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ABSTRACT

Protein-protein interactions (PPIs) play crucial roles in almost all biological pro-
cesses. Recently, Data-driven machine learning models have shown great power
in the analysis of PPIs. However, efficient molecular representation and featur-
ization are still key issues that hinder the performance of learning models. Here,
we propose persistent Tor-algebra (PTA), PTA-based molecular characterization
and featurization, and PTA-based stacking ensemble learning (PTA-SEL) for PPI
binding affinity prediction, for the first time. More specifically, the Vietoris-Rips
complex is used to characterize the PPI structure and its persistent Tor-algebra is
computed to form the molecular descriptors. These descriptors then are fed into
our stacking model to make the prediction. We systematically test our model on
the two most commonly used datasets, i.e., SKEMPI and AB-Bind. It has been
found that our model outperforms all the existing models as far as we know, which
demonstrates the great power of our model.

1 INTRODUCTION

Protein-protein interactions (PPIs) play an essential role in a wide range of biological processes
and mechanisms, including cell metabolism, signaling, protein transport and immune system (Geng
et al., 2019b; Gonzalez & Kann, 2012). The understanding of PPIs, in particular PPIs upon muta-
tions, is significant to various biomedical applications, including disease-associated mutation anal-
ysis, drug design, and therapeutic intervention (Geng et al., 2019b; Gonzalez & Kann, 2012). Ex-
perimentally, various methods have been developed to determine the protein structures and compute
the binding affinities and stabilities of PPI. However, experimental studies are time-consuming and
labor-intensive. Various efficient computational methods and models have been proposed for the
PPI studies. Particularly, lots of models have been developed for the evaluation of PPI binding
affinity changes upon mutations (∆∆G). With the ever-increasing PPI data, a great amount of data-
driven learning models have been developed (Geng et al., 2019b; Shi et al., 2021), including mCSM
(Rodrigues et al., 2019), ELASPIC (Strokach et al., 2021), BindProf (Brender & Zhang, 2015), Mu-
taBind (Zhang et al., 2020), iSEE (Geng et al., 2019a), MuPIPR (Zhou et al., 2020), ProAffiMuSeq
(Jemimah et al., 2020), GeoPPI (Liu et al., 2021), etc.

Recently, advanced mathematics, in particular topological data analysis (TDA) (Edelsbrunner et al.,
2002; Zomorodian & Carlsson, 2005), are used in molecular representation and featurization (Cang
& Wei, 2017c; Nguyen et al., 2020; Cang et al., 2018; Meng & Xia, 2021). Their combination
with learning models have achieved great success in various steps of drug design, including protein-
ligand binding affinity prediction (Cang & Wei, 2017c;b; Nguyen et al., 2017; Cang & Wei, 2018;
Nguyen & Wei, 2019), protein stability change upon mutation prediction (Cang & Wei, 2017a; Cang
et al., 2018), toxicity prediction (Wu & Wei, 2018; Chen et al., 2021; Jiang et al., 2021), solvation
free energy prediction (Wang et al., 2016; 2018), partition coefficient and aqueous solubility (Wu
et al., 2018), binding pocket detection (Zhao et al., 2018), and drug discovery (Gao et al., 2020).
Outstanding performance has been consistently achieved in D3R Grand challenge (Nguyen et al.,
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2019b;c;a). In particular, TopNetTree has demonstrated great power in predicting binding affinity
changes upon mutations (Wang et al., 2020a). It outperformed all existing models and provided
great insights for the SARS-CoV-2 mutations (Chen et al., 2020; Wang et al., 2020b).

Similar to homology, Tor-algebra is another homotopy invariant. Topologically, two simplicial com-
plexes share the same Tor-algebra if they can deform to each other (Buchstaber & Pano, 2015).
Tor-algebra of a simplicial complex K can be seen as a combination of the reduced simplicial coho-
mology of its subcomplexes. Tor-algebra is from the Tor functor and the Tor functor is one of the
central concepts of homological algebra. Tor-algebra is highly related to the moment-angle complex,
the key concept in toric topology. More specifically, for a simplicial complex K, its moment-angle
complex can be constructed, and the Tor algebra of K is isomorphic to the integral cohomology of
the moment-angle complex of K.

Here we propose persistent Tor-algebra (PTA), PTA-based molecular characterization and featuriza-
tion, and PTA-based stacking ensemble learning (PTA-SEL) model for PPIs, for the first time. The
Vietoris-Rips complex is used to characterize the protein-protein structure and its persistent Tor-
algebra is computed to form the input features for our stacking model. More specifically, 72 persis-
tent Tor-algebra features are fed into 72 1D convolutional neural network models separately. Besides
the topological features, some precalculated auxiliary features from molecular physical properties
are combined with the 72 topological features to form another 72 features, and these features are
inputs for 72 gradient boosting tree models. Then all 144 predictions are fed into the meta learner to
make the prediction. Our model is systematically tested on the two most-commonly used datasets,
SKEMPI and AB-Bind datasets, for PPI binding affinity changes upon mutations. It has been found
that our model can outperform all existing models, as far as we know.

2 RESULTS

PERSISTENT TOR-ALGEBRA BASED MOLECULAR REPRESENTATION AND FEATURIZATION

Molecular representation and featurization are of great importance for the analysis of molecular
data from material, chemistry and biology. Recently, simplicial complex has been used in molecular
representation, especially in drug design, the derived persistent homology theory has shown great
power and is being hotly studied. A simplicial complex is a set of vertices, edges, triangles and
higher dimensional counterparts which are glued together along their faces. Physically, a vertice
can represent a molecular atom, residue, or even the whole molecule. An edge can represent the
interactions of various kinds between two vertices including covalent bonds, electrostatic, and other
non-covalent forces. The triangles, tetrahedrons and other higher dimensional counterparts can rep-
resent many-body interactions among several vertices, which characterize the higher dimensional
structures of molecules.

Given a simplicial complex K with vertex set {v1, v2, ..., vm}, its face ring (or the Stanley-Reisner
ring) F[K] over the coefficient field F can be naturally constructed. The face ring F[K] has the F-
vector space basis consisting of monomials vα1

j1
...vαi

ji
...vαk

jk
where αi = 1, 2, ... and {vj1 , ..., vjk} is

a simplex of K. The face ring can uniquely determine its underlying simplicial complex while the
face ring is an algebraic object and simplicial complex is a topological object, which means they are
equivalent although they are different types of objects.

For the face ring F[K] of simplicial complex K, a Tor module TorF[m](F[K],F) can be derived where
F[m] is the polynomial algebra F[v1, v2, ..., vm] with degree 2 for each vi. This is called the Tor-
algebra of the simplicial complex K. It is a homotopy invariant so two simplicial complexes share
the same Tor-algebra if they can deform to each other. For simplicity, we denote TorF[m](F[K],F) as
Tor(K). The Tor-algebra Tor(K) is highly related to simplicial cohomology of K. Formally, there
is a decomposition Tor(K) =

⊕
i,j>=0 Tor

−i,2j(K) where Tor−i,2j(K) is the (−i, 2j)-grade
component of Tor(K). And the simplicial cohomology of the full subcomplexes with j vertices of
K fully determine the (−i, 2j)-grade component Tor−i,2j(K). More specifically, Tor−i,2j(K) =⊕

J⊂[m],|J|=j Ĥ
j−i−1(KJ ,F) where [m] is the vertex set {v1, ..., vm}, J is a vertex subset, KJ is a

full subcomplex of K obtained by restricting to J ⊂ [m] and Ĥj−i−1(KJ) is the reduced simplicial
cohomology of KJ . From the decomposition, the Tor-algebra of a simplicial complex can be seen
as a combination of the reduced simplicial cohomology of its subcomplexes.
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Figure 1: Illustration of our persistent Tor-algebra based stacking ensemble learning models. Tor-
algebra features (Tor) are fed into the first type base learner, GBT model, and together with some
auxiliary features (Aux) to form inputs for the second type base learner, 1D CNN model. Then the
predictions of the base learners are stacked with a meta model to make the prediction. The first type
base learners are stacked with a meta learner to form the PTA-SM(M1) model. And all the base
learners are stacked with a meta learner to form the PTA-SM(M2) model.

Here, we propose persistent Tor-algebra, for the first time, through the combination of Tor-algebra
and the filtration process. More specifically, assume we have a filtration of simplicial complex. That
is a sequence of nested simplicial complexes connected by inclusions

∅ = K0 → K1 → ... → Kn = K

where Ki is a subcomplex of Ki+1. For each simplicial complex Ki, its face ring F(Ki) over
coefficient F can be constructed, which can uniquely determine its underlying simplicial complex.
Hence a series of face rings can be derived

F(K0) → F(K1) → ... → F(Kn)

where two adjacent face rings are connected by the homomorphism induced from the inclusion map.
Also, for each face ring F(Ki), its Tor-algebra Tor(Ki) can be constructed and the homomorphism
naturally induce homomorphism between the Tor-algebra of two adjacent face rings. Consequently,
we get a sequence of Tor-algebra connected by homomorphisms

Tor(K0) → Tor(K1) → ... → Tor(Kn)

We call this sequence of Tor-algebra together with the homomorphisms as the persistent Tor-algebra.
Further, by considering a specific (−i, 2j)-th graded component of Tor-algebra modules, we have

Tor−i,2j(K1) → Tor−i,2j(K2) → ... → Tor−i,2j(Kn)

This is called the persistent Tor-algebra of K in the (−i, 2j)-th graded component. These Tor-algebra
form a persistent module that can be represented as a persistent barcode or persistent diagram. The
bars in persistent barcode and the points in persistent diagram reflect the birth, death and evolution
process of the Tor-algebra through the filtration process.

2.1 PERSISTENT TOR ALGEBRA BASED STACKING MODELS FOR PROTEIN-PROTEIN BINDING
AFFINITY PREDICTION

2.1.1 PERSISTENT TOR-ALGEBRA BASED STACKING MODELS

Our Tor-algebra based stacking models consist of two types of base learners, 1D convolutional
neural network and gradient boosting tree, and two meta learners, which can be seen in Figure 1.
The first type base learners consist of 72 1D CNN models with 72 types of Tor-algebra features
as inputs separately. Besides the topological features, some precalculated auxiliary features are
combined with these topological features to form another 72 features, and these features are inputs
of 72 gradient boosting tree models, the second type base learners.

We stack all the 144 base learners with a gradient boosting tree model and denote the model as
PTA-SEL(M2). We also studied another stacking model PTA-SEL(M1) which only considers the
first type base learners (1D CNN models).
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2.1.2 FEATURE GENERATION

Protein-protein complexes are usually of great sizes, our aim is to predict the binding affinity change
(∆∆G) following mutations. And the mutation sites are very small, usually no more than 10
residues. So only protein atoms near mutation sites are considered to reduce computational cost.

More specifically, for each protein-protein complex, protein atoms within 10Å of the mutation sites
are considered. We use the element-specific representations, six atom combinations are extracted,
including {C}, {N}, {O}, {C,N}, {C,O}, and {N,O}. Both the wild type and mutated type of
the protein structure are considered. So there are totally 12 atom combinations for each protein-
protein complex. For each atom combination, a Vietoris-Rips complex K is constructed from the
atom coordinates. Then six persistent Tor-algebra components are computed, the indexes are (1, 2),
(2, 3), (n− 1, 1), (n− 2, n), (n− 2, n− 1) and (n− 3, n− 1) as (i, j) for Tor−i,2j(K) where n is
the vertex number of K. So totally 72 = 12×6 persistent Tor-algebra components are generated for
each protein-protein complex. These persistent Tor-algebra can be represented as persistent barcode.
Barcode statistic is used to discretize these barcodes into feature vectors. More specifically, the
filtration region [0Å,10Å] is divided into 40 equal-sized bins with grid size 0.25Å. For the (i, j)
values of (1, 2), (2, 3), (n − 1, n) and (n − 2, n − 1), the values of the right endpoints of the bars
in each bin are considered. And for (i, j) values of (n − 2, n) and (n − 3, n − 1), the values of
both the left and right endpoints of the bars in each bin are considered. So 40 sets of real values are
generated for each persistent Tor-algebra component with a specific (i, j) index. Then six statistic
values, including maximal value, minimal value, average value, sum, standard deviation and the
number of elements are considered. Hence a feature of 240 = 40 × 6 columns are generated for
each persistent Tor-algebra with a specific (i, j) index. In all, for a protein-protein complex, a totally
72 topological features of size 240 are generated. Besides these topological features, based on Wang
et al. (2020a), 707 auxiliary features are also considered in our model.

2.1.3 PERFORMANCE

Two most commonly used datasets, AB-Bind S645 and SKEMPI S1131 (Pires & Ascher, 2016;
Wang et al., 2020a; Xiong et al., 2017), are considered in our benchmark tests. In the performance
assessment of our model, Pearson correlation coefficient (PCC) and root-mean-square error (RMSE)
are used to assess the quality of prediction. Ten independent regressions are performed and the
average PCC and RMSE are used as the measurement of the performance of our model.

Figure 2 shows the comparison of performance between our model and other existing models on
AB-Bind S645 and SKEMPI S1131 datasets. It can be seen that our model can achieve the best
result with PCC of 0.866 and RMSE of 1.216 kcal/mol on SKEMPI S1131 and rank second on AB-
Bind S645. There are 27 nonbinders that do not follow the general distribution of the other data in
the AB-Bind dataset. It has been reported that these nonbinders have a strong negative impact on the
prediction model accuracy (Wang et al., 2020a). Our model can rank as first if we exclude these 27
nonbinders from the dataset. More specifically, the PCC increases from 0.61 to 0.72 by excluding
these 27 nonbinders. Note that our PTA-SEL(M1) model also achieves state-of-the-art results, which
demonstrates the great power of our persistent Tor-algebra theory in molecular representation and
featurization.

3 CONCLUSION

In this paper, we propose persistent Tor-algebra (PTA), PTA-based molecular representation and
featurization, PTA-based stacking ensemble learning (PTA-SEL) models for PPI binding affinity
prediction, for the first time. In our stacking model, the Vietoris-Rips complex is used to characterize
the PPI structure, then its persistent Tor-algebra features are computed. These topological features
are inputs of 72 1D CNN base models, and together with some auxiliary features form the inputs
of 72 GBT base models. Then all the 144 predictions of the 144 base learners are fed into a meta
learner to make the prediction. It is found that our model outperforms all the existing models for the
protein-protein binding affinity prediction on both SKEMPI S1131 and AB-Bind S645 datasets, as
far as we know.
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Figure 2: Comparison of the preformance between our model and other existing models on SKEMPI
S1131 and AB-Bind S645 datasets. It can be seen that our model outperforms all existing models
in SKEMPI S1131. Note that There are 27 nonbinders that have strong negative impact on the
performance of learning models in AB-Bind S645 dataset. And our model can rank first if we
excluding these nonbinders.
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A APPENDIX

A.1 PERSISTENT TOR-ALGEBRA

In this section, we give construction of persistent Tor-algebra for a simplicial complex. More specif-
ically, we firstly give algebraic construction of Tor for any two modules. Then we turn to the sim-
plicial complex, the face ring is given and its associated Tor is defined as the Tor-algebra of the
simplicial complex, more detailed descriptions can be found refer to (Buchstaber & Pano, 2015).
By considering a filtration process of the simplicial complex, we propose the persistent Tor-algebra
for simplicial complex.

TOR MODULES

Assume A is a commutative finitely generated F-algebra with unit, graded by nonnegative even
numbers (i.e. A =

⊕
i>=0 Ai) and connected (i.e. A0 = F). The basic example is the polyno-

mial algebra F[v1, v2, ..., vm] with degree(vi) = 2. We also assume that all A-modules M are
nonnegatively graded and finitely generated, and all module maps are degree-preserving.
Definition 1. Given an A-module M, a free resolutoin of M is an exact sequence of free A-modules

...
di+1−−−→ R−i di−→ ...

d2−→ R−1 d1−→ R0 d0−→ M → 0

Here exact means Kerdi = Imdi+1(0 ⩽ i). The resolution can be converted into a bigraded F-
vector space R =

⊕
i R

−i =
⊕

i,j R
−i,j where R−i,j is the j-th graded component of the module

R−i, and the (i, j)-th component of d acts as di,j : R−i,j → R−i+1,j . We refer to the first grading of
R as external; it comes from the indexing of the terms in the resolution and is therefore nonpositive
by our convention. The second, internal, grading of R comes from the grading in the modules R−i

and is therefore even and nonnegative.
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Now we give the construction of Tor. Assume we have a free resolution of an A-module M , and
N is another A-module. Applying the functor

⊗
A N to the free resolution, we obtain a cochain

complex
... → R−i

⊗
A

N → ... → R−1
⊗
A

N → R0
⊗
A

N → 0

The i-th cohomology module of the cochain complex is denoted as ToriA(M,N). We can also write

TorA(M,N) =
⊕

i,j>=0

Tor−i,2j
A (M,N)

where Tor−i,2j
A (M,N) is the 2j-th graded component of Tor−i

A (M,N). Actually, for any A-
module M , there is a canonical way to construct a free resolution for M . So the TorA(M,N) can
be defined for any A-module M .

A.1.1 FACE RING OF A SIMPLICIAL COMPLEX

Definition 2. Given a simplicial complex K on the vertex set {v1, ..., vm}, the face ring of K is the
quotient graded ring

F[K] = F[v1, v2, ..., vm]/IK
where IK = (VI |I /∈ K) is the ideal generated by those monomials VI for which I is not a simplex
of K. (For any vertex subset I = {vj1 , ..., vjk}, VI is the monomial vj1 ...vjk ). The ideal IK is known
as the Stanley −Reisner ideal of K.

Next we give a more clear description of the face ring.
Theorem 1. Given a simplicial complex K, its face ring F[K] has the F-vector space basis consisting
of monomials vα1

j1
vα2
j2
...vαk

jk
where αi > 0 and {ji, j2, ..., jk} ∈ K.

Actually, the face ring determines its underlying simplicial complex.
Theorem 2 (Bruns-Gubeladze). Let F be a field, and K1, K2 be two simplicial complexes on the
vertex sets [m1], [m2] respectively. Suppose F[K1] and F[K2] are isomorphic as F-agebra. Then
there exists a bijective map [m1] → [m2] which induces an isomorphism between K1 and K2.

A.1.2 TOR-ALGEBRA OF THE SIMPLICIAL COMPLEX

Given a simplicial complex K, its face ring F[K] has a F[v1, v2, ..., vm]-module structure via the
quotient projection F[v1, v2, ..., vm] → F[K]. Then its Tor-modules can be considered, we have

TorF[m](F[K],F) =
⊕

i,j>=0

Tor−i,2j
F[m] (F[K],F)

where F[m] = F[v1, v2, ..., vm] and Tor−i,2j
F[m] (F[K],F) is 2j-th graded component of

ToriF[m](F[K],F).
Definition 3. Given a simplicial complex K, its face ring is denoted as F[K]. The Tor-algebra of K
is defined as TorF[v1,v2,...,vm](F[K],F). The bigraded Betti number of F[K] is defined as

β−i,2j = dim(Tor−i,2j
F[v1,v2,...,vm](F[K],F))

For simplicity, we denote the Tor-algebra of K as Tor(K) =
⊕

i,j>=0 Tor
−i,2j(K). The following

fundamental result of Hochster reduces the calculation of the Betti numbers β−i,2j to the calculation
of reduced simplicial cohomology of full subcomplexes in K.
Theorem 3 (Hochster). Given a simplicial complex K, its face ring is denoted as F[K]. We have

Tor−i,2j
F[v1,v2,...,vm](F[K],K) =

⊕
J⊂K,|J|=j

Ĥj−i−1(KJ ,F)

where KJ is a full subcomplex of K obtained by restricting to J ⊂ [m] and Ĥ(KJ ,F) is the reduced
simplicial cohomology of KJ . We assume Ĥ−1 = F .

The Tor-algebra is highly related to a famous concept, moment-angle complex, which is also the
central concept in toric topology. For a simplicial complex K, the moment-angle complex ZK
can be constructed. Actually, the integral cohomology ring of the moment-angle complex ZK is
isomorphic to the Tor-algebra of the simplicial complex K.

8
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Figure 3: Details of the 1D CNN models in the first-layer base learners. Each of the 72 persistent
Tor-algebra features is fed into a base learner CNN model. Each of the CNN model will predict
a binding affinity change that will be combined with auxiliary features to form the input for the
second-layer base learners in our stacking model.

A.1.3 PERSISTENT TOR-ALGEBRA OF THE SIMPLICIAL COMPLEX

Now we construct the persistent Tor-algebra for a simplicial complex. Assume we have a filtration
of simplicial complex K. That is, a sequence of nested simplicial complexes:

∅ = K0 ⊂ K1 ⊂ K2 ⊂ ... ⊂ Kn = K
where each Ki is a subcomplex of Ki+1. We consider the inclusion map from Ki to Ki+1, this
simplicial map naturally induces a homomorphism from the face ring of Ki to the face ring of Ki+1.
Hence we get a sequence of face rings connected by homomorphisms

F(K0) → F(K1) → ... → F(Kn)

For each face ring F(Ki), its Tor-algebra can be generated, so we get a sequence of Tor-algebra

Tor(K0) → Tor(K1) → ... → Tor(Kn)

where two adjacent Tor-algebras are connected by homomorphisms induced from the homomor-
phisms of face rings. We call this sequence of Tor-algebra modules the persistent Tor-algebra of the
filtration. Further, by considering a specific graded component of Tor-algebra modules, we can get
the persistent graded Tor-algebra for a given (−i, 2j). We have

Tor−i,2j(K1) → Tor−i,2j(K2) → ... → Tor−i,2j(Kn)

This is called the persistent Tor-algebra of K in the (−i, 2j)-th graded component. Similar to per-
sistent homoloy, these Tor-algebra form a persistent module so that they can be represented as a
persistent barcode or persistent diagram where the bars in the persistent barcode and points in the
persistent diagram reflect the birth, death and evolution of the Tor-algebra through the filtration
process.

A.2 PERSISTENT TOR-ALGEBRA BASED STACKING MODEL

Our Tor-algebra based stacking model consists of several GBT models and 1D CNN models. Com-
putationally, all the 72 1D CNN models have the same architecture and hyperparameters, and all
the 72 GBT models also share the same parameters. The detailed parameter setting of GBT is il-
lustrated in Table 1. The general architecture for 1D CNN is demonstrated in Figure 3. The CNN

Table 1: The parameters for gradient boosting tree (GBT) models.
No. of Estimators Learning rate Max depth Subsample

4000 0.01 6 0.7
Min samples split Loss function Max features Repetitions

2 Least square SQRT 10

hyperparameters are as follows:

9
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• ReLU on all 4 convolutional layers.
• Dropout(0.3)
• First layer weight initialised by he normal.
• Rest of weights initialised by lecun uniform
• Batchsize=16, 2000 epochs.
• Adam Optimizer with lr=1e-5.
• ReLU on fully connected layers.

A.3 PERFORMANCE

Tenfold corss validation is used to do the regression. Pearson correlation coefficient (PCC) and root-
mean-square error (RMSE) are used to assess the quality of prediction. Ten independent regressions
are performed and the average PCC and RMSE are used as the measurement of the performance of
our model. The detailed performance between our models and other existing models on SKEMPI
S1131 and AB-Bind S645 can be found in Table 2 and Table 3 respectively.

Method PCC
PTA-SEL(M2) 0.866

TopNetTree 0.850
PTA-SEL(M1) 0.772

BindProfX 0.738
Profile-score+FoldX 0.738

Profile-score 0.675
SAAMBE 0.624

FoldX 0.457
BeAtMuSic 0.272
Dcomplex 0.056

Table 2: Comparison of the performance between our model and other models on SKEMPI S1131.

Table 3: Comparison of the performance between our model and other models on AB-Bind S645.

Method PCC
with nonbinders without nonbinders

TopNetTree 0.65 0.68
PTA-SEL(M2) 0.61 0.72
PTA-SEL(M1) 0.57 0.68

TopGBT 0.56 -
mCSM-AB 0.53 0.56

Discovery Studio 0.45 -
mCSM-PPI 0.35 -

FoldX 0.34 -
STATIUM 0.32 -

DFIRE 0.31 -
bAsA 0.22 -

dDFIRE 0.19 -
Rosetta 0.16 -
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