapes of autoencoders on Swiss roll data. Warmer colors indicate lower loss.
(a) Log-scale contour of reconstruction loss, showing the presence of local minima. (b) Log-scale
contour of reconstruction loss combined with regularization, where local minima are eliminated.

3.2 ROBUSTNESS TO DISTRIBUTION SHIFT AND ADMISSIBLE REGULARIZATION

When training autoencoders, both reconstruction error and regularization terms are computed as
expectations over a specific data distribution P on M. This typically causes the resulting latent space
embedding AV to be influenced by P. However, our fundamental goal is to learn a low-dimensional
embedding of the manifold structure itself, independent of any particular data sampling distribution.
To achieve robustness against distribution shifts, we introduce the concept of Admissibility:

Definition 3 (Admissibility). For a regularization term E,p[R(fo(z))], where R is a loss function
and fe belongs to a parameterized smooth function class Fg (which may represent the encoder,
decoder, or their Jacobians), let

Sp:=arg min o p[R(fe())] ®

The regularization is admissible if for any probability measures IP and Q which are both equivalent to
M, Sp = Sg, i.e., the set of global minima is independent of the probability measure.
The following theorem provides a constructive approach for designing admissible regularizations:

Theorem 2. Let R be a loss function that has a global minimum, and if

fer)réig@ E.p[R(fo(x))] = muin R(u), )

then the corresponding regularization B, p[R(fo(x))] is admissible.
Admissible regularizations typically enforce specific geometric or functional properties uniformly

across the manifold. Consider, for example, a regularizer of the form R(f(z)) = ||(f(z)) " f(x) —
I||%, where f represents the Jacobian of the decoder. This formulation imposes an isometric
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constraint, and achieving its minimum ensures the decoder maintains local isometry at each input
point z. The admissibility of such a regularization guarantees that this isometric property is preserved
regardless of how data points are sampled from the manifold.

Remark 3. The standard reconstruction error can itself be viewed as a special case of admissible
regularization, where R = || - || and Fg = {Dy o 5 —id | 0, ¢}, with ‘id’ representing the identity
mapping. This reconstruction term is inherently admissible.

3.3 BI-LIPSCHITZ RELAXATION

The injectivity property enables the integration of complementary gradient regularizations into
autoencoders, enhancing smoothness and geometric fidelity. For robustness against distribution shifts,
we need these gradient regularizations to be admissible. Previous research has explored isometric
constraints for geometric preservation, but these formulations are proven overly restrictive in practice.

According to the Nash embedding theorem (Nashl [1956)), an k-dimensional compact Riemannian
manifold requires a latent dimension of O (k?) to guarantee an isometric embedding’| This quadratic
scaling contradicts the fundamental purpose of autoencoders as tools for efficient dimensionality
reduction. For example, even a modest manifold of intrinsic dimension 10 would theoretically require
over 50 dimensions for isometric embedding, introducing substantial representational redundancy.

Furthermore, when the latent dimension fails to meet the requirements for isometric embedding, the
corresponding regularization becomes non-admissible, which motivates us to introduce bi-Lipschitz
regularization, a principled relaxation scheme that balances geometric preservation with admissibility.

Definition 4 (Bi-Lipschitz). A mapping f : M — N is x-Bi-Lipschitz, where x > 1, if

L duae,y) < A (7). ) < 5 duey), Yo,y € M (10)

While geodesic distance approximation introduces estimation errors, we can establish the bi-Lipschitz
property through differential analysis using the gradient of f. Let f( denote f restricted to M, and
J ;‘/‘ (z) be the Jacobian of f restricted to the tangent space 7., M. We then have:

Theorem 3. Let f : M — R™ be a smooth mapping. If M is connected and f is a diffeomorphism,
then f is k-bi-Lipschitz if and only if

L < ominlT (@) < O (T () S, Vr € M (1

where amin(JJ{V‘ (x)), amaX(J]{\” (x)) are the minimum and maximum singular values of JJ{M (z).

Theorem [3| provides a principled approach to rigorously analyze bi-Lipschitz properties without
requiring explicit geodesic distance computation. However, computing singular values of .J f"l (z)
requires knowledge of the tangent space, and existing methods (Lim et al.l |2024b; [Zhang & Zhal
2003) for estimating tangent spaces from empirical data introduce additional errors.

Two key insights help address these challenges: i) When f is bi-Lipschitz on R™, it is naturally
bi-Lipschitz on any sub-manifold M. This allows substituting M with R™ in Theorem ii)
When m > n (as in typical encoding scenarios), f cannot be a diffeomorphism due to dimensional
incompatibility. Therefore, we apply condition equation [[T]to the decoder Dy : R™ — R™ rather
than the encoder & : R™ — R™, since f is x-bi-Lipschitz if and only if f~! is x-bi-Lipschitz.

Our proposed bi-Lipschitz regularization is formulated as:
1
LuiLip(k) = Egop[ReLU(= — 0ppin (2))? + ReLU(0max () — £)?], (12)
K
where 0yin () and o mayx () represent the smallest and largest singular values of Jp, (), respectively.
This regularization retains admissibility even with relatively low embedding dimensions (O(m)):

Theorem 4. Suppose M C R™ is a connected compact k-dimensional Riemannian manifold. Then
there exists a k-bi-Lipschitz mapping that embeds M into R™ for some k > 1 and k < n < 2k.

3The required latent dimension n satisfies k(k;l) <n< k(%;ll).
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When the manifold M admits a x-bi-Lipschitz embedding in R", the corresponding loss function
achieves its minimum (zero) and hence satisfies the assumption of Theorem 2} Consequently, the
bi-Lipschitz regularization is admissible.

We refer to an autoencoder regularized by both bi-Lipschitz and injective constraints as a Bi-Lipschitz
Autoencoder (BLAE):

LBLAE = Erecon + >\reg . Ereg + >\bi-Lip : Ebi—Lipa (BLAE)

where Aree and Ap;.Lip are weighting factors. The injective term eliminates local minima caused by
non-injective encoders, while the bi-Lipschitz term ensures consistent geometric mapping regardless
of data distribution. Together, these constraints enable BLAE to preserve manifold structure with
higher fidelity and robustness than existing methods.

Remark 4. While Theorem [3| assumes smoothness (satisfied by neural networks using activation
functions like tanh, sigmoid, ELU), our framework naturally extends to continuous piecewise-smooth
mappings. This preserves the theoretical conclusions even with non-smooth activation functions like
ReLU, demonstrating the universal applicability of our results across neural network architectures.

4 RELATED WORK

Standard autoencoders often exhibit geometric distortion in the latent space. To address this, regular-
ized methods have been proposed to preserve geometric structure, which can be grouped into three
main paradigms based on their regularization mechanisms:

Embedding-regularized autoencoder. Conventional dimensionality reduction techniques such
as ISOMAP (Tenenbaum et al., [2000), LLE (Roweis & Saul, [2000), t-SNE (Van der Maaten &
Hintonl 2008)), and UMAP (Mclnnes et al., 2018)) effectively preserve geometric structures through
neighborhood graphs. However, these methods lack explicit mappings between the original and latent
spaces, limiting their ability to generalize to new data points. To overcome this, Duque et al.| (2022)
introduced the Geometry Regularized Autoencoder, a unified framework that integrates autoencoders
with classical dimensionality reduction methods to enable robust extension to unseen data. Similarly,
Diffusion Nets (Mishne et al.,[2019) enhances autoencoders by learning embedding geometry from
Diffusion Maps (Coifman & Lafon, 2006) through additional eigenvector constraints.

Geometry-regularized autoencoder. This approach enforces geometric properties in the latent
space via graph-based regularizations. Neighborhood Reconstructing Autoencoders (Lee et al.,
2021) reduce overfitting and connectivity errors by enforcing correctly reconstructed neighborhoods.
Structure-Preserving Autoencoders (Singh & Nagl 2021)) maintain consistent distance ratios between
ambient and latent spaces. Topological Autoencoders (Moor et al.,2020) capture data’s topological
signature through homology groups. While initially developed for Euclidean spaces, these methods
can be adapted to non-Euclidean manifolds by constructing neighborhood graphs and computing
geodesic distances through shortest paths.

Gradient-regularized autoencoder. This paradigm directly constrains on the derivatives of the
network mappings. Contractive Autoencoder (Salah et al.| 2011) penalizes the Frobenius norm of
the encoder’s Jacobian matrix, enforcing local stability and enhancing feature robustness. |Chen et al.
(2020) proposed regularizing the decoder’s induced metric tensor to learn flat manifold representations.
Geometric Autoencoders (Nazari et al.,|2023) preserve volume form in latent space by regularizing
the determinant of the decoder’s metric tensor, improving data visualization.

Recent advances focus on learning isometric embeddings: |Gropp et al.| (2020) enforces identity
metric tensors stochastically, while|Lee et al.[(2022) achieves coordinate invariance through spectral
constraints. Graph Geometry-Preserving Autoencoders (Lim et al., [ 2024a) bridge graph-based and
gradient-based approaches by leveraging graph Laplacian spectral properties to approximate the
underlying Riemannian metric.

5 EXPERIMENTS

Experimental setup. We evaluate our approach against nine baselines: (1) geometry-based autoen-
coders (SPAE (Singh & Nag| [2021), TAE (Moor et al., |2020)), (2) gradient-based autoencoders



Under review as a conference paper at ICLR 2026

(IRAE (Lee et al, 2022), GAE (Nazari et al.} [2023)), CAE (Salah et al.| 2011)), (3) embedding-based
autoencoders (GRAE (Duque et al.,[2022)), Diffusion Net (DN) (Mishne et all,[2019)), (4) a hybrid

approach combining graph and gradient regularization (GGAE (Lim et al.}[2024a)), and (5) a vanilla
autoencoder. We conduct a grid search over hyperparameters for each model-dataset combination
and report the best performance. Detailed implementation settings are provided in Appendix [B}

Evaluation metric. We assess model performance through both reconstruction accuracy and geo-
metric preservation. Reconstruction fidelity is quantified by Mean Squared Error (MSE) between
original samples and reconstructions. Geometric preservation is evaluated using two metrics: (1)
k-NN recall (Sainburg et al 2021} [Kobak et al., [2019)), measuring neighborhood correspondence
between latent and original spaces, and (2) KL, divergence (Chazal et al.,[2011)) with bandwidths
o € {0.01,0.1,1}, assessing similarity of distance distributions across scales. To better evaluate
manifold structures, we adapt these metrics to use geodesic distances derived from similarity graphs
rather than the original Euclidean formulations. See Appendix [B.2]for details.

Table [T]reports the average ranks of all methods across metrics and datasets, providing a compact
overview of overall performance that complements the per-dataset comparisons. BLAE achieves
the highest average ranking on key metrics, reflecting superior performance in graph geometry
preservation, reconstruction fidelity, and downstream task accuracy.

Table 1: Average ranks of evaluation metrics across all datasets (lower is better). Detailed metric
values for each dataset are provided in Appendix[B.4|and Appendix|C.5] The best is shown in bold.

Measure BLAE SPAE TAE DN GRAE CAE GGAE IRAE GAE Vanilla AE

k-NN 1.8+13 32+13 38+08 45+27 40+27 58+18 75+21 72+04 90+17 7.8+08
KLg.01 1.0£0.0 3.0+£00 25+£09 60+12 45+15 70+£07 82+25 68+24 65+1.1 92404
KLg.1 1.0+£0.0 32+1.1 28+08 55+22 35+09 75+09 90+17 72+16 65+09 88404

KL, 1.0+£0.0 42+23 32+£13 524+28 42+19 70+£16 80+16 72+£13 6.0£22 82+08
MSE 12+04 48+33 40+07 52+31 45+30 55+15 75+21 70+21 80+16 72+13
Accuracy 1 5 7 4 6 2 10 8 3 9

Swiss Roll. The Swiss Roll dataset consists of a synthetic 2-dimensional manifold embedded in R®.
We construct it by uniformly sampling points from [—2, 10] X [0, 6] and isometrically mapping them
to R3. To create a meaningful contrast between Euclidean and geodesic distances, we remove a strip
[1.5,6.5] x [2.5, 3.5] from the data (see Appendix [B.3|for details).

As shown in Figure[3] our BLAE method correctly preserves the geometric structure in latent space.
Graph-based architectures (SPAE, TAE, GRAE, DN) successfully unroll the manifold but distort its
geometry due to discrepancies between geodesic and Euclidean distances near the removed strip.
All gradient-driven models without injectivity constraints fail to preserve the topological structure
of the manifold, stemming from their non-injective encoders. Further analysis (Appendix [C.T|and
[C.2) reveals that gradient-based baselines exhibit strong dependence on the Swiss roll’s geometry
(curvature and axis length), while graph-based methods vary with sample size. In contrast, BLAE
consistently preserves topology across both geometric and population variations.

(a) 3-D Swiss roll data BLAE (ours)

(b) 2-D latent (ground truth) Diffusion Net

GGAE IRAE GAE Vanilla AE
Figure 3: (a) 3-D Swiss roll data. (b) Ground truth: 2-D latent representations to generate a Swiss
Roll. Others: 3-D reconstruction and 2-D latent representations learned by AE methods.

8
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dSprites. The dSprites dataset (Matthey et al.l 2017) serves as a benchmark for evaluating disen-
tangled representations. It contains 64 x64 binary images of three geometric primitives (squares,
ellipses, and hearts) generated through systematic variation of five factors: shape, color, orientation,
scale, and position (z,y). In our experiments, we fix color, scale, and orientation to (white, 1, 0) and
select squares and hearts with all possible positions except a cross-shaped region in the center.

We conduct semi-supervised autoencoder training on this shape-partitioned dataset, creating two
distinct data clusters by adding a constant value of 1 to all pixels in square images. Figure[d] shows
that only BLAE, SPAE, TAE, CAE, and IRAE successfully reconstruct the topological structure
of both clusters, with BLAE exhibiting the least geometric distortion between the parallel planes
representing the two shape classes.

BLAE (ours) SPAE TAE Diffusion Net GRAE (PHATE)
(a) 3-D latent representation & E ;fg\\:\\ ' [
&> L | =

o

CAE GdAE IRAE GAE Vanilla AE
Figure 4: (a) Two parallel planes: 3-D latent representation of square (blue) and heart (red) clusters.
Others: 2-D latent representations learned by BLAE and other baseline methods.

MNIST. To evaluate robustness against distribution shift, we train models using two different
sampling distributions from the same underlying manifold. We generate these datasets using distinct
rotation strategies on a 28 x28 handwritten digit ‘3’:

1. Uniform: Rotate the image in 1° increments over the range (0°,360°], and uniformly sample
25% of these rotations as the training set (Figure[5(b)). The remaining are used as the testing set.

2. Non-uniform: Apply 1° rotation steps within the ranges (0°,30°] U (180°,210°], and 10° steps
within (30°,180°] U (210°,360°] to obtain the training set, as illustrated in Figure [S[c). The
remaining rotation angles constitute the testing set.

Each rotated image is zoomed to five scales (0.8, 0.9x, 1.0x, 1.1x, 1.2x), generating 450
samples distributed across an annular manifold (Figure Ekb) (c)). Figure |§] illustrates the results.
Gradient-based models without injectivity constraints struggle to capture the manifold topology,
while graph-based methods demonstrate better performance. Notably, although Diffusion Net and
TAE preserve topological structure in their latent representations, only BLAE achieves consistent
embedding structures—forming concentric circles—across both training distributions, demonstrating
its invariance to sampling density variations.

Rotation

Scale

I ./,' \ \;;/

(a) Scaled Rotated MNIST data (b) Uniform (c) Non-uniform BLAE (ours) SPAE
=N 7\ = e —
N 1 7\ 7 N\ e~ I~ —
NN o) 6 @, €5
{ ) ) L \ ) N\ }/ D) 7))
N/ \_J ) {7 " © (%2
TAE Diffusion Net GRAE (PHATE) CAE
/S - n ) A\ A N /
(GRS RS £9) > () (N«
& 'm‘. K‘ ot S - \\K, 7, N/ < ’4/4 |
GGAE IRAE GAE Vanilla AE

Figure 5: (a) Digit ‘3’ at various scales and rotations. (b) (c¢) Ground truth: 2D concentric circle latent
representation for uniform and non-uniform training sets. Others: 2D latent representations learned
by BLAE and baseline methods on uniform (left) and non-uniform (right) training sets.
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rror Value (log scale)
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(a) Effect of x on different metrics (b) Effect of € on different metrics
Figure 6: Performance evaluation across different hyperparameter settings. (a) shows the impact of
varying e on k-NN accuracy and error metrics. (b) demonstrates the effect of x on the same metrics.
Error metrics are displayed on a logarithmic scale.

For completeness, Appendix [B.4] presents the numerical results for all experiments, Appendix [B.3]
analyzes the computational complexity, and Appendix [C]includes extended experiments such as
sensitivity analysis, ablation studies, and downstream classification on additional real-world datasets.

5.1 HYPERPARAMETER SENSITIVITY ANALYSIS

To assess robustness to hyperparameter choices, we vary the bi-Lipschitz constant x and separation
threshold e on Swiss Roll, keeping other settings fixed. Detailed discussion and ablation studies on
individual regularization terms and latent space visualizations are provided in Appendix [C.3]and[C.4]

Bi-Lipschitz constant k. Figure@ shows performance as x € {1.0,1.1,1.2,1.5,2.0,5.0,10.0}.
k-NN recall peaks at k = 1.2, demonstrating optimal balance between geometric preservation and
flexibility. Overly strict constraints (x = 1.0) enforce near-isomery, but slight relaxation maintains
high fidelity while improving robustness. Excessive relaxation approaches unconstrained behavior
and causes significant deterioration. Notably, MSE remains stable across all , confirming that
geometric preservation drives the performance trade-off. x € [1.0, 1.2] provides robust performance.

Separation threshold e.

Figure shows results for e € {0.2,0.3,...,0.8}. k-NN recall peaks at small ¢ values and declines
gracefully as e increases. This behavior reflects two competing effects: smaller € provides flexible
separation that tolerates geodesic approximation errors, while larger € enforces increasingly strict
separation constraints. As e approaches 1, the constraint increasingly resembles rigid distance-
preserving requirements similar to SPAE, which suffers from vulnerability to geodesic approximation
errors and conflicts with bi-Lipschitz relaxation. KL divergence increases approximately one order
of magnitude across this range. The optimal range ¢ € [0.2,0.4] balances effective topological
separation with robustness to distance estimation errors.

6 CONCLUSION

This work provides both theoretical and empirical foundations for understanding optimization
bottlenecks in autoencoders. We demonstrate that the non-injective nature of standard encoders
fundamentally induces local minima entrapment, explaining the suboptimal convergence observed in
conventional formulations. To address this fundamental limitation, we introduce two key innovations.
First, a novel injective regularization framework based on separation criteria that enforces topological
consistency between input and latent spaces. Second, a bi-Lipschitz geometric constraint that ensures
admissible latent space construction even under aggressive dimensionality reduction. Our Bi-Lipschitz
Autoencoder (BLAE) demonstrates state-of-the-art performance in geometric structure preservation
across multiple datasets. Importantly, BLAE exhibits significantly enhanced robustness to distribution
shifts and low-sample regimes compared to existing approaches, validating our theoretical analysis.

An important direction for future work concerns the behavior of BLAE as latent dimensionality
increases. Recent work on volume-constrained autoencoders (Chen & Fugel 2024) suggests that
combining our topology-preserving constraints with volume minimization could yield more compact
representations, representing a promising avenue for enhancing practical applicability across diverse
dimensional reduction scenarios.
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A THEORETICAL PROOFS

A.1 PROOF OF THEOREM[I]

Proof. (<) Vx #y € M, choose § = daq(x,y), there exists € > 0, such that f is (0, €)-separated,
then

dn (f (), f(y))
d./\/l(xvy)

Therefore, dp(f(x), f(y)) > €-dm(z,y) =€-0 > 0,ie. f(x)# f(y). So f is an injection. Note
that the sufficiency does not require any assumption.

> €. (13)

(=) Because M is compact, M x M is compact as well. For any § > 0, let
Cs = {(x,y)eMxM|dM(1:,y)26}. (14)

The continuity and injectivity of f imply that da(f (), f(y))/dm(x, y) is continuous and positive
on Cjy. Note that Cj is a closed subset of M x M, and hence also compact. Therefore, there exists
(24, ys«) € Cs such that

(), fw) o dv(F(@), f()
Iu(eys)  @aeo: dulwy) 4>
Let e = da(f(2+), f(y«))/(2dam (2, y«)), then fis (0, €)-separated. O

A.2 PROOF OF THEOREM[2|

Proof. Because R has a global minimum, we know that

Upin = arg min R(u) # . (16)
Ve € Umin, we have R(f(z)) — R(u.) > 0 for any € M. Let f be a minimizer of

in Banr [R(fo(2), .

then

0 = Esnp[R(f(2))] — R(us) = Eanp[R(fo(z)) — R(u.)] > 0. (18)

This implies that R(f(z)) — R(us) = 0 a.s.-P, which means f(z) € Up, a.s. on M, since P is
strictly positive. Therefore, f(z) € Upin a.s. on M. On the other hand, if f(z) € Upin a.s. on M,
then since IP is absolutely continuous, we have that f(x) € Up, a.s.-IP. Hence, it is obvious that f is
a minimizer of equation SO

Sp={fo € Fo | fo(x) € Unin a.s. on M}. (19)
Similarly, for another strictly positive and absolutely continuous probability measure @,

So ={fe € Fo | fo(x) € Unin a.s. on M}, (20)
i.e. Sp = Sg which proves the admissibility. O

A.3 PROOF OF THEOREM[3]

Before proving Theorem [3] we first introduce a auxiliary lemma:

Lemma 1. Given the assumptions in Theorem [3| we have

M(z)) = 117y (@)vll
O’max(Jf (1')) - UETrlrvl/?/l}i{()} ||'UH , @1
(M @) = min 1@l )

veT, M\{0}  [|v]]
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Proof. Let k = dim(T,, M), choose {vy,- - ,v;} as an orthonormal basis of T, M. Then we have
the following (basis-dependent) representation:
T (@) = [Tp(@)vr] - | Tp (@)or] = Tp(x)V. (23)

Note that J (z) is an n x k matrix and k& < n because f|y/ is a diffeomorphism, so it has exactly &
singular values. We denote them as o1 > - - - > oy. By singular value decomposition

M) = PasnSnxk Qi (24)
where P, () are orthonormal matrices and ¥ = diag(o1, - - ,0%). Then
V(@) Tp(@)V = I (@) I (@) = QR TEQ T (25)
So by eigenvalue decomposition,
TyT
9 M u X' Xu
J = —_—
T = Byl
w'QETYQ Tw
= max ———————
weRK\{0} [[w][?
Ty T T
e Y V©'Js(x) 2Jf(;v)Vw 26)
weRF\ {0} [[w]]
T T
o U@
veT, M\ {0} [[v]?
_ 175 (@)oll
veT, M\{0}  |[v]2
ie.
[/ ()]
Omax(JM (2) = max (27)
V) = 8 e ol
Similarly,
[T ()]
Omin JM(z)) = min _— (28)
V@) = 0 o]
O

Proof of Theorem[3] (=) Suppose f is k-bi-Lipschitz, Vx € int M, consider a unit vector v € T,, M.
Lety : (—&,&) — M be a smooth curve with v(0) = x and /(0) = v. By the chain rule:

(f 0)'(0) = J¢(x)v. (29)
For |t| < &, the bi-Lipschitz condition implies that
1
— - dm(v(t), 2) < dn(F(1(2)), £(2)) < - da(y(2), 2). (30)
Through dividing by [¢| and taking ¢ — 0, we obtain:
1
~lol < [y (@)l < sllvll, Vo € ToM. 31
For v # 0, dividing equation[31]by ||v|| and taking maximum (minimum) give:
1
1o Ml o @l (32)
K T oveT,M\{0} v veT, M\{0} |||
By lemmal[]
1
~ = Omin (5 (7)) < Omax(Jf (7)) < K, Vo €int M. (33)

By Weyl’s inequality, equationholds for all z € int M = M.

14
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(<) Let 2,y € M and suppose v : [0, 1] — M is a smooth path from z to y with ||7|| > 0 (such
path must exist because M is path-connected). Then the image of  is a path from f(x) to f(y).

Length(f 1 0 7) = / 1(Flat 07 ()]l ds
1
= [ 15566 Glds () € T

- [ Il (34)
S/@UEYE?/\%I}i{O} o] I (s)lld

1

< [ & @)lds
0

= k - Length(7).

Because f| is a diffeomorphism, f|; exists and is smooth, hence for any smooth path 3 : [0,1] —
f(M) from f(x) to f(y), f~*|r o 3 must be a smooth path from z to y. So, by the definition of

geodesic distance,
dn (f(=), f(y)) = inf Length(3)
= inf Length(flr o flpg o B)
= inf Length(f|a 0 7) (35)
Y

IN

k - inf Length(vy)
Bt

1

Ii .
Similarly, we can prove that dy/(f(x), f(y)) > < - dam(x, y) which completes the proof. O

A.4 PROOF OF THEOREM [

Although this theorem can be proved in just a few lines using Proposition C.29 and the Inverse
Function Theorem in (Lee, |2003)), for the sake of completeness we present here a more detailed proof.

Proof. Suppose f embeds M into R™. The Whitney’s embedding theorem guarantees that such an
embedding exists and n < 2k. On the other hand, the embedding dimension obviously cannot be
less than k. It remains to show that f is bi-Lipschitz. Since f is an embedding, we know that the
linear mapping Jy () : T M — T,y f(M) is injective at every point € M. Thereby, for any
unit vector v € T, M,

1Ty ()]l >0, (36)
Because V := {v : | v € T, M, |Jv|| = 1} is compact, there must exist a v, € V such that
oMy = e Ir@ll _
Tuin 1) = _min AL =i (el = @ >0 )

By Weyl’s inequality (which implies the continuity of singular values of J), there exists a neighbor-
hood U, of x, such that Vy € U,,

1
Umin(JJ/‘M(y)) > iamin(J}A/t(m))a (38)
JmaX(JJ{Vl (y)) < QUmaX(JJJfM (2))- (39
Choose () = max{20max (J7(x)), 2/omin (J7 (2))}, it is easy to see that r(z) > 1, we have:
1
) < Omin(7 @) < omax(JF (W) < ), Vy € U (40)
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Notice that {U, |z € M} is a open cover of M, since M is compact, we can find a finite sub-cover
{Usz,,++ ,Usy}. Choose k = max{k(z1), - ,k(zn)}, then,

1
E S O'min(J‘?A(y)) S Urnax(']}/vl(y)) S R, Vy S M (41)

By Theorem[3] f is x-bi-Lipschitz. O

B EXPERIMENTAL DETAILS

B.1 HYPERPARAMETER

We implemented dataset-specific autoencoders tailored to the structural characteristics of each dataset.
For the Swiss Roll and ssSREAD datasets, we used a fully connected autoencoder with two hidden
layers of 256 units and ELU activations in both the encoder and decoder. The encoder projected the
input—either 3D coordinates (Swiss Roll) or 50-dimensional PCA-reduced features (ssREAD)—into
a 2-dimensional latent space, which the decoder then used to reconstruct the original input. For Swiss
Roll, models were trained for 3000 epochs using the Adam optimizer with weight decay 1 x 107°
and an initial learning rate of 2 x 10~3, reduced by a factor of 0.1 every 1000 epochs. For ssSREAD,
models were trained for 1500 epochs with Adam, weight decay 1 x 10~°, and an initial learning rate
of 1 x 1073, reduced by a factor of 0.1 every 500 epochs.

For the dSprites dataset, which is detailed in Appendix [C.5] we adopted a convolutional autoencoder
based on the ConvNet64 and DeConvNet64 architectures. The encoder consisted of five convolutional
layers with increasing channel widths—from nj to 4 x np—followed by a 1 x 1 convolution that
mapped the feature maps to a 2D latent representation. The decoder mirrored this structure using
transposed convolutions to reconstruct the original 64 x 64 binary image. Training was conducted
for 1000 epochs using Adam with weight decay 1 x 10~° and an initial learning rate of 1 x 1075,

For the MNIST dataset, we employed a convolutional autoencoder optimized for 28 x 28 grayscale
images. The encoder consisted of two convolutional layers with ReLLU activations and max pooling,
followed by fully connected layers that compressed the input into a 2D latent vector. The decoder
performed the inverse, using fully connected layers and transposed convolutions to reconstruct the
image. Models were trained for 3000 epochs with Adam, weight decay 1 x 1072, and an initial
learning rate of 1 x 102, reduced by a factor of 0.5 every 300 epochs.

All models were designed to produce a 2-dimensional latent space to facilitate direct visualization
and consistent comparison.

Table 2: Hyperparameter settings for baselines across all evaluated datasets.

Dataset ‘ Parameter ‘SPAE TAE DN GRAE CAE GGAE IRAE GAE

A 2 5 100 100 0.1 1 0.01 0.01

. n / /  0.001 / / / 0 /
Swiss Roll n_neighbor / / 10 5 / 10 / /
bandwidth / / / / / 2 / /

A 10 0.01  0.001 0.1 0.1 0.1 0.1 0.01

- n / / 0l / / / 0 /
dSprites n_neighbor / / 1000 6 / 5 / /
bandwidth / / / / / 5 / /

A 5 10 0.01 0.01 0.1 0.1 0.1 0.01

n / /01 / / / 0 /

MNIST | ) jeighbor |/ /50 5 / i5 / 7
bandwidth / / / / / 0.01 / /

A 10 100 0.01 0.01 1 0.01 1 1

/ / 0.1 / / / 0.2 /

sSREAD n_neighbor / / 5 5 / 10 / /
bandwidth / / / / / 0.01 / /
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The hyperparameters used for the baseline models on each dataset are listed in Table 2] These were
selected via grid search: A € {0.01,0.1,1,2,5, 10,100}, n € {0.001,0.01,0.1,0.2,0.5, 1}, number
of neighbors € {5,6,7,8,9,10, 15,50, 100, 1000}, and GGAE bandwidth € {0.01,0.1,1,2,5,10}.

In our method, & is treated as a tunable hyperparameter. A simple approach is to apply a standard
grid search, but a more efficient alternative is to use a binary search over a given interval (e.g., [1, 5)).
Starting from the midpoint, if the trained model produces a nonzero Bi-Lipschitz loss (above a
tolerance such as 10~%), this indicates that the current  is too small and should be increased; if the
loss is effectively zero, the condition is satisfied and « can be accepted or further reduced. In practice,
the guiding principle is to select the smallest x for which the Bi-Lipschitz loss remains below the
threshold. Alternatively, if one wishes to enforce a specific distortion bound K between the latent
representations and the input space, s can be directly set to K, thereby ensuring the constraint while
maintaining robustness to distributional shift.

The hyperparameters used for our model (BLAE) are provided in Table 3]

Table 3: Hyperparameter settings for BLAE across all evaluated datasets.

Datasets | Swiss Roll ~ dSprites MNIST  ssREAD

)\reg 1 2 30 2
Abi-Lip 0.3 0.1 0.1 0.1
K 1 1.1 2 1.2
€ 0.3 0.3 0.6 0.6

B.2 EVALUATION METRICS

We evaluate the performance of each model using three metrics: mean squared error (MSE), k-NN
recall (Sainburg et al.,[2021; | Kobak et al., 2019), and K L, divergence (Chazal et al., 2011), where
o € 0.01,0.1, 1. While these metrics are traditionally defined using Euclidean distance, we adapt
them to better capture the underlying manifold structure. Specifically, we compute distances using
geodesic metrics: da on the data manifold and d s in the latent space. These geodesic distances
are approximated by first constructing a neighborhood graph and then computing the shortest paths
between node pairs.

B.2.1 k-NN RECALL

The k-NN recall metric quantifies how well the local neighborhood structure is preserved in the latent
space. It measures the proportion of k-nearest neighbors on the data manifold that remain among the
k-nearest neighbors in the latent space. For the Swiss Roll dataset, we report the average k-NN recall
over k € {5,10,...,50}. For MNIST and dSprites, we use k € {2,4,...,10}.

B.2.2 KL, DIVERGENCE

The K L, metric computes the Kullback-Leibler divergence between the normalized density estimates

on the data manifold and in the latent space. Let X = {x1,...,zx} denote the original data and
Z ={z1,...,2zn} their corresponding latent representations. The density at each point is defined by:
[x.o(Ti) fz,0(2)
pxo(Ti) = = Pz0(2i) = =7 (42)
Zj fX,a(l’j) Zj fZ,o(Zj)
where the unnormalized densities are computed as:
1 dm (l‘i, l‘j) 2
fxal@) = ZeXp <_a (maxi,j dm(@s,25) ’
’ (43)

[z.0(2:) = zj:exp <_i (ma}ij\;%\f’éj’ Zj))Q) .

The final metric is given by K'L, = Dx1(px .0 [pz,). Smaller values of o emphasize local structure,
while larger values reflect global geometry.
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B.3 GENERATION OF SWISS ROLL DATA

We use the logarithmic spiral r = €% (b # 0) to construct the Swiss Roll dataset. The arc length of
the spiral from angle 6, to 65 is given by:

02
s(62) — s(61) = / 1ds

01

02

_ / NEIOETZION
01
02

= [ eV1+b2d0

01

_ Vi (M2 — cbor)
5 .
Fixing the starting point at #; = 0 and allowing the negative arc length to be negative, we obtain the

arc length as a function of 6:

(44)

VITR

s(0) = = — (" = 1), (45)
which leads to the inverse function:
1 bs
0(s) = —log(———— +1). 46

This yields an isometric parameterization of the logarithmic spiral over the interval (—7”6“’2, +00):
r(s) = e, @7

To generate the Swiss Roll, we first uniformly sample points (s,z) € [—2,10] x [0, 6], then re-
move points within the rectangular strip [1.5,6.5] x [2.5, 3.5]. The remaining points are embedded
isometrically into R? via:

(s,2) = (€9 cos(0(s)), e sin(0(s)), 2). (48)
In Section 3] we set b = 0.1.

B.4 QUANTITATIVE RESULTS

In this section, we present quantitative results, including mean squared error (MSE), k-nearest-
neighbor (k-NN) recall, and KL divergence (K L, ) under multiple bandwidths o € {0.01,0.1,1},
for the Swiss Roll (Table [)), dSprites (Table [5), and MNIST datasets(Table [6] and Table [7). For
dSprites, evaluation is performed specifically on the withheld cross-shaped regions to assess model
generalization to out-of-distribution samples. For each cluster, we compute MSE, k£-NN recall, and
K L,, and report the results as the mean + standard deviation over five independent runs, with the
final score for each model given by the average across clusters. The best performance for each metric
is highlighted in bold.

The Swiss Roll results show that BLAE attains the lowest reconstruction error and KL divergence
across all bandwidths, together with the highest £-NN recall, indicating both accurate geometry
recovery and strong neighborhood preservation. On dSprites, BLAE also achieves the best scores
across metrics, with particularly large margins on K L,, demonstrating generalization to out-of-
distribution regions. For uniform MNIST, BLAE remains competitive on all measures, leading in
MSE, k-NN, and KL at three bandwidths. On the more challenging non-uniform MNIST, although
some baselines approach similar £-NN performance, BLAE secures the best results on three of the
five metrics, and the embeddings in Figure [5|show markedly greater robustness to distributional shift.

B.5 COMPUTATIONAL COMPLEXITY

BLAE, along with other graph-based autoencoders, begins by constructing a neighborhood graph and
computing pairwise shortest paths to approximate geodesic distances. This preprocessing step has
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Table 4: Evaluation metrics (mean 4 standard deviation over 5 runs) on the Swiss Roll dataset. For
MSE and KL metrics, lower values are better; for k-NN, higher values are better.

Model k-NN(1) KLo.01(1) KLo.1 () KL (1) MSE()

BLAE 9.61e-01 £ 3.59¢-03 1.28e-04 + 2.95e-05 1.78e-05 £ 5.98¢-06 1.39¢-06 & 1.02¢-06 9.36e-05 + 1.92e-05
SPAE 8.95e¢-01 £2.90e-02 7.95e-03 & 1.13e-02  5.15e-03 + 8.95e-03  4.73e-04 + 8.81e-04 2.10e-03 £ 3.25¢-03
TAE 8.14e-01 £ 1.54e-02 4.28e-03 4+ 7.20e-04 1.57e-03 + 6.38e-04 5.64e-05 £+ 1.72e-05 6.94e-03 £+ 5.07¢-03
DN 7.22e-01 £+ 1.58e-02 5.26e-02 & 7.95e-03  1.32e-02 4 7.50e-03  7.43e-04 + 7.03e-04 1.02e-01 + 1.73e-02
GRAE 5.70e-01 4= 3.03e-02  4.09e-02 + 1.26e-02  9.94e-03 £ 4.36e-03 8.34e-04 +=4.11e-04 7.72e-02 + 2.16e-02
CAE 6.14e-01 = 1.71e-02  6.11e-02 + 1.66e-02  4.10e-02 £ 7.76e-03  2.31e-03 4+ 4.27e-04 5.37e-02 + 7.41e-03
GGAE 6.61e-01 4 1.22e-01  4.04e-02 + 2.52e-02  1.80e-02 £ 1.09e-02 1.18e-03 & 7.70e-04 7.28e-02 + 4.96e-02
IRAE 5.88e-01 £+ 1.45e-02  2.55e-01 £ 2.15e-02  6.75e-02 & 8.34e-03  2.31e-03 4+ 4.82e-04  4.06e-02 + 2.08e-03
GAE 5.03e-01 = 3.21e-02  6.96e-02 + 3.56e-02 2.73e-02 £ 1.28e-02 1.92e-03 4= 4.27e-04 4.80e-02 + 6.22e-04

Vanilla AE  5.18e-01 + 2.90e-02

2.00e-01 £ 9.14e-02

5.41e-02 £ 2.07e-02

2.05e-03 £ 6.25e-04

4.14e-02 £ 3.09e-03

Table 5: Evaluation metrics (mean =+ standard deviation over 5 runs) on the dSprites dataset. For

MSE and KL metrics, lower values are better; for k-NN, higher values are better.

Model k-NN(1) KLo.01(}) KLo1(D) KL1({) MSEW)

BLAE 7.39e-01 £ 5.17e-03  6.42e-03 £ 9.52e-04 3.98e-03 + 1.84e-04  3.79¢-05 + 1.74e-06  1.69e-02 + 1.46e-03
SPAE 7.24e-01 £ 4.60e-03  2.95e-02 £ 4.67e-04 9.11e-03 £ 5.36e-05  7.83e-05 + 4.92e-07  1.72e-02 + 1.02e-03
TAE 5.58e-01 £5.09e-02  3.15e-02 £ 2.44e-02 1.46e-02 £ 5.37e-03  1.25e-03 +2.23e-03  2.84e-02 + 4.65¢-03
DN 4.81e-01 £ 4.59e-02  8.41e-02 £ 4.45e-02  7.32e-02 £ 5.16e-02  6.38e-03 + 5.67e-03  3.47e-02 & 3.55¢-03
GRAE 5.23e-01 £ 1.99e-02  2.94e-02 + 4.97e-04  9.10e-03 £ 5.59e-05  7.84e-05 + 4.72e-07  3.06e-02 + 8.94e-03
CAE 6.79e-01 £ 6.31e-02  3.99e-02 £ 2.38e-02  2.05e-02 + 2.54e-02  1.79e-03 + 3.83e-03  2.59e-02 =+ 8.76e-03
GGAE 4.36e-01 £ 1.10e-01  1.83e-01 £ 5.64e-02 2.95e-01 £ 1.33e-01  2.72e-03 + 1.57e-03  5.19e-02 & 6.98e-03
IRAE 4.89e-01 £ 2.25e-02  1.11e-01 £ 3.51e-02  3.13e-02 £ 1.98e-02  3.32e-03 & 1.84e-03  5.57e-02 & 3.09e-03
GAE 4.99%-01 £ 1.12e-01  3.73e-02 £ 2.35e-02  1.79e-02 + 1.84e-02  1.68e-03 + 3.57e-03  4.36e-02 + 8.35e-03

Vanilla AE  4.89¢-01 4+ 6.01e-02

1.21e-01 £ 7.22e-02

5.23e-02 £ 3.44e-02

4.71e-03 & 5.16e-03

4.79e-02 £ 4.05e-03

Table 6: Evaluation metrics (mean = standard deviation over 5 runs) on the (Uniform) MNIST dataset.
For MSE and KL metrics, lower values are better; for k-NN, higher values are better.

Model k-NN(1) KLo.01(}) KLo.a(}) KL (1) MSE(})

BLAE 9.03e-01 £ 9.38¢-03  4.79e-02 + 5.32¢-03  4.01e-02 + 1.39e-02  1.22e-02 £ 6.28¢-03  2.92¢-03 + 1.53e-03
SPAE 8.59e-01 £ 3.10e-02  7.50e-02 + 1.71e-02  6.35e-02 & 1.42e-02  1.58e-02 & 7.63e-03  6.91e-03 £ 2.29¢-03
TAE 8.29e-01 £ 2.68e-02 5.17e-02 + 9.51e-03  6.69e-02 &= 1.99e-02  1.64e-02 & 8.08e-03  4.93e-03 £ 6.78e-04
DN 8.64e-01 £ 3.17e-02  1.33e-01 +4.48¢-02  9.15e-02 & 3.60e-02  1.49e-02 & 6.72e-03  3.43e-03 £ 9.97e-04
GRAE 8.70e-01 £ 5.67e-02  1.11e-01 £ 5.63e-02  6.87e-02 4= 2.43e-02 1.41e-02 & 7.06e-03  3.51e-03 £ 1.32e-03
CAE 7.69e-01 £ 3.23e-02  2.58e-01 £ 3.32e-02  1.62e-01 £ 4.66e-02  1.93e-02 + 8.74e-03  5.54e-03 + 8.10e-04
GGAE 8.11e-01 £ 4.09e-02  4.95e-01 + 1.54e-01  1.95e-01 & 4.04e-02  1.96e-02 & 8.65e¢-03  4.33e-03 £ 1.69e-03
IRAE 7.82e-01 £ 4.04e-02  1.04e-01 £ 3.58e-02 9.41e-02 £ 2.13e-02  1.65e-02 + 8.70e-03  6.17e-03 + 4.27e-04
GAE 7.03e-01 £ 3.81e-02 1.31e-01 £4.19¢-02 1.31e-01 £4.31e-02 1.96e-02 &+ 9.24e-03  6.5%¢-03 & 1.27¢-03

Vanilla AE ~ 7.69e-01 + 6.32e-02

4.27e-01 £ 1.65e-01

1.76e-01 £ 4.96e-02

1.85e-02 + 8.32e-03

6.58e-03 £ 4.79-03

Table 7: Evaluation metrics (mean =+ standard deviation over 5 runs) on the (non-uniform) MNIST
dataset. For MSE and KL metrics, lower values are better; for k-NN, higher values are better.

Model k-NN(T) KLo.01(}) KLo.1(J) KL1(1) MSE(})

BLAE 8.65e-01 £ 4.50e-02  2.89¢-02 + 1.80e-02  1.66e-02 + 2.60e-03  1.19e-03 & 7.91e-05 3.88e-03 £ 7.87e-04
SPAE 8.22e-01 £ 1.05e-01  5.59e-02 &+ 3.13e-02  6.11e-02 4= 4.39¢e-02  5.44e-03 £ 5.09¢-03  7.78e-03 £ 2.90e-03
TAE 8.77e-01 £ 1.22e-02  3.35e-02 + 8.59¢-03  2.23e-02 & 1.01e-03  1.32¢-03 & 1.66e-05 5.61e-03 £ 1.88e-03
DN 8.81e-01 £ 6.48e-02  7.19e-02 + 4.58e-02  4.10e-02 & 1.74e-02  4.23e-03 4 2.03e-03  5.48e-03 £ 1.65¢-03
GRAE 9.14e-01 £ 2.22e-02  1.06e-01 £ 1.57e-02 4.84e-02 £ 1.72e-02  5.23e-03 + 1.30e-03  3.08e-03 + 8.84e-04
CAE 7.58e-01 £ 4.05e-02  1.48e-01 £ 1.95e-02  1.12e-01 £ 5.71e-03  4.55e-03 &+ 2.44e-04  8.50e-03 & 1.33e-03
GGAE 7.15e-01 £ 4.59e-02  2.63e-01 £ 9.76e-02  1.52e-01 £ 1.06e-01  8.92e-03 + 1.03e-02  9.75e-03 + 2.48e-03
IRAE 7.36e-01 £ 6.63e-02  7.25e-02 £ 1.85e-02  7.93e-02 + 2.35e-02  5.17e-03 + 3.55e-03  8.75e-03 + 2.46e-03
GAE 6.82e-01 £ 1.94e-01  1.48e-01 £ 6.16e-02  9.22e-02 £ 2.45e-02  4.13e-03 + 8.02e-04  1.45e-02 & 1.90e-02

Vanilla AE ~ 7.49e-01 + 4.75e-02

2.76e-01 £ 1.07e-01

1.48e-01 £ 3.72e-02

7.74e-03 £ 3.39¢-03

9.70e-03 £ 1.75e-03
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a time complexity of O(n?logn), but it is performed only once and thus does not impact training
efficiency. During training, each mini-batch only requires slicing the precomputed geodesic distance
matrix to extract the relevant submatrix. For instance, in the Swiss Roll experiment, computing the
full geodesic distance matrix took only 0.3 seconds.

Although BLAE integrates both graph-based (injective) and gradient-based (bi-Lipschitz) regular-
ization mechanisms, its computational complexity does not significantly exceed that of employing
either regularization approach in isolation. This efficiency stems from the fact that only a small
subset of samples activate the regularization terms during practical training. Specifically, for data
pair (x, 2) satisfying dpr (2, 2") /dam (2, 2") € (e, 1) or data point x where 1/k < omin(Jp, () <
Omax(Jp, (7)) < K, the corresponding gradients of regularization vanish identically.

Table 8: Runtime for training BLAE and other baseline models. All experiments were conducted on
a Mac Mini equipped with an Apple M4 chip (16GB RAM).

Model | BLAE SPAE TAE DN GRAE CAE GGAE IRAE GAE \Vanilla AE
Runtime (s) | 1709 162.1 601.3 2044 1473 1996 4158 1893 207.6 136.2

Consequently, these inactive components are naturally excluded from backpropagation computations.
To benchmark, we measured the runtime for training the Swiss Roll dataset in 3000 training steps
with 1500 samples divided into three batches (batch size=500). Notably, considering the robustness of
gradient-based regularization under limited sample sizes, we implemented a partial sampling strategy
where only 10% of data points within each training batch are utilized for computing the Jacobian
matrix and the corresponding regularization. As shown in Table[8] BLAE exhibits comparable time
complexity to other baselines.

C EXTENTED EXPERIMENTS

C.1 SENSITIVITY ANALYSIS OF b AND LENGTH

In this section, we conduct a sensitivity analysis on the Swiss Roll dataset with respect to two
key parameters: the spiral factor b and the manifold length, both of which influence the geometric
complexity of the data manifold.

BLAE GGAE CAE IRAE GAE Vanilla AE

b=0.12 b=0.1

b=0.15

Figure 7: 2-D latent representations of Swiss Roll data learned by BLAE and gradient-based baselines
trained with different values of b (0.1, 0.12, 0.15) on the Swiss Roll data. All models were trained
using 1500 sample points, and all figures were plotted using the entire 10,000 sample points.

In logarithmic spirals, the curvature is inversely related to |b|: smaller values of |b| correspond to
tighter coiling of the spiral. During experiments, we observed that gradient-based autoencoders, such
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as TAE, SPAE, and GGAE, are more prone to converge to suboptimal local minima as |b| decreases.
To assess this behavior systematically, we varied b while keeping all other parameters fixed. As
shown in Figure[7} when b = 0.1, the baseline models struggle to fully unfold the manifold structure.
Interestingly, at b = 0.12, GGAE shows earlier signs of escaping non-injective regimes, likely due
to its hybrid design that combines gradient-based regularization with structural information from a
graph. Full unfolding of the spiral is achieved by all models once b increases to 0.15.

BLAE GGAE CAE IRAE GAE Vanilla AE

[-2, 10]

(1, 10]

Figure 8: 2-D latent representations learned of Swiss Roll data by BLAE and graph-based baselines
trained with different lengths ([-2, 10], [1, 10]) on the Swiss Roll data. All models were trained using
1500 sample points, and all figures were plotted using the entire 10,000 sample points.

The manifold length is another important factor influencing unfolding quality. Empirical evidence
suggests that gradient-based models tend to perform better on shorter Swiss Roll configurations.
To evaluate this, we fixed b = 0.1 and generated two versions of the Swiss Roll: (1) a longer
manifold defined over [—2,10] x [0,6] \ [1.5,6.5] x [2.5,3.5], and (2) a shorter manifold over
[1,10] x [0,6] \ [3.5,7.5] x [2.5,3.5]. As shown in Figure[8] the shorter configuration leads to more
effective unfolding for most models, particularly those graph-based baseline methods.

C.2 SENSITIVITY ANALYSIS OF SAMPLE SIZE

BLAE GGAE SPAE TAE Diffusion Net GRAE

size = 300

size = 1000

size = 3000

Figure 9: 2-D latent representations learned by BLAE and graph-based baselines trained with different
sample sizes (400, 1000, 3000) on the Swiss Roll data. All models were trained on the indicated
sample sizes, while visualizations use the full set of 10,000 data points.

The performance of graph-based methods is highly sensitive to sample density, as the quality of the
neighborhood graph—and hence the accuracy of geodesic distance estimation—directly depends on
the number of training points. In this section, we systematically analyze how the training sample size
affects the behavior of graph-based autoencoders.
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Table 9: Evaluation metrics (over 5 runs) of BLAE and graph-based baselines trained with different
sample sizes (400, 1000, 3000) on the Swiss Roll data. For MSE and KL metrics, lower values are
better; for £-NN, higher values are better. The best performance for each metric is shown in bold.

Measure ‘ BLAE GGAE SPAE TAE Diffusion Net GRAE
Sample size = 400

MSE() 1.52¢-03+1.07e-04  9.69e-02+7.98¢e-03  1.86e-02+6.07e-03  5.39e-02+2.96e-03  1.34e-01+2.84e-02  1.80e-01+3.93e-03

k-NN(T) 9.19¢-01+3.10e-03  4.55¢-01+2.89¢-02  7.30e-01+2.38¢-02  6.81e-01+4.18e-03  5.73e-01£3.05e-02  4.76e-01+6.31e-03

KLo.01({) 2.49e-03+2.25¢-04  1.14e-01£1.08e-02  2.39e-02+4.56e-03  3.01e-02+1.52e-03  4.41e-02+1.23e-02  1.01e-01+3.86e-03

KLo.1(}) 3.55e-04+3.8%¢-05  1.81e-02:1.84e-03  5.85¢-03+9.64e-04  7.37e-034+3.53e-04  3.83e-02+4.01e-03  2.29¢-02+1.56e-04

KL, (}) 1.78e-05+2.22¢-06  1.52e-03+£6.69¢-05  2.57e-04+£1.94e-04  2.56e-04+6.34e-06  2.21e-03+7.78e-05  2.30e-03+7.54e-05

Runtime (s)

8.28e+01+£5.82e-01

1.32e+02+£9.88e-01

7.79e+01£2.10e+00

1.83e+02£1.96e+00

9.24e+01£1.57e+00

7.55e+01+£1.18e+00

Sample size = 1000

MSE() 8.55¢-05+7.64e-06  3.96e-02+1.18e-02  3.01e-04£6.52e-05  1.72e-03+4.61e-04  2.42e-01+3.95e-02  5.64e-03+1.50e-03
k-NN(1) 9.81e-01+£2.06e-03  4.87e-01+4.48e-02  9.35¢-01+4.40e-03  7.16e-0142.59e-03  5.03e-01+4.41e-02  6.25e-01+3.24e-02
KLg.01({) 1.07e-04+4.28e-05  1.59¢-0141.72e-02  1.29¢-03+2.95¢-04  2.22e-03+7.23e-04  3.75e-02+1.41e-02  6.31e-02+2.97e-02
KLo1(J) 1.14e-05+3.96e-06  2.28e-024+3.33e-03  2.02e-044+8.80e-05  2.22e-03+7.23e-04  3.05e-02+4.70e-03  1.24e-02+8.16e-03
KL:(}) 8.63e-07+3.32¢-07  1.43e-03+9.01e-05  8.82e-06+4.38¢-06  2.22¢-03+£7.23e-04  2.04e-03+1.75¢-04  1.00e-03+6.53e-04
Runtime (s) | 1.13e+02+4.14e+00 2.17e+02+3.45¢+00  1.02e+02+3.70e+00 3.05¢+02+3.68e+00 1.18e+02+4.39e+00  9.85e+01+4.99e-01
Sample size = 3000
MSE(() 6.42e-05+6.57e-06  1.50e-02+1.17¢-02  1.29e-04+2.66e-05  5.72e-04+£1.28e-04  2.96e-01+3.01e-03  3.16e-03+3.15¢-04
k-NN(T) 9.81e-01+3.32¢-03 6.50e-01+7.56e-02 9.53e-0144.06e-03 9.31e-0146.14e-03 4.37e-014+4.87e-03 6.79e-0146.40e-03
KLo.01({) 4.49e-04+2.25¢-05  8.68e-02+£7.70e-02  7.03e-04+1.94e-04  2.49e-034+2.25e-04  2.07e-02+1.86e-03  9.30e-02+5.89¢-03
KLo.1(}) 5.75e-05+£1.01e-05  2.70e-02+£8.78e-03  8.28e-05+2.45¢-05  3.55¢-0443.89e-05  2.77e-02+1.76e-03  8.81e-03+9.79¢-04
KL:(}) 1.98¢-06+-1.88e-07  1.31e-03+1.12e-03  3.34e-06+3.89e-07  1.78e-05+2.22e-06  2.08e-03+8.74e-05  7.29e-04+6.71e-05

Runtime (s)

1.88e+02+£1.47e+00

1.97e+03+£1.72e+01

1.82e+02+1.42e+00

2.16e+03+1.00e+02

1.94e+02£1.75e+00

3.37e+02+£8.01e+00

We generated 10,000 Swiss Roll samples using fixed parameters (b = 0.15, latent domain [—2, 10] x
[0, 6]), and trained models using subsets of 400, 1000, and 3000 samples. To maintain consistency
and isolate the effect of sample size, we avoided removing any subregions from the latent space,
ensuring a smooth geodesic-Euclidean correspondence.

As shown in Figure[9] graph-based baselines exhibit increasing distortion in the latent representa-
tions as the sample size decreases, reflecting their reliance on high-resolution graphs for structural
accuracy. In contrast, BLAE consistently preserves the underlying geometry across all sample sizes,
demonstrating strong robustness to data sparsity and limited supervision.

C.3 COMPARISON OF INJECTIVE REGULARIZATION AND SPAE REGULARIZATIONS

Our injective regularization shares structural similarities with SPAE’s regularization in their formal
use of geodesic distance ratios between the data manifold M and the latent space . Both frameworks
impose constraints involving d ¢ /d . However, their underlying philosophies differ significantly.

SPAE enforces a strict constraint of d/dx = constant, relying on a graph-based approximation

d a4 that introduces systematic bias under finite sampling. Additionally, SPAE substitutes das with the
Euclidean norm || - |2, which inherently underestimates geodesic distances—especially in non-convex
latent spaces, where equality || - ||2 = da holds only in convex settings. For example, in the Swiss
Roll dataset, points located on opposite sides of the removed strip exhibit large geodesic distances,
yet are deceptively close in Euclidean space.

In contrast, our injective regularization selectively penalizes extreme distortions in the dq/d s ratio,
and is inherently more tolerant to approximation errors. Rather than enforcing a global constraint,
it activates only when a specific geometric violation is detected, enabling targeted regularization
through appropriate gradient signals.

Notably, combining SPAE with gradient-based (bi-Lipschitz) regularization results in inferior perfor-
mance. This degradation arises from the compounded effects of distance approximation errors and
the rigid constraints enforced by SPAE.

C.4 ABLATION STUDIES AND SENSITIVITY ANALYSIS OF K AND €
C.4.1 COMBINING INJECTIVE REGULARIZATION WITH GRADIENT-BASED METHODS

To demonstrate that injective regularization can alleviate pathological local minima in existing
gradient-based autoencoders, we combine our separation criterion with two representative gradient-
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based regularizers: CAE and GAE. We conduct experiments on the Swiss Roll dataset with 1,500
training samples and visualize using the complete 10,000-point dataset.

Figure [T0]shows the results of combining injective regularization with CAE and GAE. Panels (a)-(b)
show that CAE and GAE alone struggle to properly unfold the Swiss Roll manifold, exhibiting
non-injective collapse similar to the vanilla autoencoder. However, when combined with our injective
regularization (panels (c)-(d)), both methods successfully preserve the manifold topology and properly
unfold the structure without collapse. While the unfolded representations show some geometric
irregularities along the boundaries compared to the ideal rectangular structure, the critical topological
property, preventing distant manifold regions from collapsing into nearby latent codes, is successfully
enforced. This demonstrates that our injective regularization acts as a complementary constraint that
helps gradient-based methods escape pathological local minima caused by non-injectivity. For optimal
geometric preservation, including smooth boundaries, combining both injective and bi-Lipschitz
regularization (as in full BLAE) is necessary, which we demonstrate throughout the next section.

(c) CAE + injective (d) GAE + injective

(a) CAE regularization (b) GAE regularization regularization regularization

Figure 10: 2-D latent representation of Swiss Roll data learned by autoencoders with (a) only CAE
regularization, (b) only GAE regularization, (c) CAE + injective regularizations, (d) CAE + injective
regularizations.

C.4.2 COMPLEMENTARY ROLES OF INJECTIVE AND BI-LIPSCHITZ REGULARIZATION

To validate that both regularization terms serve distinct and complementary purposes, we conduct
ablation experiments on the Swiss Roll dataset. Figure[[T]presents 2-D latent representations learned
under four different regularization schemes, all trained with 1500 samples and visualized using the
complete 10,000-point dataset.

Injective regularization only. (Fig. @(a)) With A > 0 and ApiLip = 0, the model successfully
unfolds the Swiss Roll topology, confirming that the separation criterion eliminates non-injective
collapse. However, the embedding exhibits geometric irregularities and uneven point density. This
demonstrates that injectivity alone is necessary but insufficient for smooth geometric preservation.

SPAE regularization only. (Fig. [IT] (b)) SPAE’s distance-preserving constraint produces a cleaner
rectangular embedding with more uniform point distribution. However, as discussed in Appendix [C.3]
SPAE’s rigid constraint d o /dar = constant is vulnerable to geodesic distance approximation errors,
especially near the removed strip region.

Injective + bi-Lipschitz regularization (BLAE). (Fig. (¢)) Our full framework combines
both terms with x = 1, achieving: (1) topological correctness from the injective term, and (2)
geometric smoothness from the bi-Lipschitz term. The embedding closely resembles the ground truth
parameterization with a uniform point distribution and regular boundaries.

SPAE with bi-Lipschitz regularization. (Fig.[TT](d)) This combination yields inferior results with
visible distortion and irregular geometry. This validates our analysis in Appendix [C.3} SPAE’s strict
global constraint conflicts with bi-Lipschitz relaxation, and approximation errors compound. In
contrast, our injective regularization only penalizes extreme violations, making it naturally compatible
with bi-Lipschitz constraints.

Bi-Lipschitz regularization only. (Fig.[TT](e)) The model fails to unfold the Swiss Roll.
C.4.3 LATENT VISUALIZATIONS FOR HYPERPARAMETER SENSITIVITY

Bi-Lipschitz constant «. Figure [I2] shows latent embeddings across different . For small values
(k € [1.0,1.2]), the Swiss Roll structure is excellently preserved with smooth rectangular boundaries
and uniform point density. At moderate values (x € [1.5,2.0]), the overall structure remains intact,
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J

v

(c) Injective + 1-bi-Lipschitz (d) SPAE + 1-bi-Lipschitz

(a) Injective regularization (b) SPAE regularization regularizations regularizations

(e) 1-bi-Lipschitz regularization

Figure 11: 2-D latent representation of Swiss Roll data learned by autoencoders with (a) only injective
regularization, (b) only SPAE regularization, (c) injective + 1-bi-Lipschitz regularizations, (d) SPAE
+ 1-bi-Lipschitz regularizations, (e) only 1-bi-Lipschitz regularization.

but subtle irregularities begin to appear along the manifold boundaries. As « increases beyond 2.0,
the geometric distortion becomes progressively more pronounced: the rectangular boundaries lose
regularity and the manifold exhibits significant warping with visible curvature in regions that should
be flat. Notably, even at extreme values, the topological correctness is maintained—the manifold
remains properly unfolded without collapse. This visual degradation directly corresponds to the
quantitative decline in %-NN recall shown in Figure[6a] The visualizations confirm that while the
bi-Lipschitz constraint is admissible (allowing geometric relaxation), tighter bounds ( closer to 1)
better preserve the intrinsic manifold geometry.

@r=10 Mr=11 ©r=12 Dr=15 @©r=20 Hr=50 (g r=10

Figure 12: Sensitivity analysis of x: 2-D latent representation of Swiss Roll data learned by BLAE
with different x values.

Separation threshold e. Figure[I3]visualizes how latent structure evolves as € varies from 0.2 to
0.8. Low € values (0.2-0.4) produce consistently high-quality embeddings that faithfully preserve the
rectangular structure of the Swiss Roll’s ground truth parameterization. The manifold boundaries are
smooth and regular, and the three embeddings are visually nearly indistinguishable. This stability
confirms that performance is robust within this range. Moderate € values (0.5-0.6) show the emergence
of subtle geometric distortions. The rectangular boundaries become slightly less regular, though
overall topology remains correct. High ¢ values (0.7-0.8) exhibit significant geometric irregularities.
The rectangular structure is distorted, and local smoothness is compromised. However, critically,
even at € = 0.8, the manifold topology is still preserved—no collapse occurs, and distant manifold
regions remain separated. This graceful degradation aligns with the quantitative k-NN decline shown
in Figure[6b] The visualizations confirm that smaller € values provide flexible separation that tolerates
geodesic approximation errors, while larger e values enforce increasingly rigid constraints. As

e grows, the requirement %ﬁ;w > ¢ for points satisfying d(z,y) > J becomes more

restrictive, approaching strict distance preservation that is vulnerable to estimation errors, leading to
the geometric drift visible at larger € values.
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Figure 13: Sensitivity analysis of e: 2-D latent representation of Swiss Roll data learned by BLAE
with different e values.
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C.5 EXTRA DATASETS AND EXPERIMENTS
C.5.1 Toy EXAMPLE WITH INCREASED SAMPLE DENSITY

To address concerns about whether non-injective embeddings reflect genuine inadequacy or merely
insufficient data, we extend the toy example from Figure[T|by increasing the sample size from 20 to
200 points while maintaining the same V-shaped manifold structure.

We sample 200 points uniformly from the V-shaped manifold and train both a vanilla autoencoder
and BLAE with identical architectures (hidden dimension = 16). Both models are trained under the
same conditions to isolate the effect of injective regularization. As shown in Figure[T4] even with
10x more training samples, the vanilla autoencoder (panels c-d) continues to exhibit non-injective
collapse: the latent representation shows severe overlap between the red and blue classes, resulting in
distorted reconstruction with an irregular curve. In contrast, BLAE (panels e-f) achieves proper class
separation in the latent space and accurately reconstructs the V-shaped structure.
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(a) 2-D ground truth and training samples (c) Vanilla AE 2-D recon. (hid. dim. = 16) (e) BLAE 2-D recon. (hid. dim. = 16)
(b) Ideal 1-D latent representations (d) Vanilla AE 1-D latent reprs. (hid. dim. = 16) (f) BLAE 1-D latent reprs. (hid. dim. = 16)

Figure 14: Extended toy example demonstrating the non-injective encoder bottleneck. (a) 200
training points sampled from a V-shaped manifold with two classes (red and blue). (b) Ground truth:
an ideal encoder separates the two classes in a 1D latent space. (c) Reconstructed manifolds by
Vanilla AE with hidden dimension 16. (d) Corresponding latent representations learned by Vanilla
AE. (e) Reconstructed manifolds by BLAE with hidden dimension 16. (f) Corresponding latent
representations learned by BLAE showing proper class separation.

C.5.2 SSREAD DATABASE

SPAE TAE Diffusion Net GRAE (PHATE)

CAE GGAE IRAE GAE Vanilla AE

Figure 15: Left: Single cell type in the AD00109 dataset from the sSREAD database. Others: 2-D
latent representations learned by BLAE and other baseline methods.

We utilize the AD00109 dataset from the sSREAD database, which provides single-nucleus RNA
sequencing (snRNA-seq) data from brain tissue of Alzheimer’s disease (AD) patients. This dataset
contains transcriptomic profiles from the prefrontal cortex of several female AD patients, aged
between 77 and over 90. Sequencing was performed using the 10x Genomics Chromium platform.
Standard preprocessing steps were applied, including quality control, normalization, dimensionality
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reduction, and unsupervised clustering. The resulting dataset consists of 9,891 cells and 27,801 genes,
annotated into seven distinct cell types.

For downstream analysis, we apply principal component analysis (PCA) and retain the top 50
principal components. We split the data by using 25% of the cells for training and the remaining
75% for evaluation. Figure|l15|shows the 2D latent representations learned by BLAE and several
baseline methods. Among these, BLAE, SPAE, TAE, and GAE better preserve the distinct boundaries
between different cell types. To quantitatively assess representation quality, we train a Support Vector
Machine (SVM) classifier on the latent representations (latent dimension = 2, 32) of the training set
and report classification accuracy on the evaluation set. Results are summarized in Table[T0] where
BLAE achieves the highest accuracy on both latent dimensions, indicating that it learns the most
discriminative latent representations for single-cell type identification.

Table 10: Classification accuracy (over 5 runs) of SVM trained on latent representations learned
by different models. BLAE achieves the highest accuracy, demonstrating better preservation of
cell-type-specific information in the latent space. The best performance is shown in bold.

Model Latent dimension = 2 Latent dimension = 32
BLAE 0.9250 + 0.0033 0.9626 + 0.0013
SPAE 0.9146 4+ 0.0206 0.9576 + 0.0019
TAE 0.9107 4+ 0.0121 0.9524 4+ 0.0026
DN 0.9167 4+ 0.0064 0.4200 + 0.0821
GRAE 0.9131 +0.0119 0.9476 + 0.0022
CAE 0.9222 4+ 0.0030 0.9517 + 0.0025
GGAE 0.8855 4+ 0.0161 0.9556 + 0.0017
IRAE 0.9066 + 0.0200 0.9605 4+ 0.0016
GAE 0.9185 4+ 0.0113 0.9575 4 0.0022
Vanilla AE 0.8996 4+ 0.0172 0.9557 + 0.0017

D USAGE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models as a general-purpose writing assistant. Its role was limited to
grammar checking, minor stylistic polishing, and improving the clarity of phrasing in some parts of
the manuscript. The authors made all substantive contributions to the research and writing.
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