

000 BI-LIPSCHITZ AUTOENCODER WITH INJECTIVITY 001 GUARANTEE

002
003
004
005 **Anonymous authors**
006 Paper under double-blind review

007 008 ABSTRACT

009
010
011 Autoencoders are widely used for dimensionality reduction, based on the assumption
012 that high-dimensional data lies on low-dimensional manifolds. Regularized
013 autoencoders aim to preserve manifold geometry during dimensionality reduction,
014 but existing approaches often suffer from non-injective mappings and overly rigid
015 constraints that limit their effectiveness and robustness. In this work, we identify
016 encoder non-injectivity as a core bottleneck that leads to poor convergence and
017 distorted latent representations. To ensure robustness across data distributions, we
018 formalize the concept of admissible regularization and provide sufficient conditions
019 for its satisfaction. In this work, we propose the Bi-Lipschitz Autoencoder
020 (BLAE), which introduces two key innovations: (1) an injective regularization
021 scheme based on a separation criterion to eliminate pathological local minima,
022 and (2) a bi-Lipschitz relaxation that preserves geometry and exhibits robustness
023 to data distribution drift. Empirical results on diverse datasets show that BLAE
024 consistently outperforms existing methods in preserving manifold structure while
025 remaining resilient to sampling sparsity and distribution shifts.

026 1 INTRODUCTION

027
028
029 Autoencoders have been established as powerful tools for dimensionality reduction and visualization.
030 While theoretically promising due to their universal approximation capabilities, vanilla autoencoders
031 often fail to preserve the geometric properties essential for meaningful latent representations. This
032 limitation has motivated two main approaches to regularize the latent space: 1) Gradient-based
033 methods (Nazari et al., 2023; Salah et al., 2011; Lim et al., 2024a; Lee et al., 2022) constrain the
034 Jacobian of the encoder or decoder to promote smoothness and local geometric preservation. 2)
035 Graph-based methods align latent representations with distance structures derived from neighborhood
036 graphs (Moor et al., 2020; Schönenberger et al., 2020; Singh & Nag, 2021) or pretrained embeddings
037 (Mishne et al., 2019; Duque et al., 2022).

038 Despite their distinct theoretical foundations, both approaches face substantial practical challenges.
039 Graph-based methods depend heavily on the graph accuracy, limiting their effectiveness under sparse
040 sampling conditions. Gradient-based methods exhibit robustness to sample size and yield smoother
041 manifolds but frequently converge to local minima during optimization, resulting in compromised
042 performance that falls short of theoretical expectations.

043 From a differential topology perspective, gradient constraints typically encode local geometric properties.
044 For example, a mapping $f : \mathcal{M} \rightarrow \mathbb{R}^n$ satisfying $J_f^\top J_f \equiv I$ is an isometric immersion. With an
045 additional global injectivity condition, f becomes an embedding. This motivates us to investigate the
046 interplay between injectivity and optimization in gradient-based autoencoders. Through theoretical
047 and empirical analysis, we identify the non-injectivity of the encoder as a key bottleneck in training
048 autoencoders effectively. To address this limitation, we propose a novel framework that guarantees
049 injectivity through separation criteria in the latent space, helping to avoid pathological local minima
050 that can trap standard gradient-based methods and enabling them to achieve their theoretical potential.

051 To create a geometrically consistent latent embedding that maintains intrinsic manifold structures,
052 robustness against distributional shifts is essential because our goal isn't tied to specific data distribu-
053 tions. This requires the imposed regularization to be admissible — specifically, the targeted geometric
properties must be strictly satisfied. While prior work employs isometric constraints (Lee et al., 2022;

Gropp et al., 2020; Lim et al., 2024a), such embeddings typically demand $\mathcal{O}(m^2)$ dimensions, where m is the dimension of the manifold. This severely impairs the efficiency of the autoencoder. To address this, we propose a principled relaxation through bi-Lipschitz regularization, achieving linear complexity in manifold dimension while maintaining robustness to distribution shifts.

To validate our theoretical insights, we develop the Bi-Lipschitz Autoencoder (BLAE), which combines injective and bi-Lipschitz regularization. Our experiments across multiple datasets demonstrate that BLAE preserves manifold structure with higher fidelity than existing methods while exhibiting significant robustness to distribution shifts and sparse sampling conditions.

The rest of this paper is organized as follows. Section 2 discusses the limitations of existing methods. Section 3 introduces our proposed framework. Section 4 reviews related work. Section 5 presents experimental results, and Section 6 concludes the paper.

2 BOTTLENECK OF AUTOENCODERS

Throughout this work, we assume the intrinsic data manifold $\mathcal{M} \subset \mathbb{R}^m$ is a compact and connected Riemannian manifold with Riemannian measure $\mu_{\mathcal{M}}$, unless otherwise stated. We also assume the data distribution \mathbb{P} on \mathcal{M} is equivalent to $\mu_{\mathcal{M}}$, i.e., $\mathbb{P} \ll \mu_{\mathcal{M}}$ and $\mu_{\mathcal{M}} \ll \mathbb{P}$.

2.1 AUTOENCODERS AND REGULARIZATIONS

Conventional manifold learning and dimension reduction frameworks typically assume that high-dimensional data resides on a low-dimensional manifold $\mathcal{M} \subset \mathbb{R}^m$. An autoencoder learns this intrinsic representation through a pair of parameterized mappings $(\mathcal{E}_{\theta}, \mathcal{D}_{\phi})$ via neural networks:

- The encoder $\mathcal{E}_{\theta} : \mathbb{R}^m \rightarrow \mathbb{R}^n (n \ll m)$ compresses data onto a low-dimensional latent space;
- The decoder $\mathcal{D}_{\phi} : \mathbb{R}^n \rightarrow \mathbb{R}^m$ reconstructs the original data from the latent representation.

Training optimizes this encoder-decoder pair by minimizing the expected reconstruction error:

$$\mathcal{L}_{\text{recon}} = \mathbb{E}_{x \sim \mathbb{P}} \|x - \mathcal{D}_{\phi}(\mathcal{E}_{\theta}(x))\|^2. \quad (1)$$

While vanilla autoencoders effectively learn compressed representations, they often fail to preserve essential data properties. Advanced variants have emerged to address requirements such as representation smoothness, model robustness, and geometric preservation. Based on their regularization mechanisms, we classify these variants into three categories.

Gradient-regularization. This category applies explicit constraints on the derivatives of network mappings. Formally, gradient regularization is expressed as:

$$\mathcal{L}_{\text{grad}} = \mathbb{E}_{x \sim \mathbb{P}} [R_1(J_f(x))], \quad (2)$$

where R_1 is a loss function, and $J_f(x)$ represents the Jacobian matrix of a differentiable function f at input x . The function f can be instantiated as either the encoder \mathcal{E}_{θ} or the decoder \mathcal{D}_{ϕ} . A canonical example is the contractive autoencoder (Salah et al., 2011), where $R_1(\cdot) = \|\cdot\|_F^2$ imposes Frobenius-norm constraints on the encoder’s Jacobian to promote local stability.

Geometry-regularization. This category preserves distance relationships when mapping from the manifold \mathcal{M} to the latent space \mathcal{N} . Geometry regularization takes the form:

$$\mathcal{L}_{\text{geo}} = \mathbb{E}_{x, y \sim \mathbb{P}} [R_2(d_{\mathcal{M}}(x, y), d_{\mathcal{N}}(\mathcal{E}_{\theta}(x), \mathcal{E}_{\theta}(y)))] , \quad (3)$$

where R_2 is a loss function and d_{*} denotes the geodesic distance on the corresponding manifold. Implementation typically involves approximating geodesic distances $d_{\mathcal{M}}$ through k -nearest neighbors (k -NN) graph construction and shortest-path computations. The latent space metric $d_{\mathcal{N}}$ is conventionally defined as the Euclidean distance $\|\cdot\|$.

Embedding-regularization. The last category directly guides the encoder to match embeddings produced by classical dimension reduction methods. The regularization is formulated as:

$$\mathcal{L}_{\text{emb}} = \mathbb{E}_{x \sim \mathbb{P}} \|\mathcal{E}_{\theta}(x) - z\|^2, \quad (4)$$

where z is the target embedding of x obtained from methods such as Isomap or diffusion maps.

Remark 1. Since both embedding and geometry regularizations rely on graph construction procedures standard in conventional dimensionality reduction methods, we unify them under the framework of **Graph-Regularization**.

108
109

2.2 WHY AUTOENCODERS AND GRADIENT VARIANTS FAIL?

110
111
112
113
114

The universal approximation theorem grants neural network-based autoencoders significant potential for learning effective latent representations. However, in practice, standard gradient descent optimization frequently converges to poor local minima rather than discovering globally optimal solutions. This convergence behavior—whether terminating in suboptimal local minima or achieving global optimality—is fundamentally connected to the concept of *injection*.

115
116

Definition 1 (Injection). f is an injection (injective mapping) on \mathcal{M} , if $f(x) \neq f(y), \forall x \neq y \in \mathcal{M}$.
Non-injective encoders create latent space collisions where distinct data points map to identical or nearly identical codes, resulting in inevitable reconstruction errors and suboptimal model performance¹. In practical implementations with finite sample sets $\{x_1, \dots, x_N\} \subset \mathcal{M}$, the point-wise injectivity condition $\mathcal{E}_\theta(x_i) \neq \mathcal{E}_\theta(x_j)$ for all $i \neq j$ typically holds (w.p.1) when the encoder \mathcal{E}_θ avoids local constancy. However, this does not guarantee global injectivity. More precisely, even when $\mathcal{E}_\theta(x_i) \neq \mathcal{E}_\theta(x_j)$ for distinct sample points, if disjoint neighborhoods U_i, U_j of these points have overlapping encodes ($\mathcal{E}_\theta(U_i) \cap \mathcal{E}_\theta(U_j) \neq \emptyset$), the injectivity property is violated.

124
125
126
127
128

Figure 1 illustrates this non-injective bottleneck using a toy example of 20 points sampled from a V-shaped manifold. We analyze three autoencoder configurations with two hidden layers of varying capacities (hidden dimensions: 2, 16, 256). The condition $U_i \cap U_j = \emptyset$ and $\mathcal{E}_\theta(U_i) \cap \mathcal{E}_\theta(U_j) \neq \emptyset$ manifests when the encoder maps points from distant manifold regions to nearby coordinates in the latent space. [Figures 1 \(h\) \(j\) \(l\)](#) demonstrate this distortion between red and blue classes.

129
130
131
132
133
134

To compensate for these latent space collisions, the decoder must generate sharp variations, appearing as high local curvature, within intersection regions to minimize reconstruction error, as shown in [Figure 1 \(k\)](#). The required network complexity for these variations scales polynomially with the density of encoded data points. When the decoder’s capacity cannot accommodate these geometric demands, the optimization process becomes trapped in suboptimal local minima where gradient signals align with the network’s expressivity boundaries ([Figure 1 \(g\)](#)).

135
136
137
138
139
140

Notably, gradient-based regularization schemes suffer from a similar injectivity bottleneck. While these methods effectively constrain local mapping properties through differential constraints, they remain insufficient for ensuring global injectivity—a critical topological property that distinguishes proper embeddings from mere immersions. In approaches like (Lim et al., 2024a; Lee et al., 2022), isometric constraints yield locally structure-preserving encoders via isometric immersion but fail to satisfy the additional topological requirements for genuine manifold embedding.

141
142

2.3 GRAPH REGULARIZATIONS VS. GRADIENT REGULARIZATIONS

143
144
145
146
147
148
149
150
151

Unlike gradient-based approaches, graph-based autoencoder variants inherently enforce injective mapping by requiring distance preservation between manifolds \mathcal{M} and latent space \mathcal{N} , where $d_{\mathcal{M}} > 0 \Rightarrow d_{\mathcal{N}} > 0$. However, these graph-driven approaches have two fundamental limitations: i) Their discrete graph approximations become unreliable under sparse sampling conditions, as shortest-path distances increasingly deviate from true manifold geodesics; ii) The Euclidean metric assumption in latent space introduces systematic errors unless \mathcal{N} satisfies strict convexity requirements. Comparatively, when the injectivity of the encoder is guaranteed, gradient-based methods can achieve smoother embeddings with greater robustness to variations in sample density.

152
153

3 GRADIENT AUTOENCODER WITH INJECTIVE CONSTRAINT

154
155

3.1 SEPARATION CRITERION AND INJECTIVE REGULARIZATION

156
157
158
159
160
161

Our theoretical analysis in Section 2.2 yields two critical insights: i) Imposing injectivity constraints on the encoder can effectively eliminate pathological local minima that trap optimization trajectories. ii) Sample-level condition $\mathcal{E}_\theta(x_i) \neq \mathcal{E}_\theta(x_j)$ is insufficient for global injectivity. To address these issues, we must prevent distant manifold neighborhoods from collapsing into proximal latent clusters, leading us to enforce metric *separation*:

¹Formally, as the reconstruction loss is calculated in expectation, injective guarantees need only hold a.e..

Figure 1: Toy example demonstrating the non-injective encoder bottleneck. (a) 20 training points sampled from a V-shaped manifold with two classes (red and blue). (b) Ground truth: an ideal encoder separates the two classes in a 1D latent space. (c) (e) Reconstructed manifolds by BLAE (ours) with hidden dimensions 16 and 256, respectively. (d) (f) Corresponding latent representations learned by BLAE showing proper class separation. (g) (i) (k) Reconstructed manifolds by vanilla autoencoders with hidden dimensions 2, 16, and 256. (h) (j) (l) Corresponding latent representations showing non-injective collapse, where distant manifold regions (red vs. blue) map to overlapping latent codes, resulting in pathological local minima.

Definition 2 $((\delta, \epsilon)$ -separation). Given $\delta, \epsilon > 0$, a mapping $f : \mathcal{M} \rightarrow \mathcal{N}$ is (δ, ϵ) -separated if for all $x, y \in \mathcal{M}$ satisfying $d_{\mathcal{M}}(x, y) \geq \delta$:

$$\frac{d_{\mathcal{N}}(f(x), f(y))}{d_{\mathcal{M}}(x, y)} > \epsilon. \quad (5)$$

This separation criterion provides a sufficient condition for f to be injective: if f is (δ, ϵ) -separated for any $\delta, \epsilon > 0$, then f must be an injection. Indeed, under some mild assumptions, this condition serves as an equivalent characterization of injection:

Theorem 1. ² Suppose $f : \mathcal{M} \rightarrow \mathcal{N}$ is continuous and \mathcal{M} is compact, then f is injective if and only if for any $\delta > 0$, there exists $\epsilon > 0$ such that f is (δ, ϵ) -separated.

To address the limitations of naive injectivity constraints, we propose a regularization that penalizes sample pairs violating the separation condition:

$$\mathcal{L}_{\text{inj}}(\delta, \epsilon) = \mathbb{E}_{x, y \sim \mathbb{P}} \left[\text{ReLU} \left(\log \frac{\epsilon d_{\mathcal{M}}(x, y)}{d_{\mathcal{N}}(\mathcal{E}_{\theta}(x), \mathcal{E}_{\theta}(y))} \right) \cdot \mathbf{1}_{d_{\mathcal{M}}(x, y) > \delta} \right]. \quad (6)$$

However, this penalty permits a trivial optimization path to zero loss: simply scaling the encoder by a factor $k = \epsilon \cdot \max \frac{d_{\mathcal{M}}(x_i, x_j)}{d_{\mathcal{N}}(\mathcal{E}_{\theta}(x_i), \mathcal{E}_{\theta}(x_j))}$. To prevent this, we additionally constrain the encoder to be *non-expansive*, meaning $\forall x, y \in \mathcal{M}, d_{\mathcal{N}}(\mathcal{E}_{\theta}(x), \mathcal{E}_{\theta}(y)) \leq d_{\mathcal{M}}(x, y)$. Our final regularization term combines both constraints:

$$\mathcal{L}_{\text{reg}}(\delta, \epsilon) = \mathcal{L}_{\text{inj}}(\delta, \epsilon) + \alpha \cdot \mathbb{E}_{x, y \sim \mathbb{P}} \left[\text{ReLU} \left(\frac{d_{\mathcal{N}}(\mathcal{E}_{\theta}(x), \mathcal{E}_{\theta}(y))}{d_{\mathcal{M}}(x, y)} - 1 \right) \cdot \mathbf{1}_{d_{\mathcal{M}}(x, y) > \delta} \right], \quad (7)$$

where α (default: 5) is a weighting factor calibrating the strength of the non-expansive constraint.

²All proofs are deferred to Appendix A.

216 **Remark 2.** While Theorem 1 requires validating the separation condition for all $\delta > 0$, in practical
 217 implementations, it suffices to validate at a threshold $\delta_{\min} = \min_{i \neq j} d_{\mathcal{M}}(x_i, x_j)$.
 218

219 Similar to graph-based approaches, we use Euclidean distance for $d_{\mathcal{N}}$ and approximate $d_{\mathcal{M}}$ through
 220 graph construction. Although this approximation introduces some systematic error as discussed in
 221 Section 2.3, our separation criterion proves remarkably resilient to such approximations compared to
 222 other geometry-based regularizations. This robustness allows effective combination with gradient
 223 regularization techniques (see Appendix C.3 for details).

224 The proposed injective regularization systematically mitigates pathological local minima in the
 225 loss landscape. Figure 2 visualizes this effect through 2D loss landscapes comparing a standard
 226 autoencoder with its injective-regularized counterpart. Both models were initialized at θ_0 and
 227 optimized to θ_1 (vanilla autoencoder) and θ_2 (our regularized autoencoder), respectively. The contour
 228 maps represent loss values across the parameter subspace spanned by vectors $\theta_0 - \theta_1$ and $\theta_0 - \theta_2$.
 229 Figure 2(a) reveals how the reconstruction loss landscape contains a local minima that trap the vanilla
 230 model during optimization. In contrast, Figure 2(b) illustrates how our combined loss (reconstruction
 231 plus injective regularization) reshapes the landscape to provide smoother optimization paths toward
 232 the superior global minima.

243 Figure 2: Loss landscapes of autoencoders on Swiss roll data. Warmer colors indicate lower loss.
 244 (a) Log-scale contour of reconstruction loss, showing the presence of local minima. (b) Log-scale
 245 contour of reconstruction loss combined with regularization, where local minima are eliminated.

246 3.2 ROBUSTNESS TO DISTRIBUTION SHIFT AND ADMISSIBLE REGULARIZATION

247 When training autoencoders, both reconstruction error and regularization terms are computed as
 248 expectations over a specific data distribution \mathbb{P} on \mathcal{M} . This typically causes the resulting latent space
 249 embedding \mathcal{N} to be influenced by \mathbb{P} . However, our fundamental goal is to learn a low-dimensional
 250 embedding of the manifold structure itself, independent of any particular data sampling distribution.
 251 To achieve robustness against distribution shifts, we introduce the concept of *Admissibility*:

252 **Definition 3** (Admissibility). For a regularization term $\mathbb{E}_{x \sim \mathbb{P}}[R(f_{\Theta}(x))]$, where R is a loss function
 253 and f_{Θ} belongs to a parameterized smooth function class \mathcal{F}_{Θ} (which may represent the encoder,
 254 decoder, or their Jacobians), let

$$S_{\mathbb{P}} := \arg \min_{f_{\Theta} \in \mathcal{F}_{\Theta}} \mathbb{E}_{x \sim \mathbb{P}}[R(f_{\Theta}(x))]. \quad (8)$$

255 The regularization is admissible if for any probability measures \mathbb{P} and \mathbb{Q} which are both equivalent to
 256 $\mu_{\mathcal{M}}$, $S_{\mathbb{P}} = S_{\mathbb{Q}}$, i.e., the set of global minima is independent of the probability measure.

257 The following theorem provides a constructive approach for designing admissible regularizations:

258 **Theorem 2.** *Let R be a loss function that has a global minimum, and if*

$$\min_{f_{\Theta} \in \mathcal{F}_{\Theta}} \mathbb{E}_{x \sim \mathbb{P}}[R(f_{\Theta}(x))] = \min_u R(u), \quad (9)$$

259 *then the corresponding regularization $\mathbb{E}_{x \sim \mathbb{P}}[R(f_{\Theta}(x))]$ is admissible.*

260 Admissible regularizations typically enforce specific geometric or functional properties uniformly
 261 across the manifold. Consider, for example, a regularizer of the form $R(f(x)) = \|(f(x))^{\top} f(x) -$
 262 $I\|_F^2$, where f represents the Jacobian of the decoder. This formulation imposes an isometric

constraint, and achieving its minimum ensures the decoder maintains local isometry at each input point x . The admissibility of such a regularization guarantees that this isometric property is preserved regardless of how data points are sampled from the manifold.

Remark 3. The standard reconstruction error can itself be viewed as a special case of admissible regularization, where $R = \|\cdot\|^2$ and $\mathcal{F}_\Theta = \{\mathcal{D}_\theta \circ \mathcal{E}_\phi - \text{id} \mid \theta, \phi\}$, with ‘id’ representing the identity mapping. This reconstruction term is inherently admissible.

3.3 BI-LIPSCHITZ RELAXATION

The injectivity property enables the integration of complementary gradient regularizations into autoencoders, enhancing smoothness and geometric fidelity. For robustness against distribution shifts, we need these gradient regularizations to be admissible. Previous research has explored isometric constraints for geometric preservation, but these formulations are proven overly restrictive in practice.

According to the Nash embedding theorem (Nash, 1956), an k -dimensional compact Riemannian manifold requires a latent dimension of $\mathcal{O}(k^2)$ to guarantee an isometric embedding³. This quadratic scaling contradicts the fundamental purpose of autoencoders as tools for efficient dimensionality reduction. For example, even a modest manifold of intrinsic dimension 10 would theoretically require over 50 dimensions for isometric embedding, introducing substantial representational redundancy.

Furthermore, when the latent dimension fails to meet the requirements for isometric embedding, the corresponding regularization becomes non-admissible, which motivates us to introduce bi-Lipschitz regularization, a principled relaxation scheme that balances geometric preservation with admissibility.

Definition 4 (Bi-Lipschitz). A mapping $f : \mathcal{M} \rightarrow \mathcal{N}$ is κ -Bi-Lipschitz, where $\kappa \geq 1$, if

$$\frac{1}{\kappa} \cdot d_{\mathcal{M}}(x, y) \leq d_{\mathcal{N}}(f(x), f(y)) \leq \kappa \cdot d_{\mathcal{M}}(x, y), \quad \forall x, y \in \mathcal{M}. \quad (10)$$

While geodesic distance approximation introduces estimation errors, we can establish the bi-Lipschitz property through differential analysis using the gradient of f . Let $f_{\mathcal{M}}$ denote f restricted to \mathcal{M} , and $J_f^{\mathcal{M}}(x)$ be the Jacobian of f restricted to the tangent space $T_x \mathcal{M}$. We then have:

Theorem 3. Let $f : \mathcal{M} \rightarrow \mathbb{R}^n$ be a smooth mapping. If \mathcal{M} is connected and f is a diffeomorphism, then f is κ -bi-Lipschitz if and only if

$$\frac{1}{\kappa} \leq \sigma_{\min}(J_f^{\mathcal{M}}(x)) \leq \sigma_{\max}(J_f^{\mathcal{M}}(x)) \leq \kappa, \quad \forall x \in \mathcal{M} \quad (11)$$

where $\sigma_{\min}(J_f^{\mathcal{M}}(x))$, $\sigma_{\max}(J_f^{\mathcal{M}}(x))$ are the minimum and maximum singular values of $J_f^{\mathcal{M}}(x)$.

Theorem 3 provides a principled approach to rigorously analyze bi-Lipschitz properties without requiring explicit geodesic distance computation. However, computing singular values of $J_f^{\mathcal{M}}(x)$ requires knowledge of the tangent space, and existing methods (Lim et al., 2024b; Zhang & Zha, 2003) for estimating tangent spaces from empirical data introduce additional errors.

Two key insights help address these challenges: i) When f is bi-Lipschitz on \mathbb{R}^m , it is naturally bi-Lipschitz on any sub-manifold \mathcal{M} . This allows substituting \mathcal{M} with \mathbb{R}^m in Theorem 3. ii) When $m > n$ (as in typical encoding scenarios), f cannot be a diffeomorphism due to dimensional incompatibility. Therefore, we apply condition equation 11 to the decoder $\mathcal{D}_\phi : \mathbb{R}^n \rightarrow \mathbb{R}^m$ rather than the encoder $\mathcal{E}_\theta : \mathbb{R}^m \rightarrow \mathbb{R}^n$, since f is κ -bi-Lipschitz if and only if f^{-1} is κ -bi-Lipschitz.

Our proposed bi-Lipschitz regularization is formulated as:

$$\mathcal{L}_{\text{bi-Lip}}(\kappa) = \mathbb{E}_{x \sim \mathbb{P}} [\text{ReLU}(\frac{1}{\kappa} - \sigma_{\min}(x))^2 + \text{ReLU}(\sigma_{\max}(x) - \kappa)^2], \quad (12)$$

where $\sigma_{\min}(x)$ and $\sigma_{\max}(x)$ represent the smallest and largest singular values of $J_{\mathcal{D}_\phi}(x)$, respectively. This regularization retains admissibility even with relatively low embedding dimensions ($\mathcal{O}(m)$):

Theorem 4. Suppose $\mathcal{M} \subset \mathbb{R}^m$ is a connected compact k -dimensional Riemannian manifold. Then there exists a κ -bi-Lipschitz mapping that embeds \mathcal{M} into \mathbb{R}^n for some $\kappa \geq 1$ and $k \leq n \leq 2k$.

³The required latent dimension n satisfies $\frac{k(k+1)}{2} \leq n \leq \frac{k(3k+11)}{2}$.

324 When the manifold \mathcal{M} admits a κ -bi-Lipschitz embedding in \mathbb{R}^n , the corresponding loss function
 325 achieves its minimum (zero) and hence satisfies the assumption of Theorem 2. Consequently, the
 326 bi-Lipschitz regularization is admissible.

327 We refer to an autoencoder regularized by both bi-Lipschitz and injective constraints as a **Bi-Lipschitz**
 328 **Autoencoder (BLAE)**:

$$\mathcal{L}_{\text{BLAE}} = \mathcal{L}_{\text{recon}} + \lambda_{\text{reg}} \cdot \mathcal{L}_{\text{reg}} + \lambda_{\text{bi-Lip}} \cdot \mathcal{L}_{\text{bi-Lip}}, \quad (\text{BLAE})$$

330 where λ_{reg} and $\lambda_{\text{bi-Lip}}$ are weighting factors. The injective term eliminates local minima caused by
 331 non-injective encoders, while the bi-Lipschitz term ensures consistent geometric mapping regardless
 332 of data distribution. Together, these constraints enable BLAE to preserve manifold structure with
 333 higher fidelity and robustness than existing methods.

334 **Remark 4.** While Theorem 3 assumes smoothness (satisfied by neural networks using activation
 335 functions like tanh, sigmoid, ELU), our framework naturally extends to continuous piecewise-smooth
 336 mappings. This preserves the theoretical conclusions even with non-smooth activation functions like
 337 ReLU, demonstrating the universal applicability of our results across neural network architectures.

340 4 RELATED WORK

341 Standard autoencoders often exhibit geometric distortion in the latent space. To address this, regularized
 342 methods have been proposed to preserve geometric structure, which can be grouped into three
 343 main paradigms based on their regularization mechanisms:

344 **Embedding-regularized autoencoder.** Conventional dimensionality reduction techniques such
 345 as ISOMAP (Tenenbaum et al., 2000), LLE (Roweis & Saul, 2000), t-SNE (Van der Maaten &
 346 Hinton, 2008), and UMAP (McInnes et al., 2018) effectively preserve geometric structures through
 347 neighborhood graphs. However, these methods lack explicit mappings between the original and latent
 348 spaces, limiting their ability to generalize to new data points. To overcome this, Duque et al. (2022)
 349 introduced the Geometry Regularized Autoencoder, a unified framework that integrates autoencoders
 350 with classical dimensionality reduction methods to enable robust extension to unseen data. Similarly,
 351 Diffusion Nets (Mishne et al., 2019) enhances autoencoders by learning embedding geometry from
 352 Diffusion Maps (Coifman & Lafon, 2006) through additional eigenvector constraints.

353 **Geometry-regularized autoencoder.** This approach enforces geometric properties in the latent
 354 space via graph-based regularizations. Neighborhood Reconstructing Autoencoders (Lee et al.,
 355 2021) reduce overfitting and connectivity errors by enforcing correctly reconstructed neighborhoods.
 356 Structure-Preserving Autoencoders (Singh & Nag, 2021) maintain consistent distance ratios between
 357 ambient and latent spaces. Topological Autoencoders (Moor et al., 2020) capture data’s topological
 358 signature through homology groups. While initially developed for Euclidean spaces, these methods
 359 can be adapted to non-Euclidean manifolds by constructing neighborhood graphs and computing
 360 geodesic distances through shortest paths.

361 **Gradient-regularized autoencoder.** This paradigm directly constrains on the derivatives of the
 362 network mappings. Contractive Autoencoder (Salah et al., 2011) penalizes the Frobenius norm of
 363 the encoder’s Jacobian matrix, enforcing local stability and enhancing feature robustness. Chen et al.
 364 (2020) proposed regularizing the decoder’s induced metric tensor to learn flat manifold representations.
 365 Geometric Autoencoders (Nazari et al., 2023) preserve volume form in latent space by regularizing
 366 the determinant of the decoder’s metric tensor, improving data visualization.

367 Recent advances focus on learning isometric embeddings: Groppe et al. (2020) enforces identity
 368 metric tensors stochastically, while Lee et al. (2022) achieves coordinate invariance through spectral
 369 constraints. Graph Geometry-Preserving Autoencoders (Lim et al., 2024a) bridge graph-based and
 370 gradient-based approaches by leveraging graph Laplacian spectral properties to approximate the
 371 underlying Riemannian metric.

372 5 EXPERIMENTS

373 **Experimental setup.** We evaluate our approach against nine baselines: (1) geometry-based autoen-
 374 coders (SPAЕ (Singh & Nag, 2021), TAE (Moor et al., 2020)), (2) gradient-based autoencoders

(IRAE (Lee et al., 2022), GAE (Nazari et al., 2023), CAE (Salah et al., 2011)), (3) embedding-based autoencoders (GRAE (Duque et al., 2022), Diffusion Net (DN) (Mishne et al., 2019)), (4) a hybrid approach combining graph and gradient regularization (GGAE (Lim et al., 2024a)), and (5) a vanilla autoencoder. We conduct a grid search over hyperparameters for each model-dataset combination and report the best performance. Detailed implementation settings are provided in Appendix B.1.

Evaluation metric. We assess model performance through both reconstruction accuracy and geometric preservation. Reconstruction fidelity is quantified by Mean Squared Error (MSE) between original samples and reconstructions. Geometric preservation is evaluated using two metrics: (1) k -NN recall (Sainburg et al., 2021; Kobak et al., 2019), measuring neighborhood correspondence between latent and original spaces, and (2) KL_σ divergence (Chazal et al., 2011) with bandwidths $\sigma \in \{0.01, 0.1, 1\}$, assessing similarity of distance distributions across scales. To better evaluate manifold structures, we adapt these metrics to use geodesic distances derived from similarity graphs rather than the original Euclidean formulations. See Appendix B.2 for details.

Table 1 reports the average ranks of all methods across metrics and datasets, providing a compact overview of overall performance that complements the per-dataset comparisons. BLAE achieves the highest average ranking on key metrics, reflecting superior performance in graph geometry preservation, reconstruction fidelity, and downstream task accuracy.

Table 1: Average ranks of evaluation metrics across all datasets (lower is better). Detailed metric values for each dataset are provided in Appendix B.4 and Appendix C.5. The best is shown in bold.

Measure	BLAE	SPAE	TAE	DN	GRAE	CAE	GGAE	IRAE	GAE	Vanilla AE
k -NN	1.8 ± 1.3	3.2 ± 1.3	3.8 ± 0.8	4.5 ± 2.7	4.0 ± 2.7	5.8 ± 1.8	7.5 ± 2.1	7.2 ± 0.4	9.0 ± 1.7	7.8 ± 0.8
$KL_{0.01}$	1.0 ± 0.0	3.0 ± 0.0	2.5 ± 0.9	6.0 ± 1.2	4.5 ± 1.5	7.0 ± 0.7	8.2 ± 2.5	6.8 ± 2.4	6.5 ± 1.1	9.2 ± 0.4
$KL_{0.1}$	1.0 ± 0.0	3.2 ± 1.1	2.8 ± 0.8	5.5 ± 2.2	3.5 ± 0.9	7.5 ± 0.9	9.0 ± 1.7	7.2 ± 1.6	6.5 ± 0.9	8.8 ± 0.4
KL_1	1.0 ± 0.0	4.2 ± 2.3	3.2 ± 1.3	5.2 ± 2.8	4.2 ± 1.9	7.0 ± 1.6	8.0 ± 1.6	7.2 ± 1.3	6.0 ± 2.2	8.2 ± 0.8
MSE	1.2 ± 0.4	4.8 ± 3.3	4.0 ± 0.7	5.2 ± 3.1	4.5 ± 3.0	5.5 ± 1.5	7.5 ± 2.1	7.0 ± 2.1	8.0 ± 1.6	7.2 ± 1.3
Accuracy	1	5	7	4	6	2	10	8	3	9

Swiss Roll. The Swiss Roll dataset consists of a synthetic 2-dimensional manifold embedded in \mathbb{R}^3 . We construct it by uniformly sampling points from $[-2, 10] \times [0, 6]$ and isometrically mapping them to \mathbb{R}^3 . To create a meaningful contrast between Euclidean and geodesic distances, we remove a strip $[1.5, 6.5] \times [2.5, 3.5]$ from the data (see Appendix B.3 for details).

As shown in Figure 3, our BLAE method correctly preserves the geometric structure in latent space. Graph-based architectures (SPAE, TAE, GRAE, DN) successfully unroll the manifold but distort its geometry due to discrepancies between geodesic and Euclidean distances near the removed strip. All gradient-driven models without injectivity constraints fail to preserve the topological structure of the manifold, stemming from their non-injective encoders. Further analysis (Appendix C.1 and C.2) reveals that gradient-based baselines exhibit strong dependence on the Swiss roll’s geometry (curvature and axis length), while graph-based methods vary with sample size. In contrast, BLAE consistently preserves topology across both geometric and population variations.

Figure 3: (a) 3-D Swiss roll data. (b) Ground truth: 2-D latent representations to generate a Swiss Roll. Others: 3-D reconstruction and 2-D latent representations learned by AE methods.

dSprites. The dSprites dataset (Matthey et al., 2017) serves as a benchmark for evaluating disentangled representations. It contains 64×64 binary images of three geometric primitives (squares, ellipses, and hearts) generated through systematic variation of five factors: shape, color, orientation, scale, and position (x, y) . In our experiments, we fix color, scale, and orientation to (white, 1, 0) and select squares and hearts with all possible positions except a cross-shaped region in the center.

We conduct semi-supervised autoencoder training on this shape-partitioned dataset, creating two distinct data clusters by adding a constant value of 1 to all pixels in square images. Figure 4 shows that only BLAE, SPAE, TAE, CAE, and IRAE successfully reconstruct the topological structure of both clusters, with BLAE exhibiting the least geometric distortion between the parallel planes representing the two shape classes.

Figure 4: (a) Two parallel planes: 3-D latent representation of square (blue) and heart (red) clusters. *Others:* 2-D latent representations learned by BLAE and other baseline methods.

MNIST. To evaluate robustness against distribution shift, we train models using two different sampling distributions from the same underlying manifold. We generate these datasets using distinct rotation strategies on a 28×28 handwritten digit ‘3’:

1. **Uniform:** Rotate the image in 1° increments over the range $(0^\circ, 360^\circ]$, and uniformly sample 25% of these rotations as the training set (Figure 5(b)). The remaining are used as the testing set.
2. **Non-uniform:** Apply 1° rotation steps within the ranges $(0^\circ, 30^\circ] \cup (180^\circ, 210^\circ]$, and 10° steps within $(30^\circ, 180^\circ] \cup (210^\circ, 360^\circ]$ to obtain the training set, as illustrated in Figure 5(c). The remaining rotation angles constitute the testing set.

Each rotated image is zoomed to five scales ($0.8 \times$, $0.9 \times$, $1.0 \times$, $1.1 \times$, $1.2 \times$), generating 450 samples distributed across an annular manifold (Figure 5(b) (c)). Figure 5 illustrates the results. Gradient-based models without injectivity constraints struggle to capture the manifold topology, while graph-based methods demonstrate better performance. Notably, although Diffusion Net and TAE preserve topological structure in their latent representations, only BLAE achieves consistent embedding structures—forming concentric circles—across both training distributions, demonstrating its invariance to sampling density variations.

Figure 5: (a) Digit ‘3’ at various scales and rotations. (b) (c) Ground truth: 2D concentric circle latent representation for uniform and non-uniform training sets. *Others:* 2D latent representations learned by BLAE and baseline methods on uniform (left) and non-uniform (right) training sets.

Figure 6: Performance evaluation across different hyperparameter settings. (a) shows the impact of varying ϵ on k -NN accuracy and error metrics. (b) demonstrates the effect of κ on the same metrics. Error metrics are displayed on a logarithmic scale.

For completeness, Appendix B.4 presents the numerical results for all experiments, Appendix B.5 analyzes the computational complexity, and Appendix C includes extended experiments such as sensitivity analysis, ablation studies, and downstream classification on additional real-world datasets.

5.1 HYPERPARAMETER SENSITIVITY ANALYSIS

To assess robustness to hyperparameter choices, we vary the bi-Lipschitz constant κ and separation threshold ϵ on Swiss Roll, keeping other settings fixed. Detailed discussion and ablation studies on individual regularization terms and latent space visualizations are provided in Appendix C.3 and C.4.

Bi-Lipschitz constant κ . Figure 6a shows performance as $\kappa \in \{1.0, 1.1, 1.2, 1.5, 2.0, 5.0, 10.0\}$. k -NN recall peaks at $\kappa = 1.2$, demonstrating optimal balance between geometric preservation and flexibility. Overly strict constraints ($\kappa = 1.0$) enforce near-isometry, but slight relaxation maintains high fidelity while improving robustness. Excessive relaxation approaches unconstrained behavior and causes significant deterioration. Notably, MSE remains stable across all κ , confirming that geometric preservation drives the performance trade-off. $\kappa \in [1.0, 1.2]$ provides robust performance.

5.2 Separation threshold ϵ .

Figure 6b shows results for $\epsilon \in \{0.2, 0.3, \dots, 0.8\}$. k -NN recall peaks at small ϵ values and declines gracefully as ϵ increases. This behavior reflects two competing effects: smaller ϵ provides flexible separation that tolerates geodesic approximation errors, while larger ϵ enforces increasingly strict separation constraints. As ϵ approaches 1, the constraint increasingly resembles rigid distance-preserving requirements similar to SPAE, which suffers from vulnerability to geodesic approximation errors and conflicts with bi-Lipschitz relaxation. KL divergence increases approximately one order of magnitude across this range. The optimal range $\epsilon \in [0.2, 0.4]$ balances effective topological separation with robustness to distance estimation errors.

6 CONCLUSION

This work provides both theoretical and empirical foundations for understanding optimization bottlenecks in autoencoders. We demonstrate that the non-injective nature of standard encoders fundamentally induces local minima entrapment, explaining the suboptimal convergence observed in conventional formulations. To address this fundamental limitation, we introduce two key innovations. First, a novel injective regularization framework based on separation criteria that enforces topological consistency between input and latent spaces. Second, a bi-Lipschitz geometric constraint that ensures admissible latent space construction even under aggressive dimensionality reduction. Our Bi-Lipschitz Autoencoder (BLAE) demonstrates state-of-the-art performance in geometric structure preservation across multiple datasets. Importantly, BLAE exhibits significantly enhanced robustness to distribution shifts and low-sample regimes compared to existing approaches, validating our theoretical analysis.

An important direction for future work concerns the behavior of BLAE as latent dimensionality increases. Recent work on volume-constrained autoencoders (Chen & Fuge, 2024) suggests that combining our topology-preserving constraints with volume minimization could yield more compact representations, representing a promising avenue for enhancing practical applicability across diverse dimensional reduction scenarios.

540 REFERENCES
541

542 Frédéric Chazal, David Cohen-Steiner, and Quentin Mérigot. Geometric inference for probability
543 measures. *Foundations of Computational Mathematics*, 11:733–751, 2011.

544 Nutan Chen, Alexej Klushyn, Francesco Ferroni, Justin Bayer, and Patrick Van Der Smagt. Learning
545 flat latent manifolds with vaes. *arXiv preprint arXiv:2002.04881*, 2020.

546

547 Qiuyi Chen and Mark Fuge. Compressing latent space via least volume. *arXiv preprint
arXiv:2404.17773*, 2024.

548

549 Ronald R Coifman and Stéphane Lafon. Diffusion maps. *Applied and computational harmonic
analysis*, 21(1):5–30, 2006.

550

552 Andres F Duque, Sacha Morin, Guy Wolf, and Kevin R Moon. Geometry regularized autoencoders.
553 *IEEE transactions on pattern analysis and machine intelligence*, 45(6):7381–7394, 2022.

554

555 Amos Gropp, Matan Atzmon, and Yaron Lipman. Isometric autoencoders. *arXiv preprint
arXiv:2006.09289*, 2020.

556

557 Dmitry Kobak, George Linderman, Stefan Steinerberger, Yuval Kluger, and Philipp Berens. Heavy-
558 tailed kernels reveal a finer cluster structure in t-sne visualisations. In *Joint European Conference
on Machine Learning and Knowledge Discovery in Databases*, pp. 124–139. Springer, 2019.

559

560 John M Lee. Smooth manifolds. In *Introduction to smooth manifolds*, pp. 1–29. Springer, 2003.

561

562 Yonghyeon Lee, Hyeokjun Kwon, and Frank Park. Neighborhood reconstructing autoencoders.
563 *Advances in Neural Information Processing Systems*, 34:536–546, 2021.

564

565 Yonghyeon Lee, Sangwoong Yoon, MinJun Son, and Frank C Park. Regularized autoencoders for
566 isometric representation learning. In *International Conference on Learning Representations*, 2022.

567

568 Jungbin Lim, Jihwan Kim, Yonghyeon Lee, Cheongjae Jang, and Frank C Park. Graph geometry-
569 preserving autoencoders. In *Forty-first International Conference on Machine Learning*, 2024a.

570

571 Uzu Lim, Harald Oberhauser, and Vidit Nanda. Tangent space and dimension estimation with the
572 wasserstein distance. *SIAM Journal on Applied Algebra and Geometry*, 8(3):650–685, 2024b.

573

574 Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disentanglement
575 testing sprites dataset, 2017.

576

577 Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
578 projection for dimension reduction. *arXiv preprint arXiv:1802.03426*, 2018.

579

580 Gal Mishne, Uri Shaham, Alexander Cloninger, and Israel Cohen. Diffusion nets. *Applied and
581 Computational Harmonic Analysis*, 47(2):259–285, 2019.

582

583 Michael Moor, Max Horn, Bastian Rieck, and Karsten Borgwardt. Topological autoencoders. In
584 *International conference on machine learning*, pp. 7045–7054. PMLR, 2020.

585

586 John Nash. The imbedding problem for riemannian manifolds. *Annals of Mathematics*, 63(1):20–63,
587 1956. ISSN 0003486X. URL <http://www.jstor.org/stable/1969989>.

588

589 Philipp Nazari, Sebastian Damrich, and Fred A Hamprecht. Geometric autoencoders—what you see is
590 what you decode. *arXiv preprint arXiv:2306.17638*, 2023.

591

592 Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embedding.
593 *science*, 290(5500):2323–2326, 2000.

594

595 Tim Sainburg, Leland McInnes, and Timothy Q Gentner. Parametric umap embeddings for represen-
596 tation and semisupervised learning. *Neural Computation*, 33(11):2881–2907, 2021.

597

598 Rifai Salah, P Vincent, X Muller, X Glorot, and Y Bengio. Contractive auto-encoders: Explicit
599 invariance during feature extraction. In *Proc. of the 28th International Conference on Machine
Learning*, pp. 833–840, 2011.

594 Simon Till Schönenberger, Anastasia Varava, Vladislav Polianskii, Jen Jen Chung, Danica Kragic,
595 and Roland Siegwart. Witness autoencoder: Shaping the latent space with witness complexes. In
596 *TDA \& Beyond*, 2020.

597

598 Ayushman Singh and Kaustuv Nag. Structure-preserving deep autoencoder-based dimensionality
599 reduction for data visualization. In *2021 IEEE/ACIS 22nd International Conference on Software
600 Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)*, pp.
601 43–48. IEEE, 2021.

602 Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
603 nonlinear dimensionality reduction. *science*, 290(5500):2319–2323, 2000.

604 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine
605 learning research*, 9(11), 2008.

606

607 Zhenyue Zhang and Hongyuan Zha. Nonlinear dimension reduction via local tangent space alignment.
608 In *International Conference on Intelligent Data Engineering and Automated Learning*, pp. 477–481.
609 Springer, 2003.

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A THEORETICAL PROOFS
649650 A.1 PROOF OF THEOREM 1
651652 *Proof.* (\Leftarrow) $\forall x \neq y \in \mathcal{M}$, choose $\delta = d_{\mathcal{M}}(x, y)$, there exists $\epsilon > 0$, such that f is (δ, ϵ) -separated,
653 then

654
$$\frac{d_{\mathcal{N}}(f(x), f(y))}{d_{\mathcal{M}}(x, y)} > \epsilon. \quad (13)$$

655
656

657 Therefore, $d_{\mathcal{N}}(f(x), f(y)) > \epsilon \cdot d_{\mathcal{M}}(x, y) = \epsilon \cdot \delta > 0$, i.e. $f(x) \neq f(y)$. So f is an injection. Note
658 that the sufficiency does not require any assumption.659 (\Rightarrow) Because \mathcal{M} is compact, $\mathcal{M} \times \mathcal{M}$ is compact as well. For any $\delta > 0$, let
660

661
$$C_{\delta} := \{(x, y) \in \mathcal{M} \times \mathcal{M} \mid d_{\mathcal{M}}(x, y) \geq \delta\}. \quad (14)$$

662

663 The continuity and injectivity of f imply that $d_{\mathcal{N}}(f(x), f(y))/d_{\mathcal{M}}(x, y)$ is continuous and positive
664 on C_{δ} . Note that C_{δ} is a closed subset of $\mathcal{M} \times \mathcal{M}$, and hence also compact. Therefore, there exists
665 $(x_*, y_*) \in C_{\delta}$ such that

666
$$\frac{d_{\mathcal{N}}(f(x_*), f(y_*))}{d_{\mathcal{M}}(x_*, y_*)} = \inf_{(x, y) \in C_{\delta}} \frac{d_{\mathcal{N}}(f(x), f(y))}{d_{\mathcal{M}}(x, y)}. \quad (15)$$

667
668

669 Let $\epsilon = d_{\mathcal{N}}(f(x_*), f(y_))/2d_{\mathcal{M}}(x_*, y_*)$, then f is (δ, ϵ) -separated. \square
670671 A.2 PROOF OF THEOREM 2
672673 *Proof.* Because R has a global minimum, we know that

674
$$U_{\min} = \arg \min_u R(u) \neq \emptyset. \quad (16)$$

675

676 $\forall u_* \in U_{\min}$, we have $R(f(x)) - R(u_*) \geq 0$ for any $x \in \mathcal{M}$. Let f be a minimizer of

677
$$\min_{f_{\Theta} \in \mathcal{F}_{\Theta}} \mathbb{E}_{x \sim \mathbb{P}} [R(f_{\Theta}(x))], \quad (17)$$

678
679

680 then

681
$$0 = \mathbb{E}_{x \sim \mathbb{P}} [R(f(x))] - R(u_*) = \mathbb{E}_{x \sim \mathbb{P}} [R(f_{\Theta}(x)) - R(u_*)] \geq 0. \quad (18)$$

682

683 This implies that $R(f(x)) - R(u_*) = 0$ a.s.- \mathbb{P} , which means $f(x) \in U_{\min}$ a.s. on \mathcal{M} , since \mathbb{P} is
684 strictly positive. Therefore, $f(x) \in U_{\min}$ a.s. on \mathcal{M} . On the other hand, if $f(x) \in U_{\min}$ a.s. on \mathcal{M} ,
685 then since \mathbb{P} is absolutely continuous, we have that $f(x) \in U_{\min}$ a.s.- \mathbb{P} . Hence, it is obvious that f is
686 a minimizer of equation 17, so

687
$$S_{\mathbb{P}} = \{f_{\Theta} \in \mathcal{F}_{\Theta} \mid f_{\Theta}(x) \in U_{\min} \text{ a.s. on } \mathcal{M}\}. \quad (19)$$

688

689 Similarly, for another strictly positive and absolutely continuous probability measure \mathbb{Q} ,

690
$$S_{\mathbb{Q}} = \{f_{\Theta} \in \mathcal{F}_{\Theta} \mid f_{\Theta}(x) \in U_{\min} \text{ a.s. on } \mathcal{M}\}, \quad (20)$$

691

692 i.e. $S_{\mathbb{P}} = S_{\mathbb{Q}}$ which proves the admissibility. \square
693694 A.3 PROOF OF THEOREM 3
695

696 Before proving Theorem 3, we first introduce a auxiliary lemma:

697 **Lemma 1.** Given the assumptions in Theorem 3, we have

698
$$\sigma_{\max}(J_f^{\mathcal{M}}(x)) = \max_{v \in T_x \mathcal{M} \setminus \{\mathbf{0}\}} \frac{\|J_f(x)v\|}{\|v\|}, \quad (21)$$

699
700

701
$$\sigma_{\min}(J_f^{\mathcal{M}}(x)) = \min_{v \in T_x \mathcal{M} \setminus \{\mathbf{0}\}} \frac{\|J_f(x)v\|}{\|v\|}. \quad (22)$$

702 *Proof.* Let $k = \dim(T_x \mathcal{M})$, choose $\{v_1, \dots, v_k\}$ as an orthonormal basis of $T_x \mathcal{M}$. Then we have
 703 the following (basis-dependent) representation:
 704

$$705 J_f^{\mathcal{M}}(x) = [J_f(x)v_1 \cdots | J_f(x)v_k] = J_f(x)V. \quad (23)$$

706 Note that $J_f^{\mathcal{M}}(x)$ is an $n \times k$ matrix and $k \leq n$ because $f|_M$ is a diffeomorphism, so it has exactly k
 707 singular values. We denote them as $\sigma_1 \geq \dots \geq \sigma_k$. By singular value decomposition
 708

$$709 J_f^{\mathcal{M}}(x) = P_{n \times n} \Sigma_{n \times k} Q_{k \times k}^{\top}, \quad (24)$$

710 where P, Q are orthonormal matrices and $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_k)$. Then
 711

$$712 V^{\top} J_f(x)^{\top} J_f(x) V = J_f^{\mathcal{M}}(x)^{\top} J_f^{\mathcal{M}}(x) = Q \Sigma^{\top} \Sigma Q^{\top}. \quad (25)$$

713 So by eigenvalue decomposition,
 714

$$\begin{aligned} 715 \sigma_{\max}^2(J_f^{\mathcal{M}}(x)) &= \max_{u \in \mathbb{R}^k \setminus \{\mathbf{0}\}} \frac{u^{\top} \Sigma^{\top} \Sigma u}{\|u\|^2} \\ 716 &= \max_{w \in \mathbb{R}^k \setminus \{\mathbf{0}\}} \frac{w^{\top} Q \Sigma^{\top} \Sigma Q^{\top} w}{\|w\|^2} \\ 717 &= \max_{w \in \mathbb{R}^k \setminus \{\mathbf{0}\}} \frac{w^{\top} V^{\top} J_f(x)^{\top} J_f(x) V w}{\|w\|^2} \\ 718 &= \max_{v \in T_x \mathcal{M} \setminus \{\mathbf{0}\}} \frac{v^{\top} J_f(x)^{\top} J_f(x) v}{\|v\|^2} \\ 719 &= \max_{v \in T_x \mathcal{M} \setminus \{\mathbf{0}\}} \frac{\|J_f(x)v\|^2}{\|v\|^2}, \end{aligned} \quad (26)$$

720 i.e.
 721

$$722 \sigma_{\max}(J_f^{\mathcal{M}}(x)) = \max_{v \in T_x \mathcal{M} \setminus \{\mathbf{0}\}} \frac{\|J_f(x)v\|}{\|v\|}. \quad (27)$$

723 Similarly,
 724

$$725 \sigma_{\min}(J_f^{\mathcal{M}}(x)) = \min_{v \in T_x \mathcal{M} \setminus \{\mathbf{0}\}} \frac{\|J_f(x)v\|}{\|v\|}. \quad (28)$$

726 \square

727 *Proof of Theorem 3.* (\Rightarrow) Suppose f is κ -bi-Lipschitz, $\forall x \in \text{int } \mathcal{M}$, consider a unit vector $v \in T_x \mathcal{M}$.
 728 Let $\gamma : (-\varepsilon, \varepsilon) \rightarrow \mathcal{M}$ be a smooth curve with $\gamma(0) = x$ and $\gamma'(0) = v$. By the chain rule:
 729

$$730 (f \circ \gamma)'(0) = J_f(x)v. \quad (29)$$

731 For $|t| < \varepsilon$, the bi-Lipschitz condition implies that
 732

$$733 \frac{1}{\kappa} \cdot d_{\mathcal{M}}(\gamma(t), x) \leq d_{\mathcal{N}}(f(\gamma(t)), f(x)) \leq \kappa \cdot d_{\mathcal{M}}(\gamma(t), x). \quad (30)$$

734 Through dividing by $|t|$ and taking $t \rightarrow 0$, we obtain:
 735

$$736 \frac{1}{\kappa} \|v\| \leq \|J_f(x)v\| \leq \kappa \|v\|, \quad \forall v \in T_x \mathcal{M}. \quad (31)$$

737 For $v \neq \mathbf{0}$, dividing equation 31 by $\|v\|$ and taking maximum (minimum) give:
 738

$$739 \frac{1}{\kappa} \leq \min_{v \in T_x \mathcal{M} \setminus \{\mathbf{0}\}} \frac{\|J_f(x)v\|}{\|v\|} \leq \max_{v \in T_x \mathcal{M} \setminus \{\mathbf{0}\}} \frac{\|J_f(x)v\|}{\|v\|} \leq \kappa. \quad (32)$$

740 By lemma 1,
 741

$$742 \frac{1}{\kappa} \leq \sigma_{\min}(J_f(x)) \leq \sigma_{\max}(J_f(x)) \leq \kappa, \quad \forall x \in \text{int } \mathcal{M}. \quad (33)$$

743 By Weyl's inequality, equation 33 holds for all $x \in \overline{\text{int } \mathcal{M}} = \mathcal{M}$.
 744

(\Leftarrow) Let $x, y \in \mathcal{M}$ and suppose $\gamma : [0, 1] \rightarrow \mathcal{M}$ is a smooth path from x to y with $\|\gamma'\| > 0$ (such path must exist because \mathcal{M} is path-connected). Then the image of γ is a path from $f(x)$ to $f(y)$.

$$\begin{aligned}
 \text{Length}(f|_{\mathcal{M}} \circ \gamma) &= \int_0^1 \|(f|_{\mathcal{M}} \circ \gamma)'(s)\| ds \\
 &= \int_0^1 \|J_f(\gamma(s))\gamma'(s)\| ds \quad (\gamma'(s) \in T_s \mathcal{M}) \\
 &= \int_0^1 \frac{\|J_f(\gamma(s))\gamma'(s)\|}{\|\gamma'(s)\|} \cdot \|\gamma'(s)\| ds \\
 &\leq \int_0^1 \max_{v \in T_s \mathcal{M} \setminus \{\mathbf{0}\}} \frac{\|J_f(\gamma(s))v\|}{\|v\|} \cdot \|\gamma'(s)\| ds \\
 &\leq \int_0^1 \kappa \cdot \|\gamma'(s)\| ds \\
 &= \kappa \cdot \text{Length}(\gamma).
 \end{aligned} \tag{34}$$

Because $f|_{\mathcal{M}}$ is a diffeomorphism, $f|_{\mathcal{M}}^{-1}$ exists and is smooth, hence for any smooth path $\beta : [0, 1] \rightarrow f(\mathcal{M})$ from $f(x)$ to $f(y)$, $f^{-1}|_{\mathcal{M}} \circ \beta$ must be a smooth path from x to y . So, by the definition of geodesic distance,

$$\begin{aligned}
 d_{\mathcal{N}}(f(x), f(y)) &= \inf_{\beta} \text{Length}(\beta) \\
 &= \inf_{\beta} \text{Length}(f|_{\mathcal{M}} \circ f|_{\mathcal{M}}^{-1} \circ \beta) \\
 &= \inf_{\gamma} \text{Length}(f|_{\mathcal{M}} \circ \gamma) \\
 &\leq \kappa \cdot \inf_{\gamma} \text{Length}(\gamma) \\
 &= \kappa \cdot d_{\mathcal{M}}(x, y).
 \end{aligned} \tag{35}$$

Similarly, we can prove that $d_{\mathcal{N}}(f(x), f(y)) \geq \frac{1}{\kappa} \cdot d_{\mathcal{M}}(x, y)$ which completes the proof. \square

A.4 PROOF OF THEOREM 4

Although this theorem can be proved in just a few lines using Proposition C.29 and the Inverse Function Theorem in (Lee, 2003), for the sake of completeness we present here a more detailed proof.

Proof. Suppose f embeds \mathcal{M} into \mathbb{R}^n . The Whitney's embedding theorem guarantees that such an embedding exists and $n \leq 2k$. On the other hand, the embedding dimension obviously cannot be less than k . It remains to show that f is bi-Lipschitz. Since f is an embedding, we know that the linear mapping $J_f(x) : T_x \mathcal{M} \rightarrow T_{f(x)} f(\mathcal{M})$ is injective at every point $x \in \mathcal{M}$. Thereby, for any unit vector $v \in T_x \mathcal{M}$,

$$\|J_f(x)v\| > 0, \tag{36}$$

Because $V := \{v : \|v\| = 1\}$ is compact, there must exist a $v_* \in V$ such that

$$\sigma_{\min}(J_f^{\mathcal{M}}(x)) = \min_{v \in T_x \mathcal{M} \setminus \{\mathbf{0}\}} \frac{\|J_f(x)v\|}{\|v\|} = \min_{v \in V} \|J_f(x)v\| = \|J_f(x)v_*\| > 0. \tag{37}$$

By Weyl's inequality (which implies the continuity of singular values of J_f), there exists a neighborhood U_x of x , such that $\forall y \in U_x$,

$$\sigma_{\min}(J_f^{\mathcal{M}}(y)) \geq \frac{1}{2} \sigma_{\min}(J_f^{\mathcal{M}}(x)), \tag{38}$$

$$\sigma_{\max}(J_f^{\mathcal{M}}(y)) \leq 2 \sigma_{\max}(J_f^{\mathcal{M}}(x)). \tag{39}$$

Choose $\kappa(x) = \max\{2\sigma_{\max}(J_f^{\mathcal{M}}(x)), 2/\sigma_{\min}(J_f^{\mathcal{M}}(x))\}$, it is easy to see that $\kappa(x) \geq 1$, we have:

$$\frac{1}{\kappa(x)} \leq \sigma_{\min}(J_f^{\mathcal{M}}(y)) \leq \sigma_{\max}(J_f^{\mathcal{M}}(y)) \leq \kappa(x), \quad \forall y \in U_x. \tag{40}$$

Notice that $\{U_x | x \in \mathcal{M}\}$ is a open cover of \mathcal{M} , since \mathcal{M} is compact, we can find a finite sub-cover $\{U_{x_1}, \dots, U_{x_N}\}$. Choose $\kappa = \max\{\kappa(x_1), \dots, \kappa(x_N)\}$, then,

$$\frac{1}{\kappa} \leq \sigma_{\min}(J_f^{\mathcal{M}}(y)) \leq \sigma_{\max}(J_f^{\mathcal{M}}(y)) \leq \kappa, \quad \forall y \in \mathcal{M}. \quad (41)$$

By Theorem 3, f is κ -bi-Lipschitz. \square

B EXPERIMENTAL DETAILS

B.1 HYPERPARAMETER

We implemented dataset-specific autoencoders tailored to the structural characteristics of each dataset. For the Swiss Roll and ssREAD datasets, we used a fully connected autoencoder with two hidden layers of 256 units and ELU activations in both the encoder and decoder. The encoder projected the input—either 3D coordinates (Swiss Roll) or 50-dimensional PCA-reduced features (ssREAD)—into a 2-dimensional latent space, which the decoder then used to reconstruct the original input. For Swiss Roll, models were trained for 3000 epochs using the Adam optimizer with weight decay 1×10^{-5} and an initial learning rate of 2×10^{-3} , reduced by a factor of 0.1 every 1000 epochs. For ssREAD, models were trained for 1500 epochs with Adam, weight decay 1×10^{-5} , and an initial learning rate of 1×10^{-3} , reduced by a factor of 0.1 every 500 epochs.

For the dSprites dataset, which is detailed in Appendix C.5, we adopted a convolutional autoencoder based on the ConvNet64 and DeConvNet64 architectures. The encoder consisted of five convolutional layers with increasing channel widths—from n_h to $4 \times n_h$ —followed by a 1×1 convolution that mapped the feature maps to a 2D latent representation. The decoder mirrored this structure using transposed convolutions to reconstruct the original 64×64 binary image. Training was conducted for 1000 epochs using Adam with weight decay 1×10^{-5} and an initial learning rate of 1×10^{-3} .

For the MNIST dataset, we employed a convolutional autoencoder optimized for 28×28 grayscale images. The encoder consisted of two convolutional layers with ReLU activations and max pooling, followed by fully connected layers that compressed the input into a 2D latent vector. The decoder performed the inverse, using fully connected layers and transposed convolutions to reconstruct the image. Models were trained for 3000 epochs with Adam, weight decay 1×10^{-5} , and an initial learning rate of 1×10^{-2} , reduced by a factor of 0.5 every 300 epochs.

All models were designed to produce a 2-dimensional latent space to facilitate direct visualization and consistent comparison.

Table 2: Hyperparameter settings for baselines across all evaluated datasets.

Dataset	Parameter	SPAE	TAE	DN	GRAE	CAE	GGAE	IRAE	GAE
Swiss Roll	λ	2	5	100	100	0.1	1	0.01	0.01
	η	/	/	0.001	/	/	/	0	/
	n_neighbor	/	/	10	5	/	10	/	/
	bandwidth	/	/	/	/	/	2	/	/
dSprites	λ	10	0.01	0.001	0.1	0.1	0.1	0.1	0.01
	η	/	/	0.1	/	/	/	0	/
	n_neighbor	/	/	1000	6	/	5	/	/
	bandwidth	/	/	/	/	/	5	/	/
MNIST	λ	5	10	0.01	0.01	0.1	0.1	0.1	0.01
	η	/	/	0.1	/	/	/	0	/
	n_neighbor	/	/	50	5	/	15	/	/
	bandwidth	/	/	/	/	/	0.01	/	/
ssREAD	λ	10	100	0.01	0.01	1	0.01	1	1
	η	/	/	0.1	/	/	/	0.2	/
	n_neighbor	/	/	5	5	/	10	/	/
	bandwidth	/	/	/	/	/	0.01	/	/

864 The hyperparameters used for the baseline models on each dataset are listed in Table 2. These were
 865 selected via grid search: $\lambda \in \{0.01, 0.1, 1, 2, 5, 10, 100\}$, $\eta \in \{0.001, 0.01, 0.1, 0.2, 0.5, 1\}$, number
 866 of neighbors $\in \{5, 6, 7, 8, 9, 10, 15, 50, 100, 1000\}$, and GGAE bandwidth $\in \{0.01, 0.1, 1, 2, 5, 10\}$.
 867

868 In our method, κ is treated as a tunable hyperparameter. A simple approach is to apply a standard
 869 grid search, but a more efficient alternative is to use a binary search over a given interval (e.g., [1, 5]).
 870 Starting from the midpoint, if the trained model produces a nonzero Bi-Lipschitz loss (above a
 871 tolerance such as 10^{-4}), this indicates that the current κ is too small and should be increased; if the
 872 loss is effectively zero, the condition is satisfied and κ can be accepted or further reduced. In practice,
 873 the guiding principle is to select the smallest κ for which the Bi-Lipschitz loss remains below the
 874 threshold. Alternatively, if one wishes to enforce a specific distortion bound K between the latent
 875 representations and the input space, κ can be directly set to K , thereby ensuring the constraint while
 876 maintaining robustness to distributional shift.

877 The hyperparameters used for our model (BLAE) are provided in Table 3.

878 Table 3: Hyperparameter settings for BLAE across all evaluated datasets.
 879

Datasets	Swiss Roll	dSprites	MNIST	ssREAD
λ_{reg}	1	2	30	2
$\lambda_{\text{bi-Lip}}$	0.3	0.1	0.1	0.1
κ	1	1.1	2	1.2
ϵ	0.3	0.3	0.6	0.6

886 B.2 EVALUATION METRICS

887 We evaluate the performance of each model using three metrics: mean squared error (MSE), k -NN
 888 recall (Sainburg et al., 2021; Kobak et al., 2019), and KL_σ divergence (Chazal et al., 2011), where
 889 $\sigma \in 0.01, 0.1, 1$. While these metrics are traditionally defined using Euclidean distance, we adapt
 890 them to better capture the underlying manifold structure. Specifically, we compute distances using
 891 geodesic metrics: $d_{\mathcal{M}}$ on the data manifold and $d_{\mathcal{N}}$ in the latent space. These geodesic distances
 892 are approximated by first constructing a neighborhood graph and then computing the shortest paths
 893 between node pairs.

894 B.2.1 k -NN RECALL

895 The k -NN recall metric quantifies how well the local neighborhood structure is preserved in the latent
 896 space. It measures the proportion of k -nearest neighbors on the data manifold that remain among the
 897 k -nearest neighbors in the latent space. For the Swiss Roll dataset, we report the average k -NN recall
 898 over $k \in \{5, 10, \dots, 50\}$. For MNIST and dSprites, we use $k \in \{2, 4, \dots, 10\}$.

900 B.2.2 KL_σ DIVERGENCE

901 The KL_σ metric computes the Kullback-Leibler divergence between the normalized density estimates
 902 on the data manifold and in the latent space. Let $X = \{x_1, \dots, x_N\}$ denote the original data and
 903 $Z = \{z_1, \dots, z_N\}$ their corresponding latent representations. The density at each point is defined by:

$$904 p_{X,\sigma}(x_i) = \frac{f_{X,\sigma}(x_i)}{\sum_j f_{X,\sigma}(x_j)}, \quad p_{Z,\sigma}(z_i) = \frac{f_{Z,\sigma}(z_i)}{\sum_j f_{Z,\sigma}(z_j)}, \quad (42)$$

905 where the unnormalized densities are computed as:

$$906 f_{X,\sigma}(x_i) = \sum_j \exp \left(-\frac{1}{\sigma} \left(\frac{d_{\mathcal{M}}(x_i, x_j)}{\max_{i,j} d_{\mathcal{M}}(x_i, x_j)} \right)^2 \right), \\ 907 f_{Z,\sigma}(z_i) = \sum_j \exp \left(-\frac{1}{\sigma} \left(\frac{d_{\mathcal{N}}(z_i, z_j)}{\max_{i,j} d_{\mathcal{N}}(z_i, z_j)} \right)^2 \right). \quad (43)$$

910 The final metric is given by $KL_\sigma = D_{\text{KL}}(p_{X,\sigma} \| p_{Z,\sigma})$. Smaller values of σ emphasize local structure,
 911 while larger values reflect global geometry.

918 B.3 GENERATION OF SWISS ROLL DATA
919920 We use the logarithmic spiral $r = e^{b\theta}$ ($b \neq 0$) to construct the Swiss Roll dataset. The arc length of
921 the spiral from angle θ_1 to θ_2 is given by:
922

$$\begin{aligned}
s(\theta_2) - s(\theta_1) &= \int_{\theta_1}^{\theta_2} 1 \, ds \\
&= \int_{\theta_1}^{\theta_2} \sqrt{r^2(\theta) + r'^2(\theta)} \, d\theta \\
&= \int_{\theta_1}^{\theta_2} e^{b\theta} \sqrt{1 + b^2} \, d\theta \\
&= \frac{\sqrt{1 + b^2}}{b} (e^{b\theta_2} - e^{b\theta_1}).
\end{aligned} \tag{44}$$

923 Fixing the starting point at $\theta_1 = 0$ and allowing the negative arc length to be negative, we obtain the
924 arc length as a function of θ :
925

926
$$s(\theta) = \frac{\sqrt{1 + b^2}}{b} (e^{b\theta} - 1), \tag{45}$$

927 which leads to the inverse function:
928

929
$$\theta(s) = \frac{1}{b} \log\left(\frac{bs}{\sqrt{1 + b^2}} + 1\right). \tag{46}$$

930 This yields an isometric parameterization of the logarithmic spiral over the interval $(-\frac{\sqrt{1+b^2}}{b}, +\infty)$:
931

932
$$r(s) = e^{b\theta(s)}. \tag{47}$$

933 To generate the Swiss Roll, we first uniformly sample points $(s, z) \in [-2, 10] \times [0, 6]$, then re-
934 move points within the rectangular strip $[1.5, 6.5] \times [2.5, 3.5]$. The remaining points are embedded
935 isometrically into \mathbb{R}^3 via:
936

937
$$(s, z) \rightarrow (e^{b\theta(s)} \cos(\theta(s)), e^{b\theta(s)} \sin(\theta(s)), z). \tag{48}$$

938 In Section 5, we set $b = 0.1$.
939940 B.4 QUANTITATIVE RESULTS
941942 In this section, we present quantitative results, including mean squared error (MSE), k -nearest-
943 neighbor (k -NN) recall, and KL divergence (KL_σ) under multiple bandwidths $\sigma \in \{0.01, 0.1, 1\}$,
944 for the Swiss Roll (Table 4), dSprites (Table 5), and MNIST datasets (Table 6 and Table 7). For
945 dSprites, evaluation is performed specifically on the withheld cross-shaped regions to assess model
946 generalization to out-of-distribution samples. For each cluster, we compute MSE, k -NN recall, and
947 KL_σ , and report the results as the mean \pm standard deviation over five independent runs, with the
948 final score for each model given by the average across clusters. The best performance for each metric
949 is highlighted in bold.
950951 The Swiss Roll results show that BLAE attains the lowest reconstruction error and KL divergence
952 across all bandwidths, together with the highest k -NN recall, indicating both accurate geometry
953 recovery and strong neighborhood preservation. On dSprites, BLAE also achieves the best scores
954 across metrics, with particularly large margins on KL_σ , demonstrating generalization to out-of-
955 distribution regions. For uniform MNIST, BLAE remains competitive on all measures, leading in
956 MSE, k -NN, and KL at three bandwidths. On the more challenging non-uniform MNIST, although
957 some baselines approach similar k -NN performance, BLAE secures the best results on three of the
958 five metrics, and the embeddings in Figure 5 show markedly greater robustness to distributional shift.
959960 B.5 COMPUTATIONAL COMPLEXITY
961962 BLAE, along with other graph-based autoencoders, begins by constructing a neighborhood graph and
963 computing pairwise shortest paths to approximate geodesic distances. This preprocessing step has
964

972

973

Table 4: Evaluation metrics (mean \pm standard deviation over 5 runs) on the Swiss Roll dataset. For
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
MSE and KL metrics, lower values are better; for k -NN, higher values are better.

Model	k -NN(\uparrow)	$KL_{0.01}(\downarrow)$	$KL_{0.1}(\downarrow)$	$KL_1(\downarrow)$	MSE(\downarrow)
BLAE	9.61e-01 \pm 3.59e-03	1.28e-04 \pm 2.95e-05	1.78e-05 \pm 5.98e-06	1.39e-06 \pm 1.02e-06	9.36e-05 \pm 1.92e-05
SPAE	8.95e-01 \pm 2.90e-02	7.95e-03 \pm 1.13e-02	5.15e-03 \pm 8.95e-03	4.73e-04 \pm 8.81e-04	2.10e-03 \pm 3.25e-03
TAE	8.14e-01 \pm 1.54e-02	4.28e-03 \pm 7.20e-04	1.57e-03 \pm 6.38e-04	5.64e-05 \pm 1.72e-05	6.94e-03 \pm 5.07e-03
DN	7.22e-01 \pm 1.58e-02	5.26e-02 \pm 7.95e-03	1.32e-02 \pm 7.50e-03	7.43e-04 \pm 7.03e-04	1.02e-01 \pm 1.73e-02
GRAE	5.70e-01 \pm 3.03e-02	4.09e-02 \pm 1.26e-02	9.94e-03 \pm 4.36e-03	8.34e-04 \pm 4.11e-04	7.72e-02 \pm 2.16e-02
CAE	6.14e-01 \pm 1.71e-02	6.11e-02 \pm 1.66e-02	4.10e-02 \pm 7.76e-03	2.31e-03 \pm 4.27e-04	5.37e-02 \pm 7.41e-03
GGAE	6.61e-01 \pm 1.22e-01	4.04e-02 \pm 2.52e-02	1.80e-02 \pm 1.09e-02	1.18e-03 \pm 7.70e-04	7.28e-02 \pm 4.96e-02
IRAE	5.88e-01 \pm 1.45e-02	2.55e-01 \pm 2.15e-02	6.75e-02 \pm 8.34e-03	2.31e-03 \pm 4.82e-04	4.06e-02 \pm 2.08e-03
GAE	5.03e-01 \pm 3.21e-02	6.96e-02 \pm 3.56e-02	2.73e-02 \pm 1.28e-02	1.92e-03 \pm 4.27e-04	4.80e-02 \pm 6.22e-04
Vanilla AE	5.18e-01 \pm 2.90e-02	2.00e-01 \pm 9.14e-02	5.41e-02 \pm 2.07e-02	2.05e-03 \pm 6.25e-04	4.14e-02 \pm 3.09e-03

Table 5: Evaluation metrics (mean \pm standard deviation over 5 runs) on the dSprites dataset. For
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
MSE and KL metrics, lower values are better; for k -NN, higher values are better.

Model	k -NN(\uparrow)	$KL_{0.01}(\downarrow)$	$KL_{0.1}(\downarrow)$	$KL_1(\downarrow)$	MSE(\downarrow)
BLAE	7.39e-01 \pm 5.17e-03	6.42e-03 \pm 9.52e-04	3.98e-03 \pm 1.84e-04	3.79e-05 \pm 1.74e-06	1.69e-02 \pm 1.46e-03
SPAE	7.24e-01 \pm 4.60e-03	2.95e-02 \pm 4.67e-04	9.11e-03 \pm 5.36e-05	7.83e-05 \pm 4.92e-07	1.72e-02 \pm 1.02e-03
TAE	5.58e-01 \pm 5.09e-02	3.15e-02 \pm 2.44e-02	1.46e-02 \pm 5.37e-03	1.25e-03 \pm 2.23e-03	2.84e-02 \pm 4.65e-03
DN	4.81e-01 \pm 4.59e-02	8.41e-02 \pm 4.45e-02	7.32e-02 \pm 5.16e-02	6.38e-03 \pm 5.67e-03	3.47e-02 \pm 3.55e-03
GRAE	5.23e-01 \pm 1.99e-02	2.94e-02 \pm 4.97e-04	9.10e-03 \pm 5.59e-05	7.84e-05 \pm 4.72e-07	3.06e-02 \pm 8.94e-03
CAE	6.79e-01 \pm 6.31e-02	3.99e-02 \pm 2.38e-02	2.05e-02 \pm 2.54e-02	1.79e-03 \pm 3.83e-03	2.59e-02 \pm 8.76e-03
GGAE	4.36e-01 \pm 1.10e-01	1.83e-01 \pm 5.64e-02	2.95e-01 \pm 1.33e-01	2.72e-03 \pm 1.57e-03	5.19e-02 \pm 6.98e-03
IRAE	4.89e-01 \pm 2.25e-02	1.11e-01 \pm 3.51e-02	3.13e-02 \pm 1.98e-02	3.32e-03 \pm 1.84e-03	5.57e-02 \pm 3.09e-03
GAE	4.99e-01 \pm 1.12e-01	3.73e-02 \pm 2.35e-02	1.79e-02 \pm 1.84e-02	1.68e-03 \pm 3.57e-03	4.36e-02 \pm 8.35e-03
Vanilla AE	4.89e-01 \pm 6.01e-02	1.21e-01 \pm 7.22e-02	5.23e-02 \pm 3.44e-02	4.71e-03 \pm 5.16e-03	4.79e-02 \pm 4.05e-03

Table 6: Evaluation metrics (mean \pm standard deviation over 5 runs) on the (Uniform) MNIST dataset.
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
For MSE and KL metrics, lower values are better; for k -NN, higher values are better.

Model	k -NN(\uparrow)	$KL_{0.01}(\downarrow)$	$KL_{0.1}(\downarrow)$	$KL_1(\downarrow)$	MSE(\downarrow)
BLAE	9.03e-01 \pm 9.38e-03	4.79e-02 \pm 5.32e-03	4.01e-02 \pm 1.39e-02	1.22e-02 \pm 6.28e-03	2.92e-03 \pm 1.53e-03
SPAE	8.59e-01 \pm 3.10e-02	7.50e-02 \pm 1.71e-02	6.35e-02 \pm 1.42e-02	1.58e-02 \pm 7.63e-03	6.91e-03 \pm 2.29e-03
TAE	8.29e-01 \pm 2.68e-02	5.17e-02 \pm 9.51e-03	6.69e-02 \pm 1.99e-02	1.64e-02 \pm 8.08e-03	4.93e-03 \pm 6.78e-04
DN	8.64e-01 \pm 3.17e-02	1.33e-01 \pm 4.48e-02	9.15e-02 \pm 3.60e-02	1.49e-02 \pm 6.72e-03	3.43e-03 \pm 9.97e-04
GRAE	8.70e-01 \pm 5.67e-02	1.11e-01 \pm 5.63e-02	6.87e-02 \pm 2.43e-02	1.41e-02 \pm 7.06e-03	3.51e-03 \pm 1.32e-03
CAE	7.69e-01 \pm 3.23e-02	2.58e-01 \pm 3.32e-02	1.62e-01 \pm 4.66e-02	1.93e-02 \pm 8.74e-03	5.54e-03 \pm 8.10e-04
GGAE	8.11e-01 \pm 4.09e-02	4.95e-01 \pm 1.54e-01	1.95e-01 \pm 4.04e-02	1.96e-02 \pm 8.65e-03	4.33e-03 \pm 1.69e-03
IRAE	7.82e-01 \pm 4.04e-02	1.04e-01 \pm 3.58e-02	9.41e-02 \pm 2.13e-02	1.65e-02 \pm 8.70e-03	6.17e-03 \pm 4.27e-04
GAE	7.03e-01 \pm 3.81e-02	1.31e-01 \pm 4.19e-02	1.31e-01 \pm 4.31e-02	1.96e-02 \pm 9.24e-03	6.59e-03 \pm 1.27e-03
Vanilla AE	7.69e-01 \pm 6.32e-02	4.27e-01 \pm 1.65e-01	1.76e-01 \pm 4.96e-02	1.85e-02 \pm 8.32e-03	6.58e-03 \pm 4.79e-03

Table 7: Evaluation metrics (mean \pm standard deviation over 5 runs) on the (non-uniform) MNIST
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
dataset. For MSE and KL metrics, lower values are better; for k -NN, higher values are better.

Model	k -NN(\uparrow)	$KL_{0.01}(\downarrow)$	$KL_{0.1}(\downarrow)$	$KL_1(\downarrow)$	MSE(\downarrow)
BLAE	8.65e-01 \pm 4.50e-02	2.89e-02 \pm 1.80e-02	1.66e-02 \pm 2.60e-03	1.19e-03 \pm 7.91e-05	3.88e-03 \pm 7.87e-04
SPAE	8.22e-01 \pm 1.05e-01	5.59e-02 \pm 3.13e-02	6.11e-02 \pm 4.39e-02	5.44e-03 \pm 5.09e-03	7.78e-03 \pm 2.90e-03
TAE	8.77e-01 \pm 1.22e-02	3.35e-02 \pm 8.59e-03	2.23e-02 \pm 1.01e-03	1.32e-03 \pm 1.66e-05	5.61e-03 \pm 1.88e-03
DN	8.81e-01 \pm 6.48e-02	7.19e-02 \pm 4.58e-02	4.10e-02 \pm 1.74e-02	4.23e-03 \pm 2.03e-03	5.48e-03 \pm 1.65e-03
GRAE	9.14e-01 \pm 2.22e-02	1.06e-01 \pm 1.57e-02	4.84e-02 \pm 1.72e-02	5.23e-03 \pm 1.30e-03	3.08e-03 \pm 8.84e-04
CAE	7.58e-01 \pm 4.05e-02	1.48e-01 \pm 1.95e-02	1.12e-01 \pm 5.71e-03	4.55e-03 \pm 2.44e-04	8.50e-03 \pm 1.33e-03
GGAE	7.15e-01 \pm 4.59e-02	2.63e-01 \pm 9.76e-02	1.52e-01 \pm 1.06e-01	8.92e-03 \pm 1.03e-02	9.75e-03 \pm 2.48e-03
IRAE	7.36e-01 \pm 6.63e-02	7.25e-02 \pm 1.85e-02	7.93e-02 \pm 2.35e-02	5.17e-03 \pm 3.55e-03	8.75e-03 \pm 2.46e-03
GAE	6.82e-01 \pm 1.94e-01	1.48e-01 \pm 6.16e-02	9.22e-02 \pm 2.45e-02	4.13e-03 \pm 8.02e-04	1.45e-02 \pm 1.90e-02
Vanilla AE	7.49e-01 \pm 4.75e-02	2.76e-01 \pm 1.07e-01	1.48e-01 \pm 3.72e-02	7.74e-03 \pm 3.39e-03	9.70e-03 \pm 1.75e-03

1026 a time complexity of $\mathcal{O}(n^2 \log n)$, but it is performed only once and thus does not impact training
 1027 efficiency. During training, each mini-batch only requires slicing the precomputed geodesic distance
 1028 matrix to extract the relevant submatrix. For instance, in the Swiss Roll experiment, computing the
 1029 full geodesic distance matrix took only 0.3 seconds.

1030 Although BLAE integrates both graph-based (injective) and gradient-based (bi-Lipschitz) regularization
 1031 mechanisms, its computational complexity does not significantly exceed that of employing
 1032 either regularization approach in isolation. This efficiency stems from the fact that only a small
 1033 subset of samples activate the regularization terms during practical training. Specifically, for data
 1034 pair (x, x') satisfying $d_{\mathcal{N}}(x, x')/d_{\mathcal{M}}(x, x') \in (\epsilon, 1)$ or data point x where $1/\kappa < \sigma_{\min}(J_{\mathcal{D}_\phi}(x)) \leq$
 1035 $\sigma_{\max}(J_{\mathcal{D}_\phi}(x)) < \kappa$, the corresponding gradients of regularization vanish identically.
 1036

1037 Table 8: Runtime for training BLAE and other baseline models. All experiments were conducted on
 1038 a Mac Mini equipped with an Apple M4 chip (16GB RAM).

Model	BLAE	SPAЕ	TAE	DN	GRAЕ	CAЕ	GGAE	IRAE	GAE	Vanilla AE
Runtime (s)	170.9	162.1	601.3	204.4	147.3	199.6	415.8	189.3	207.6	136.2

1043 Consequently, these inactive components are naturally excluded from backpropagation computations.
 1044 To benchmark, we measured the runtime for training the Swiss Roll dataset in 3000 training steps
 1045 with 1500 samples divided into three batches (batch size=500). Notably, considering the robustness of
 1046 gradient-based regularization under limited sample sizes, we implemented a partial sampling strategy
 1047 where only 10% of data points within each training batch are utilized for computing the Jacobian
 1048 matrix and the corresponding regularization. As shown in Table 8, BLAE exhibits comparable time
 1049 complexity to other baselines.
 1050

C EXTENDED EXPERIMENTS

C.1 SENSITIVITY ANALYSIS OF b AND LENGTH

1055 In this section, we conduct a sensitivity analysis on the Swiss Roll dataset with respect to two
 1056 key parameters: the spiral factor b and the manifold length, both of which influence the geometric
 1057 complexity of the data manifold.

1075 Figure 7: 2-D latent representations of Swiss Roll data learned by BLAE and gradient-based baselines
 1076 trained with different values of b (0.1, 0.12, 0.15) on the Swiss Roll data. All models were trained
 1077 using 1500 sample points, and all figures were plotted using the entire 10,000 sample points.

1078 In logarithmic spirals, the curvature is inversely related to $|b|$: smaller values of $|b|$ correspond to
 1079 tighter coiling of the spiral. During experiments, we observed that gradient-based autoencoders, such

1080 as TAE, SPAE, and GGAE, are more prone to converge to suboptimal local minima as $|b|$ decreases.
 1081 To assess this behavior systematically, we varied b while keeping all other parameters fixed. As
 1082 shown in Figure 7, when $b = 0.1$, the baseline models struggle to fully unfold the manifold structure.
 1083 Interestingly, at $b = 0.12$, GGAE shows earlier signs of escaping non-injective regimes, likely due
 1084 to its hybrid design that combines gradient-based regularization with structural information from a
 1085 graph. Full unfolding of the spiral is achieved by all models once b increases to 0.15.
 1086

1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 Figure 8: 2-D latent representations learned of Swiss Roll data by BLAE and graph-based baselines
 trained with different lengths ($[-2, 10]$, $[1, 10]$) on the Swiss Roll data. All models were trained using
 1500 sample points, and all figures were plotted using the entire 10,000 sample points.

1102 The manifold length is another important factor influencing unfolding quality. Empirical evidence
 1103 suggests that gradient-based models tend to perform better on shorter Swiss Roll configurations.
 1104 To evaluate this, we fixed $b = 0.1$ and generated two versions of the Swiss Roll: (1) a longer
 1105 manifold defined over $[-2, 10] \times [0, 6] \setminus [1.5, 6.5] \times [2.5, 3.5]$, and (2) a shorter manifold over
 1106 $[1, 10] \times [0, 6] \setminus [3.5, 7.5] \times [2.5, 3.5]$. As shown in Figure 8, the shorter configuration leads to more
 1107 effective unfolding for most models, particularly those graph-based baseline methods.
 1108

1109 C.2 SENSITIVITY ANALYSIS OF SAMPLE SIZE

1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 Figure 9: 2-D latent representations learned by BLAE and graph-based baselines trained with different
 sample sizes (400, 1000, 3000) on the Swiss Roll data. All models were trained on the indicated
 sample sizes, while visualizations use the full set of 10,000 data points.

The performance of graph-based methods is highly sensitive to sample density, as the quality of the neighborhood graph—and hence the accuracy of geodesic distance estimation—directly depends on the number of training points. In this section, we systematically analyze how the training sample size affects the behavior of graph-based autoencoders.

1134
 1135 Table 9: Evaluation metrics (over 5 runs) of BLAE and graph-based baselines trained with different
 1136 sample sizes (400, 1000, 3000) on the Swiss Roll data. For MSE and KL metrics, lower values are
 1137 better; for k -NN, higher values are better. The best performance for each metric is shown in bold.

Measure	BLAE	GGAE	SPAE	TAE	Diffusion Net	GRAE
Sample size = 400						
MSE(\downarrow)	1.52e-03±1.07e-04	9.69e-02±7.98e-03	1.86e-02±6.07e-03	5.39e-02±2.96e-03	1.34e-01±2.84e-02	1.80e-01±3.93e-03
k -NN(\uparrow)	9.19e-01±3.10e-03	4.55e-01±2.89e-02	7.30e-01±2.38e-02	6.81e-01±4.18e-03	5.73e-01±3.05e-02	4.76e-01±6.31e-03
KL $_{0.01}(\downarrow)$	2.49e-03±2.25e-04	1.14e-01±1.08e-02	2.39e-02±4.56e-03	3.01e-02±1.52e-03	4.41e-02±1.23e-02	1.01e-01±3.86e-03
KL $_{0.1}(\downarrow)$	3.55e-04±3.89e-05	1.81e-02±1.84e-03	5.85e-03±6.64e-04	7.37e-03±3.53e-04	3.83e-02±4.01e-03	2.29e-02±1.56e-04
KL $_{1}(\downarrow)$	1.78e-05±2.22e-06	1.52e-03±6.69e-05	2.57e-04±1.94e-04	2.56e-04±6.34e-06	2.21e-03±7.78e-05	2.30e-03±7.54e-05
Runtime (s)	8.28e+01±5.82e-01	1.32e+02±9.88e-01	7.79e+01±2.10e+00	1.83e+02±1.96e+00	9.24e+01±1.57e+00	7.55e+01±1.18e+00
Sample size = 1000						
MSE(\downarrow)	8.55e-05±7.64e-06	3.96e-02±1.18e-02	3.01e-04±6.52e-05	1.72e-03±4.61e-04	2.42e-01±3.95e-02	5.64e-03±1.50e-03
k -NN(\uparrow)	9.81e-01±2.06e-03	4.87e-01±4.48e-02	9.35e-01±4.40e-03	7.16e-01±2.59e-03	5.03e-01±4.41e-02	6.25e-01±3.24e-02
KL $_{0.01}(\downarrow)$	1.07e-04±4.28e-05	1.59e-01±1.72e-02	1.29e-03±2.95e-04	2.22e-03±7.23e-04	3.75e-02±1.41e-02	6.31e-02±2.97e-02
KL $_{0.1}(\downarrow)$	1.14e-05±3.96e-06	2.28e-02±3.33e-03	2.02e-04±8.80e-05	2.22e-03±7.23e-04	3.05e-02±4.70e-03	1.24e-02±8.16e-03
KL $_{1}(\downarrow)$	8.63e-07±3.32e-07	1.43e-03±9.01e-05	8.82e-06±4.38e-06	2.22e-03±7.23e-04	2.04e-03±1.75e-04	1.00e-03±6.53e-04
Runtime (s)	1.13e+02±4.14e+00	2.17e+02±3.45e+00	1.02e+02±3.70e+00	3.05e+02±3.68e+00	1.18e+02±4.39e+00	9.85e+01±4.99e-01
Sample size = 3000						
MSE(\downarrow)	6.42e-05±6.57e-06	1.50e-02±1.17e-02	1.29e-04±2.66e-05	5.72e-04±1.28e-04	2.96e-01±3.01e-03	3.16e-03±3.15e-04
k -NN(\uparrow)	9.81e-01±3.32e-03	6.50e-01±7.56e-02	9.53e-01±4.06e-03	9.31e-01±6.14e-03	4.37e-01±4.87e-03	6.79e-01±6.40e-03
KL $_{0.01}(\downarrow)$	4.49e-04±2.25e-05	8.68e-02±7.70e-02	7.03e-04±1.94e-04	2.49e-03±2.25e-04	2.07e-02±1.86e-03	9.30e-02±5.89e-03
KL $_{0.1}(\downarrow)$	5.75e-05±1.01e-05	2.70e-02±8.78e-03	8.28e-05±2.45e-05	3.55e-04±3.89e-05	2.77e-02±1.76e-03	8.81e-03±9.79e-04
KL $_{1}(\downarrow)$	1.98e-06±1.88e-07	1.31e-03±1.12e-03	3.34e-06±3.89e-07	1.78e-05±2.22e-06	2.08e-03±8.74e-05	7.29e-04±6.71e-05
Runtime (s)	1.88e+02±1.47e+00	1.97e+03±1.72e+01	1.82e+02±1.42e+00	2.16e+03±1.00e+02	1.94e+02±1.75e+00	3.37e+02±8.01e+00

1148
 1149
 1150
 1151
 1152
 1153
 1154 We generated 10,000 Swiss Roll samples using fixed parameters ($b = 0.15$, latent domain $[-2, 10] \times$
 1155 $[0, 6]$), and trained models using subsets of 400, 1000, and 3000 samples. To maintain consistency
 1156 and isolate the effect of sample size, we avoided removing any subregions from the latent space,
 1157 ensuring a smooth geodesic-Euclidean correspondence.

1158 As shown in Figure 9, graph-based baselines exhibit increasing distortion in the latent representa-
 1159 tions as the sample size decreases, reflecting their reliance on high-resolution graphs for structural
 1160 accuracy. In contrast, BLAE consistently preserves the underlying geometry across all sample sizes,
 1161 demonstrating strong robustness to data sparsity and limited supervision.

C.3 COMPARISON OF INJECTIVE REGULARIZATION AND SPAE REGULARIZATIONS

1162
 1163 Our injective regularization shares structural similarities with SPAE’s regularization in their formal
 1164 use of geodesic distance ratios between the data manifold \mathcal{M} and the latent space \mathcal{N} . Both frameworks
 1165 impose constraints involving $d_{\mathcal{M}}/d_{\mathcal{N}}$. However, their underlying philosophies differ significantly.

1166
 1167 SPAE enforces a strict constraint of $d_{\mathcal{M}}/d_{\mathcal{N}} = \text{constant}$, relying on a graph-based approximation
 1168 $\hat{d}_{\mathcal{M}}$ that introduces systematic bias under finite sampling. Additionally, SPAE substitutes $d_{\mathcal{N}}$ with the
 1169 Euclidean norm $\|\cdot\|_2$, which inherently underestimates geodesic distances—especially in non-convex
 1170 latent spaces, where equality $\|\cdot\|_2 = d_{\mathcal{N}}$ holds only in convex settings. For example, in the Swiss
 1171 Roll dataset, points located on opposite sides of the removed strip exhibit large geodesic distances,
 1172 yet are deceptively close in Euclidean space.

1173
 1174 In contrast, our injective regularization selectively penalizes extreme distortions in the $d_{\mathcal{M}}/d_{\mathcal{N}}$ ratio,
 1175 and is inherently more tolerant to approximation errors. Rather than enforcing a global constraint,
 1176 it activates only when a specific geometric violation is detected, enabling targeted regularization
 1177 through appropriate gradient signals.

1178 Notably, combining SPAE with gradient-based (bi-Lipschitz) regularization results in inferior perfor-
 1179 mance. This degradation arises from the compounded effects of distance approximation errors and
 1180 the rigid constraints enforced by SPAE.

C.4 ABLATION STUDIES AND SENSITIVITY ANALYSIS OF κ AND ϵ

C.4.1 COMBINING INJECTIVE REGULARIZATION WITH GRADIENT-BASED METHODS

1181
 1182 To demonstrate that injective regularization can alleviate pathological local minima in existing
 1183 gradient-based autoencoders, we combine our separation criterion with two representative gradient-

1188 based regularizers: CAE and GAE. We conduct experiments on the Swiss Roll dataset with 1,500
 1189 training samples and visualize using the complete 10,000-point dataset.
 1190

1191 Figure 10 shows the results of combining injective regularization with CAE and GAE. Panels (a)-(b)
 1192 show that CAE and GAE alone struggle to properly unfold the Swiss Roll manifold, exhibiting
 1193 non-injective collapse similar to the vanilla autoencoder. However, when combined with our injective
 1194 regularization (panels (c)-(d)), both methods successfully preserve the manifold topology and properly
 1195 unfold the structure without collapse. While the unfolded representations show some geometric
 1196 irregularities along the boundaries compared to the ideal rectangular structure, the critical topological
 1197 property, preventing distant manifold regions from collapsing into nearby latent codes, is successfully
 1198 enforced. This demonstrates that our injective regularization acts as a complementary constraint that
 1199 helps gradient-based methods escape pathological local minima caused by non-injectivity. For optimal
 1200 geometric preservation, including smooth boundaries, combining both injective and bi-Lipschitz
 1201 regularization (as in full BLAE) is necessary, which we demonstrate throughout the next section.
 1202

1203 Figure 10: 2-D latent representation of Swiss Roll data learned by autoencoders with (a) only CAE
 1204 regularization, (b) only GAE regularization, (c) CAE + injective regularizations, (d) CAE + injective
 1205 regularizations.
 1206

1207 C.4.2 COMPLEMENTARY ROLES OF INJECTIVE AND BI-LIPSCHITZ REGULARIZATION

1208 To validate that both regularization terms serve distinct and complementary purposes, we conduct
 1209 ablation experiments on the Swiss Roll dataset. Figure 11 presents 2-D latent representations learned
 1210 under four different regularization schemes, all trained with 1500 samples and visualized using the
 1211 complete 10,000-point dataset.
 1212

1213 **Injective regularization only.** (Fig. 11 (a)) With $\lambda_{\text{reg}} > 0$ and $\lambda_{\text{bi-Lip}} = 0$, the model successfully
 1214 unfolds the Swiss Roll topology, confirming that the separation criterion eliminates non-injective
 1215 collapse. However, the embedding exhibits geometric irregularities and uneven point density. This
 1216 demonstrates that injectivity alone is necessary but insufficient for smooth geometric preservation.
 1217

1218 **SPAE regularization only.** (Fig. 11 (b)) SPAE’s distance-preserving constraint produces a cleaner
 1219 rectangular embedding with more uniform point distribution. However, as discussed in Appendix C.3,
 1220 SPAE’s rigid constraint $d_{\mathcal{M}}/d_{\mathcal{N}} = \text{constant}$ is vulnerable to geodesic distance approximation errors,
 1221 especially near the removed strip region.
 1222

1223 **Injective + bi-Lipschitz regularization (BLAE).** (Fig. 11 (c)) Our full framework combines
 1224 both terms with $\kappa = 1$, achieving: (1) topological correctness from the injective term, and (2)
 1225 geometric smoothness from the bi-Lipschitz term. The embedding closely resembles the ground truth
 1226 parameterization with a uniform point distribution and regular boundaries.
 1227

1228 **SPAE with bi-Lipschitz regularization.** (Fig. 11 (d)) This combination yields inferior results with
 1229 visible distortion and irregular geometry. This validates our analysis in Appendix C.3: SPAE’s strict
 1230 global constraint conflicts with bi-Lipschitz relaxation, and approximation errors compound. In
 1231 contrast, our injective regularization only penalizes extreme violations, making it naturally compatible
 1232 with bi-Lipschitz constraints.
 1233

1234 **Bi-Lipschitz regularization only.** (Fig. 11 (e)) The model fails to unfold the Swiss Roll.
 1235

1236 C.4.3 LATENT VISUALIZATIONS FOR HYPERPARAMETER SENSITIVITY

1237 **Bi-Lipschitz constant κ .** Figure 12 shows latent embeddings across different κ . For small values
 1238 ($\kappa \in [1.0, 1.2]$), the Swiss Roll structure is excellently preserved with smooth rectangular boundaries
 1239 and uniform point density. At moderate values ($\kappa \in [1.5, 2.0]$), the overall structure remains intact,
 1240

Figure 11: 2-D latent representation of Swiss Roll data learned by autoencoders with (a) only injective regularization, (b) only SPAE regularization, (c) injective + 1-bi-Lipschitz regularizations, (d) SPAE + 1-bi-Lipschitz regularizations, (e) only 1-bi-Lipschitz regularization.

but subtle irregularities begin to appear along the manifold boundaries. As κ increases beyond 2.0, the geometric distortion becomes progressively more pronounced: the rectangular boundaries lose regularity and the manifold exhibits significant warping with visible curvature in regions that should be flat. Notably, even at extreme values, the topological correctness is maintained—the manifold remains properly unfolded without collapse. This visual degradation directly corresponds to the quantitative decline in k -NN recall shown in Figure 6a. The visualizations confirm that while the bi-Lipschitz constraint is admissible (allowing geometric relaxation), tighter bounds (κ closer to 1) better preserve the intrinsic manifold geometry.

Figure 12: Sensitivity analysis of κ : 2-D latent representation of Swiss Roll data learned by BLAE with different κ values.

Separation threshold ϵ . Figure 13 visualizes how latent structure evolves as ϵ varies from 0.2 to 0.8. Low ϵ values (0.2–0.4) produce consistently high-quality embeddings that faithfully preserve the rectangular structure of the Swiss Roll’s ground truth parameterization. The manifold boundaries are smooth and regular, and the three embeddings are visually nearly indistinguishable. This stability confirms that performance is robust within this range. Moderate ϵ values (0.5–0.6) show the emergence of subtle geometric distortions. The rectangular boundaries become slightly less regular, though overall topology remains correct. High ϵ values (0.7–0.8) exhibit significant geometric irregularities. The rectangular structure is distorted, and local smoothness is compromised. However, critically, even at $\epsilon = 0.8$, the manifold topology is still preserved—no collapse occurs, and distant manifold regions remain separated. This graceful degradation aligns with the quantitative k -NN decline shown in Figure 6b. The visualizations confirm that smaller ϵ values provide flexible separation that tolerates geodesic approximation errors, while larger ϵ values enforce increasingly rigid constraints. As ϵ grows, the requirement $\frac{d_N(\mathcal{E}_\theta(x), \mathcal{E}_\theta(y))}{d_M(x, y)} > \epsilon$ for points satisfying $d_M(x, y) \geq \delta$ becomes more restrictive, approaching strict distance preservation that is vulnerable to estimation errors, leading to the geometric drift visible at larger ϵ values.

Figure 13: Sensitivity analysis of ϵ : 2-D latent representation of Swiss Roll data learned by BLAE with different ϵ values.

1296
1297

C.5 EXTRA DATASETS AND EXPERIMENTS

1298
1299

C.5.1 TOY EXAMPLE WITH INCREASED SAMPLE DENSITY

1300
1301

To address concerns about whether non-injective embeddings reflect genuine inadequacy or merely insufficient data, we extend the toy example from Figure 1 by increasing the sample size from 20 to 200 points while maintaining the same V-shaped manifold structure.

1302
1303

We sample 200 points uniformly from the V-shaped manifold and train both a vanilla autoencoder and BLAE with identical architectures (hidden dimension = 16). Both models are trained under the same conditions to isolate the effect of injective regularization. As shown in Figure 14, even with 10× more training samples, the vanilla autoencoder (panels c-d) continues to exhibit non-injective collapse: the latent representation shows severe overlap between the red and blue classes, resulting in distorted reconstruction with an irregular curve. In contrast, BLAE (panels e-f) achieves proper class separation in the latent space and accurately reconstructs the V-shaped structure.

1304
13051306
13071308
1309

Figure 14: Extended toy example demonstrating the non-injective encoder bottleneck. (a) 200 training points sampled from a V-shaped manifold with two classes (red and blue). (b) Ground truth: an ideal encoder separates the two classes in a 1D latent space. (c) Reconstructed manifolds by Vanilla AE with hidden dimension 16. (d) Corresponding latent representations learned by Vanilla AE. (e) Reconstructed manifolds by BLAE with hidden dimension 16. (f) Corresponding latent representations learned by BLAE showing proper class separation.

1310
1311

C.5.2 ssREAD DATABASE

1312
13131314
13151316
13171318
13191320
1321

Figure 15: Left: Single cell type in the AD00109 dataset from the ssREAD database. Right: 2D latent representations learned by BLAE and other baseline methods.

1322
13231324
13251326
13271328
13291330
13311332
13331334
13351336
13371338
13391340
13411342
13431344
13451346
13471348
1349

We utilize the AD00109 dataset from the ssREAD database, which provides single-nucleus RNA sequencing (snRNA-seq) data from brain tissue of Alzheimer’s disease (AD) patients. This dataset contains transcriptomic profiles from the prefrontal cortex of several female AD patients, aged between 77 and over 90. Sequencing was performed using the 10x Genomics Chromium platform. Standard preprocessing steps were applied, including quality control, normalization, dimensionality

1350 reduction, and unsupervised clustering. The resulting dataset consists of 9,891 cells and 27,801 genes,
 1351 annotated into seven distinct cell types.

1352 For downstream analysis, we apply principal component analysis (PCA) and retain the top 50
 1353 principal components. We split the data by using 25% of the cells for training and the remaining
 1354 75% for evaluation. Figure 15 shows the 2D latent representations learned by BLAE and several
 1355 baseline methods. Among these, BLAE, SPAE, TAE, and GAE better preserve the distinct boundaries
 1356 between different cell types. To quantitatively assess representation quality, we train a Support Vector
 1357 Machine (SVM) classifier on the latent representations (latent dimension = 2, 32) of the training set
 1358 and report classification accuracy on the evaluation set. Results are summarized in Table 10, where
 1359 BLAE achieves the highest accuracy on both latent dimensions, indicating that it learns the most
 1360 discriminative latent representations for single-cell type identification.

1361
 1362 Table 10: Classification accuracy (over 5 runs) of SVM trained on latent representations learned
 1363 by different models. BLAE achieves the highest accuracy, demonstrating better preservation of
 1364 cell-type-specific information in the latent space. The best performance is shown in bold.

Model	Latent dimension = 2	Latent dimension = 32
BLAE	0.9250 ± 0.0033	0.9626 ± 0.0013
SPAE	0.9146 ± 0.0206	0.9576 ± 0.0019
TAE	0.9107 ± 0.0121	0.9524 ± 0.0026
DN	0.9167 ± 0.0064	0.4200 ± 0.0821
GRAE	0.9131 ± 0.0119	0.9476 ± 0.0022
CAE	0.9222 ± 0.0030	0.9517 ± 0.0025
GGAE	0.8855 ± 0.0161	0.9556 ± 0.0017
IRAE	0.9066 ± 0.0200	0.9605 ± 0.0016
GAE	0.9185 ± 0.0113	0.9575 ± 0.0022
Vanilla AE	0.8996 ± 0.0172	0.9557 ± 0.0017

D USAGE OF LARGE LANGUAGE MODELS (LLMs)

1377
 1378 We used large language models as a general-purpose writing assistant. Its role was limited to
 1379 grammar checking, minor stylistic polishing, and improving the clarity of phrasing in some parts of
 1380 the manuscript. The authors made all substantive contributions to the research and writing.