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ABSTRACT

As neural networks become able to generate realistic artificial images, they have
the potential to improve movies, music, video games and make the internet an
even more creative and inspiring place. Yet, at the same time, the latest technology
potentially enables new digital ways to lie. In response, the need for a diverse
and reliable method toolbox arises to identify artificial images and other content.
Previous work primarily relies on pixel-space convolutional neural networks or
the Fourier transform. To the best of our knowledge, synthesized fake image
analysis and detection methods based on a multi-scale wavelet representation,
which is localized in both space and frequency, have been absent thus far. This
paper proposes to learn a model for the detection of synthetic images based on
the wavelet-packet representation of natural and generative adversarial neural
network (GAN)-generated images. We evaluate our method on FFHQ (Karras
et al., 2019), CelebA, and LSUN source identification problems and find improved
or competitive performance. Our forensic classifier has a small network size and
can be learned efficiently. Furthermore, a comparison of the wavelet coefficients
from these two sources of images allows an interpretation and identifies significant
differences.

1 INTRODUCTION

While GANs can improve traffic prediction (Aigner & Körner, 2019), extract useful representations
from data (Radford et al., 2015), translate textual descriptions into images (Zhang et al., 2017),
transfer scene and style information between images (Zhu et al., 2017), and generate original art (Tan
et al., 2017), they can also enable abusive actors to quickly and easily generate potentially damaging,
highly realistic fake images, colloquially called deepfakes (Parkin; Frank et al., 2020). As the
internet becomes a more prominent virtual public space for political discourse and social media
outlet (Applebaum, 2020), deepfakes present a looming threat to its integrity that must be met with
techniques for differentiating the real and trustworthy from the fake.

Previous algorithmic techniques for separating real from computer-hallucinated images of people
have relied on identifying fingerprints in either the spatial (Yu et al., 2019; Marra et al., 2019) or
frequency (Frank et al., 2020; Dzanic et al., 2020) domain. However, to the best of our knowledge,
no techniques have jointly considered the two domains in a multi-scale fashion. We believe our
virtual public spaces and social media outlets will benefit from a growing, diverse toolbox of
techniques enabling automatic detection of GAN-generated content, where the introduced wavelet-
based approach provides a competitive and interpretable addition.

In this paper, we make the following contributions:

• We present a principled wavelet-packet-based analysis of GAN-generated images. Compared
to existing work in the frequency domain, we examine the spatio-frequency properties of
GAN-generated content for the first time. We find significant differences between real and
synthetic images in both the wavelet-packet mean and standard deviation, with increasing
frequency and at the edges.

• To the best of our knowledge, we present the first application and implementation of
boundary wavelets for image analysis in the deep learning context. Proper implementation
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of boundary-wavelet filters allows us to share identical network architectures across different
wavelet lengths.

• As a result of the aforementioned wavelet-based analysis, we build classifiers to identify
image sources. We work with fixed seed values for reproducibility and report mean and
standard deviations over five runs whenever possible. Our systematic analysis shows slightly
improved or competitive performance.

The source code for our wavelet toolbox, the first publicly available toolbox for fast boundary-wavelet
transforms in the python world, and our experiments is available at https://github.com/
wavelet-detection-review.

2 RELATED WORK

2.1 GENERATIVE ADVERSARIAL NETS

The advent of GANs (Goodfellow et al., 2014) heralded several successful image generation projects.
For a recent review on GAN theory, architecture, algorithms, and applications, we refer the reader
to Gui et al. (2020). We highlight the contribution of the progressive growth technique, in which
a small network is trained on smaller images then gradually increased in complexity/number of
weights and image size, on the ability of optimization to converge at high resolutions of 1024× 1024
pixels (Karras et al., 2018). As a supplement, style transfer methods (Gatys et al., 2016) have been
integrated into new style-based generators. The resulting style-GANs have increased the statistical
variation of the hallucinated faces (Karras et al., 2019; 2020). Finally, regularization (e.g., using
spectral methods), has increased the stability of the optimization process (Miyato et al., 2018). The
recent advances have allowed large-scale training (Brock et al., 2019), which in turn improves the
quality further.

2.2 WAVELETS

Originally developed within applied mathematics (Mallat, 1989; Daubechies, 1992), wavelets are a
long-established part of the image analysis and processing toolbox (Taubman & Marcellin, 2002;
Strang & Nguyen, 1996; Jensen & la Cour-Harbo, 2001). In the world of traditional image coding,
wavelet-based codes have been developed to replace techniques based on the discrete cosine transform
(DCT) (Taubman & Marcellin, 2002). Early applications of wavelets in machine learning studied the
integration of wavelets into neural networks for function learning (Zhang et al., 1995). Within this
line of work, wavelets have previously served as input features (Chen et al., 2015), or as early layers
of scatter nets (Mallat, 2012; Cotter, 2020). Deeper inside neural networks, wavelets have appeared
within pooling layers using static Haar (Wang et al., 2020c; Williams & Li, 2018) or adaptive wavelets
(Wolter & Garcke, 2021). Within the subfield of generative networks, ongoing concurrent research
(Gal et al., 2021) is exploring the use of wavelets to improve GAN generated image content.

2.3 DEEPFAKE DETECTION

Previous work on deepfake image detection broadly falls into two categories. The first group works
in the frequency domain. Projects include the study of natural and deep network generated images
in the frequency space created by the DCT, as well as detectors based on Fourier features (Zhang
et al., 2019; Durall et al., 2019; Dzanic et al., 2020; Frank et al., 2020; Durall et al., 2020; Giudice
et al., 2021). In particular, Frank et al. (2020) visualizes the DCT transformed images and identifies
artifacts created by different upsampling methods. We learn that the transformed images are efficient
classification features, which allow significant parameter reductions in GAN identification classifiers.
Instead of relying on the DCT, Dzanic et al. (2020) studied the distribution of Fourier coefficients
for real and GAN-generated images. After noting significant deviations of the mean frequencies
for GAN generated- and real-images, classifiers are trained. Similarly, Giudice et al. (2021) studies
statistics of the DCT coefficients and uses estimations for each GAN-engine for classification. Dzanic
et al. (2020) found high-frequency discrepancies for GAN-generated imagery, built detectors, and
spoofed the newly trained Fourier-classifiers by manually adapting the coefficients in Fourier-space.
Finally, He et al. (2021) combine 2d-FFT and DCT features and observed improved performance.
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The second group of classifiers works in the spatial or pixel domain, among others, (Yu et al., 2019;
Wang et al., 2020a;b; Zhao et al., 2021a;b) train (convolutional) neural networks directly on the raw
images to identify various GAN architectures. Building upon pixel-CNN Wang & Deng (2021) adds
neural attention. According to (Yu et al., 2019), the classifier features in the final layers constitute
the fingerprint for each GAN and are interesting to visualize. Instead of relying on deep-learning,
(Marra et al., 2019) proposed GAN-fingerprints working exclusively with denoising-filter and mean
operations, whereas (Guarnera et al., 2020) computes convolutional traces.

To the best of our knowledge, we are the first to combine both schools of thought by proposing to
work directly with a spatio-frequency wavelet packet representation in a multi-scale fashion. As we
demonstrate in the next section, wavelet packets allow visualization of frequency information while,
at the same time, preserving local information to some degree. Note that Tang et al. (2021) uses the
first level of a discrete wavelet transform, this means no multi-scale representation as a pre-processing
step to compute spectral correlations between the color bands of an image, which are then further
processed to obtain features for a classifier.

3 METHODS

“Wavelets are localized waves, instead of oscillating forever, they drop to zero.” This observation, in
the words of Strang & Nguyen (1996), leads to the first motivation for using wavelet transforms. In
contrast to the periodic sine and cosine waves in the Fourier-basis, which are localized in frequency,
wavelets are localized in both space and frequency. Since images often contain sharp borders, where
pixel values change rapidly, slowly decaying Fourier coefficients caused by such short pulses can fill
up the spectrum. Reconstruction of the original pulse depends on the cancellation of most coefficients.
The locality of wavelets makes it easier to deal with such pulses.

While previous approaches based on the fast Fourier transform (FFT) by Dzanic et al. (2020) and DCT
from Frank et al. (2020) and Giudice et al. (2021) provide abundant frequency space information,
the global nature of these bases means all spatial relations are missing. The desire to extend our
knowledge by exploiting spatial information is our second reason to work with wavelets. Wavelets
allow the representation of hierarchical levels of detail in space and frequency.

Before discussing the mechanics of the fast wavelet transform (FWT) and its packet variant, we
present a proof of concept experiment in Figure 1. We investigate the coefficients of the level 3 Haar
wavelet packet transform. Computations use 5K 1024× 1024 pixel images from Flickr Faces High
Quality (FFHQ) (Karras et al., 2019) and 5K 1024× 1024 pixel images generated by StyleGAN. The
leftmost columns of Figure 1 show a sample from both FFHQ and a StyleGAN generated one. Mean
wavelet packets appear in the second, and their standard deviation in the third column. Finally, the
rightmost column plots the absolute mean packets and standard deviation differences. For improved
visibility, we re-scale the absolute values of the packet representation, averaged first over the three
color bands, using the natural logarithm loge.

We find that the mean wavelet packets of GAN-generated images are often significantly brighter. The
differences become more pronounced as the frequency increases from the top left to the bottom right.
The differences in high-frequency packets independently confirm Dzanic et al. (2020), who saw the
most significant differences for high-frequency Fourier-coefficients.

The locality of the wavelet filters allows face-like shapes to appear, but the image edges stand out,
allowing us to pinpoint the frequency disparities. We now have an intuition regarding the local origin
of the differences. We note that Haar wavelet packets do not use padding or orthogonalization and
conclude that the differences stem from GAN generation. For the standard deviations, the picture
is reversed. Instead of the GAN the FFHQ-packets appear brighter. The StyleGAN packets do
not deviate as much as the data in the original dataset. The observation suggests that the GAN did
not capture the complete variance of the original data. Our evidence indicates that GAN-generated
backgrounds are of particular monotony across all frequency bands.

In the next section, we discuss how the fast wavelet transform (FWT) and wavelet packets in Figure 1
are computed. For multi-channel color images, we transform each color separately, but for simplicity,
we will only consider single channels in the following exposition.
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Figure 1: This figure compares single time-domain images and absolute loge-scaled mean wavelet
packets and their standard deviations. The first column shows two example images, the second mean
packets, the third standard deviations, and the fourth mean and standard deviation differences. Mean
values and standard deviations have been computed on 5K 1024 by 1024 FFHQ- and StyleGAN-
generated images each. The order of the packets has the frequency increasing from the top left to
the bottom right. We observe significant differences. The mean is significantly different for higher
frequencies and at image edges. The standard deviations are different on the background across the
entire spectrum. The filter application order of each packet is shown on the right of Figure 2. Best
viewed in color.

3.1 FAST WAVELET TRANSFORM

Wavelets can be defined by low- and corresponding high-pass filter or by a wavelet function and
a scaling function, where we follow the filter construction, as common in signal processing. The
FWT (Mallat, 1989; Strang & Nguyen, 1996; Jensen & la Cour-Harbo, 2001) utilizes convolutions to
decompose an input signal into its frequency components, where repeated application results in a
multi-scale analysis. The resulting wavelet coefficients reflect scale (of level q), which is related to
frequency, and location, i.e., the position in the transformed and scaled image of level q.

Even though 2D wavelets such as the Mexican hat wavelet exist, one dimensional wavelet pairs are
often transformed to 2D quadruples using the outer products (Vyas et al., 2018):

fa = fLf
T
L , fh = fLf

T
H, fv = fHfTL , fd = fHfTH. (1)

Common choices for 1D wavelets are the Daubechies-wavelets (“db”) and their less asymmetrical
variant, the symlets (“sym”). We refer the reader to Daubechies (1992) for an in-depth discussion.

In the equations above, f denotes a filter vector. For one-dimensional filters, the subscripts L denote
the one-dimensional low-pass and H the high pass filter, respectively. In the two-dimensional case,
a denotes the approximation coefficients, h denotes the horizontal coefficients, v denotes vertical
coefficients, and d denotes the diagonal coefficients. The 2D transformation at representation level
q + 1 requires the input xq as well as a filter quadruple fk for k ∈ [a, h, v, d] and is computed by

xq ∗ fk = kq+1, (2)

where ∗ denotes stride two convolution. Note the input image is at level zero, i.e. x0 = I, while for
stage q the low pass result of q − 1 is used as input.

The wavelet transform is invertible. The forward or analysis transform relies on the analysis filters
often denoted as Hk (Strang & Nguyen, 1996). The inverse or synthesis transform filters are typically
written as Fk. The down- ↓2 and up- ↑2 arrow symbols describe the sampling operations in what is
known as stride two convolution and transposed convolution in today’s machine learning literature.
In order to make the transform invertible and plots interpretable, not just any filter will do. The
perfect reconstruction and anti-aliasing conditions must hold. We refer to Strang & Nguyen (1996)
and Jensen & la Cour-Harbo (2001) for an excellent further discussion of these conditions.
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3.2 BOUNDARY WAVELETS

So far we described the wavelet transform without considering the finite size of the images. For
example, the simple Haar wavelets can be used without modifications in such a case. But, for the
transform to preserve all information and be invertible, higher-order wavelets require modifications at
the boundary (Strang & Nguyen, 1996). There are different ways to handle the boundary, including
zero-padding, symmetrization, periodic extension, and specific filters on the boundary. The disad-
vantage of zero-padding or periodic extensions is that discontinuities are artificially created at the
border, whereas with symmetrization discontinuities of the first derivative arise at the border (Jensen
& la Cour-Harbo, 2001). While for large images, the boundary effects might be negligible, for
the employed multi-scale approach of wavelet-packets, as introduced in the next subsection, the
artifacts become too severe. Furthermore, zero-padding increases the number of coefficients, which
in our application would need different neural network architectures per wavelet. Therefore we
employ special boundary filters in the form of the so-called Gram-Schmidt boundary filters (Jensen &
la Cour-Harbo, 2001).

The idea is now to replace the filters at the boundary with specially constructed, shorter filters that
preserve both the length and the perfect reconstruction property or other properties of the wavelet
transform. In the appendix Figures 7 and 8 illustrate the sparsity patterns of the resulting sparse
analysis and synthesis matrices for the Daubechies two case.

3.3 WAVELET PACKETS

Presuming to find the essential information in the lower frequencies, standard wavelet transformations
decompose only the low-pass or a coefficients further. The h, v, and d coefficients are left untouched.
While this is often a reasonable assumption (Strang & Nguyen, 1996), previous work (Dzanic et al.,
2020) found the higher frequencies equally relevant for deepfake detection. Our analysis, therefore,
relies on wavelet packets. For a wavelet packet representation, one recursively continues to filter the
low- and high-pass results. Each recursion leads to a new level of filter coefficients, starting with an
input image I ∈ Rh,w, and using n0,0 = I. A node nq,j at position j of level q, is convolved with all
filters fk, k ∈ [a, h, v, d]:

nq,j ∗ fk = nq+1,k. (3)

Therefore every node at level q will spawn four nodes at the next level q + 1. The result at the final
level Q, assuming Haar or boundary wavelets without padding, will be a 4Q × h

2Q
× w

2Q
tensor, i.e.

the number of coefficients is the same as before and is denoted by Q◦. Thereby wavelet packets
provide filtering of the input into progressively finer equal-width blocks, with no redundancy. For
excellent presentations of the one-dimensional case we again refer to Strang & Nguyen (1996) and
Jensen & la Cour-Harbo (2001).

We show a schematic drawing of the process on the left of Figure 2. The upper half shows the analysis
transform, which leads to the coefficients we are after. The lower half shows the synthesis transform,
which allows inversion for completeness. Finally, for the correct interpretation of Figure 1 the right
of Figure 2 lists the filter combinations for packet plots previously shown in Figure 1.

4 IMAGE SOURCE SEPARATION EXPERIMENTS

Considering Figure 1 once more, note that the absolute differences of the mean wavelet-coefficients
and their standard deviations, shown in the rightmost column, appeared significantly different. In
the absolute mean difference plot, we saw widening disparity with increasing frequency along the
diagonal. Additionally, background and edge coefficients appeared to diverge. To numerically relate
these to each other, we remove the spatial dimensions by averaging over these as well. We observe
in the left of Figure 3 increasing mean differences across the board. Differences are especially
pronounced at the higher frequencies on the right. In comparison to the FFHQ standard deviation, the
variance produced by the StyleGAN, shown in orange, is smaller for all coefficients. In the following
sections, we aim to exploit these differences for the identification of artificial images.
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↑2 Fa ↑2 Fh ↑2 Fv ↑2 Fd

↑2 Fa ↑2 Fh ↑2 Fv ↑2 Fd

Î

aaa aav avv ava vva vvv vav vaa

aah aad avd avh vvh vvd vad vah
ahh ahd add adh vdh vdd vhd vhh
aha ahv adv ada vda vdv vhv vha
hha hhv hdv hda dda ddv dhv dha
hhh hhd hdd hdh ddh ddd dhd dhh
hah had hvd hvh dvh dvd dad dah
haa hav hvv hva dva dvv dav daa

Figure 2: Visualization of the 2D wavelet packet transform analysis and synthesis packet transform
(left). The analysis filters are written as Hk, synthesis filters as Fk. We show all first level coefficients
as well as some second level coefficients aa, ah, av, ad. The dotted lines indicate the omission of
further possible analysis and synthesis steps. The transform is invertible in principle, Î denotes the
reconstructed original input. The right side shows the labels for the transforms of level 3 we showed
previously in the frequency order (Jensen & la Cour-Harbo, 2001).
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Figure 3: The mean 3◦ Haar wavelet packet coefficient values for each 63K 128× 128 pixel FFHQ
(blue) and StyleGAN (orange) images are shown on the left. The shaded area indicates a single
standard deviation σ. We find higher mean coefficient values for the StyleGAN samples across the
board. As the frequency increases from left to right, the differences become more pronounced. The
plot on the right side shows validation and test accuracy for the identification experiment. Linear
regression networks where used to identify FFHQ, StyleGAN, and StyleGAN2 (Karras et al., 2020)
images. The blue line shows the pixel and the orange line the training accuracy using loge-scaled
absolute wavelet packet coefficients. Shaded areas indicate a single standard deviation for different
initializations. We find that working with loge-scaled absolute packets allowed linear separation of all
three images sources. Furthermore, it significantly improves the convergence speed and final result.

Predicted label

True label FFHQ StyleGAN StyleGAN2

FFHQ 4896 4 100
StyleGAN 25 4973 2

StyleGAN2 99 0 4901

Table 1: Confusion matrix for the Haar wavelet regression experiment. Overall 98.5% of all samples
where classified correctly. Linear Haar-Wavelet regression works particularly well for the StyleGAN.
99.46% of all StyleGAN samples have been properly identified.
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4.1 FFHQ

Encouraged by the differences we saw in Figures 1 and 3, we attempt to linearly separate the loge-
scaled 3rd level Haar wavelet packets by training a linear regression model. We work per class
with 63K images for training, 2K for validation, and 5K for testing. All images have a 128× 128
pixel resolution. Wavelet coefficients, as well as raw pixels, are normalized by mean subtraction and
division by σ, using their respective mean and standard deviations computed on the train set. On both
normalized features, we train identical networks using the Adam optimizer (Kingma & Ba, 2015)
with a step size of 0.001 using PyTorch (Paszke et al., 2017). We plot the mean validation and test
accuracy over 5 runs with identical seeds of 0, 1, 2, 3, 4 in Figure 3 on the right. The shaded areas
indicate a single σ-deviation. On the test set, we observe the confusion table 1. We conclude that in
the Haar packet coefficient space, we are able to separate the three sources linearly. Overall, 98.5%
of all samples and 99.46% of all StyleGAN images are identified correctly. Observe that working in
the Haar-wavelet space improved both the final result and convergence speed.

4.2 LARGE-SCALE CELEB FACES ATTRIBUTES AND LARGE-SCALE SCENE UNDERSTANDING

In the previous experiment, essentially two image sources, authentic FFHQ and the related StyleGAN
or StyleGAN2 generated images, had to be identified, where we additionally could also distinguish
the two artificial sources. In this section, we will study a standardized problem with more image
sources. To allow comparison with previous work, we exactly reproduce the experimental setup
from Yu et al. (2019) and Frank et al. (2020). Note that we choose this setup since we, in particular
want to compare our space and frequency approach with the frequency only DCT-representation.
We cite their results for comparison. Additionally, we benchmark against the photoresponse non-
uniformity (PRNU) (Marra et al., 2019) approach, as well as the eigenfaces (Sirovich & Kirby,
1987), and straightforward regression as baselines. The experiments in this section use four GANs:
CramerGAN (Bellemare et al., 2017), MMDGAN (Binkowski et al., 2018), ProGAN (Karras et al.,
2018), and SN-DCGAN (Miyato et al., 2018).

150K images were randomly selected from the Large-scale Celeb Faces Attributes (CelebA) (Liu
et al., 2015) and Large-scale Scene UNderstanding (LSUN) bedroom (Yu et al., 2015) datasets. Our
pre-processing is identical for both. The real images are cropped and resized to 128 × 128 pixels
each. With each of the four GANs an additional 150K images are generated at the same resolution.
The 750K total images are split into 500K training, 100K validation, and 150K test images. To ensure
stratified sampling, we draw the same amount of samples from each generator or the original dataset.
As a result, the train, validation, and test sets contain equally many images from each source.

We compute wavelet packets with three levels for each image. We explore the use of Haar and
Daubechies wavelets as well as symlets (Daubechies, 1992; Strang & Nguyen, 1996; Jensen &
la Cour-Harbo, 2001). The Haar wavelet is also the first Daubechies wavelet. Daubechies-wavelets
and symlets are identical up to a degree of 3. We, therefore, start comparing both families above a
degree of 4.

For a fair comparison, we normalize both the raw pixels and the wavelet coefficients. Normalization
is always the last step before the models. We normalize by subtracting the training-set color-channel
mean and dividing each color channel by its standard deviation. The loge-scaled coefficients are
normalized after the rescaling. We train identical CNN-classifiers on top of pixel and various wavelet
representations. Additionally, we evaluate eigenface and PRNU baselines. Our wavelet packet
transform, regression, and convolutional models are implemented using PyTorch (Paszke et al., 2019).
We use Adam (Kingma & Ba, 2015) to optimize our convolutional-models for 20 epochs. The batch
size is set to 512 and the learning rate to 0.001. See the supplementary for the exact network layouts.

Table 2 lists the results for comparison. We obtain a beneficial packet representation in every case.
On celebA the eigenface approach, in particular, was able to classify 24.11% more images correctly
when run on loge-scaled Haar-Wavelet packages instead of pixels. For the more complex CNN, Haar
wavelets are not enough. More complex wavelets, however, significantly improve the accuracy. With
a CNN comparable to Frank et al. (2020), we find accuracy maxima superior to the DCT approach
for five wavelets. Demonstrating the robustness of the wavelet approach, the db3 and db4 packets
are better on average. On LSUN, we see gains over the raw pixel representation for our loge-scaled
wavelets for CNN as well as eigenface-based classifiers. While we do not outperform the DCT
features in this case, we see improvements of the pixel baseline and overall competitive performance.
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Table 2: CNN source identification results on the CelebA and LSUN bedroom datasets. We explore
the use of boundary-wavelet packets up to a wavelet degree of 5. We report the test set accuracy.
Whenever possible we report mean test set accuracy and standard deviation over 5 runs.

Accuracy[%]
CelebA LSUN bedroom

Method max µ± σ max µ± σ

Eigenfaces (ours) 68.56 - 62.24 -
Eigenfaces-DCT (Frank et al., 2020) 88.39 - 94.31 -
Eigenfaces-loge-Haar (ours) 92.67 - 87.91 -

PRNU (ours) 83.13 - 66.10 -

CNN-Pixel (ours) 98.87 98.74 ± 0.14 97.06 95.02 ± 1.14
CNN-loge-Haar (ours) 97.09 96.79 ± 0.29 97.14 96.89 ± 0.19
CNN-loge-db2 (ours) 99.20 98.50 ± 0.96 98.90 98.35 ± 0.70
CNN-loge-db3 (ours) 99.38 99.11 ± 0.49 99.19 99.01 ± 0.17
CNN-loge-db4 (ours) 99.43 99.27 ± 0.15 99.02 98.46 ± 0.67
CNN-loge-db5 (ours) 99.02 98.66 ± 0.59 98.32 97.64 ± 0.83
CNN-loge-sym4 (ours) 99.43 98.98 ± 0.36 99.09 98.57 ± 0.72
CNN-loge-sym5 (ours) 99.49 98.79 ± 0.48 99.07 98.78 ± 0.24

CNN-Pixel (Yu et al., 2019) 99.43 - 98.58 -
CNN-Pixel (Frank et al., 2020) 97.80 - 98.95 -
CNN-DCT (Frank et al., 2020) 99.07 - 99.64 -

Table 3: Confusion matrix for our best performing CNN using db4-wavelet-packets on CelebA.
Classification errors for the original dataset as well as the CramerGAN, MMDGAN, ProGAN, and
SN-DCGAN architectures are shown. The test set contains 30,000 entries per label. The detector
classifies 99.43% of all images correctly.

Predicted label

True label CelebA CramerGAN MMDGAN ProGAN SN-DCGAN

CelebA 29,759 7 11 107 116
CramerGAN 19 29,834 144 3 0
MMDGAN 17 120 29,862 1 0
ProGAN 136 1 0 29,755 108
SN-DCGAN 55 0 0 5 29,940

We show the confusion matrix for our best performing network on CelebA in Table 3. Among the
GANs we considered the ProGAN-architecture and SN-DCGAN-architecture. Images drawn from
both architectures were almost exclusively misclassified as original data and rarely attributed to
another GAN. The CramerGAN and MMDGAN generated images were often misattributed to each
other, but rarely confused with the original dataset. Of all misclassified real CelebA images most
were confused with ProGAN images, making it the most advanced network of the four. Overall we
find our, in comparison to a GAN, lightweight 109k classifier able to accurately spot 99.45% of all
fakes in this case. Note that all our convolutional networks have only 109,061 parameters, while
Yu et al. (2019) used roughly 9 million parameters and Frank et al. (2020) utilized around 170,000
parameters. We observed that using our packet representation improved convergence speed, Figure 10
in the supplementary material illustrates this for the Haar-Wavelet case.

We study the effect of a drastic reduction of the training data size, by reducing the training set size
by 80%. Table 4 reports test-accuracies for our retrained classifiers. We find that our Daubechies 4
packet-CNN classifiers are robust to training data reductions, in particular in comparison to the pixel
representation.
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Table 4: CNN source identification results on the CelebA dataset with only 20 % of the original data.
We report the test set accuracy mean and standard deviation over 5 runs as well as the accuracy loss
compared to the corresponding network trained on the full data set.

Accuracy on CelebA[%]

Method max Loss µ± σ Loss

CNN-Pixel (ours) 96.37 -2.50 95.16 ± 0.86 -3.58
CNN-loge-db4 (ours) 99.01 -0.41 96.96 ± 3.47 -2.58

CNN-Pixel (Frank et al., 2020) 96.33 -1.47 - -
CNN-DCT (Frank et al., 2020) 98.47 -0.60 - -

5 DETECTION OF IMAGES FROM AN UNKNOWN GENERATOR

To exemplarily study the detection of images from an unknown GAN, we remove the SN-DCGAN
generated images from our LSUN training and validation sets. 10,000 SN-DCGAN images now
appear exclusively in the test set, where they never influence the learning process. The training
hyperparameters are identical to those discussed in section 4.2. We rebalance the data to contain
equally many real and gan-generated images. The task now is to produce a real or fake label in the
presence of fake images which were not present during the optimization process. For this initial
proof-of-concept investigation, we apply only the simple Haar wavelet. We find that our approach
does allow detection of the SN-DCGAN samples on LSUN-bedrooms, without their presence in the
training set. Using the loge-scaled Haar-Wavelet packages, we achieve for the unknown GAN a result
of 78.8± 1.8%, with a max of 81.7%. For the real and artificial generators present in the training set,
we achieve 98.6± 0.1%, with a max of 98.6%. The accuracy improvement in comparison to Table 2
likely is due to the binary classification problem here instead of the multi-classification one before.

This result indicates that the wavelet representation alone can allow a transfer to unseen generators,
or other manipulations, to some extent. More detailed studies, also with wavelets of higher degree,
and in comparison, or together, with transfer learning approaches (Jeon et al., 2020) or autoencoders
particularly designed for transferability (Cozzolino et al., 2018) are warranted future work.

6 CONCLUSION AND OUTLOOK

This paper presented a wavelet packet-based approach for deepfake analysis and detection, which is
based on a multi-scale image representation in space and frequency.

We saw that wavelet-packets allow the visualization of frequency domain differences while preserving
some spatial information. We found diverging mean values for packets at high frequencies. At the
same time, the bulk of the standard deviation differences were at the edges and within the background
portions of the images. This observation suggests contemporary GAN architectures still fail to
capture the backgrounds and high-frequency information in full detail. The proposed wavelet packet
representations allowed linear separation of the FFHQ-StyleGAN-StyleGAN2 source identification
problem. We studied additional wavelets on the CelebA and LSUN-bedroom problems. We found
that coupling higher-order wavelets and CNN led to an improved or competitive performance in
comparison to a DCT approach or working directly on the raw images. The employed lean neural
network architecture allows efficient training and can achieve similar accuracy with only 20% of
the training data. Overall our classifiers deliver state-of-the-art performance, require few learnable
parameters, and converge quickly.

Even though releasing our detection code will allow potential bad actors to test against it, we hope
our approach will complement the publicly available deepfake identification toolkits. We propose
to investigate the resilience of multi-classifier ensembles in future work and envision a framework
of multiple forensic classifiers, which together give strong and robust results for artificial image
identification.

Future work could also explore the use of curvelets and shearlets for deepfake detection.
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7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this research project, we release our wavelet toolbox and the source
code for our experiments in the supplementary material. The wavelet toolbox ships multiple unit
tests to ensure correctness. Our code is carefully documented to make it as accessible as possible.
We have consistently seeded the Mersenne twister used by PyTorch to initialize our neural networks
with 0, 1, 2, 3, 4. Since the seed is always set, rerunning our code always produces the same results.
Outliers can make it hard to reproduce results if the seed is unknown. To ensure we do not share
outliers without context, we report mean and standard deviations of five runs for all neural network
experiments.
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ACRONYMS

CelebA Large-scale Celeb Faces Attributes
CNN convolutional neural network
DCT discrete cosine transform
FFHQ Flickr Faces High Quality
FFT fast Fourier transform
FWT fast wavelet transform
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GAN generative adversarial neural network

LSUN Large-scale Scene UNderstanding

PRNU photoresponse non-uniformity

8 SUPPLEMENTARY

In this supplementary, we show the full architectures for all networks. In terms of training convergence,
we give the validation accuracy mean and standard deviation during training. Furthermore, we show
additional visualizations of the wavelet packets.

8.1 NETWORK ARCHITECTURES

Pixel-CNN

Convolution (3x8x3x3),
ReLU,

Convolution (8x8x3),
ReLU,
Pool (2, 2),

Convolution (8x16x3x3),
ReLU,
Pool (2, 2),

Convolution (16x32x3x3),
ReLU,

Linear (32*28*28, classes)

Wavelet-Packet-CNN

Convolution (192x24x3x3),
ReLU,

Convolution (24x24x6x6),
ReLU,

Convolution (24x24x9),
ReLU,

Linear (24, classes)

Table 5: The CNN architectures we used in our experiments. We show the convolution and pooling
kernel, as well as matrix sizes in brackets. As the packet representation generates additional channels
we are forced to adapt the CNN architecture. The parameter counts vary depending on the number of
classes, but has have approximately 100k for all experiments.

Unless explicitly stated otherwise, we train with a batch size of 512 and a learning rate of 0.001 using
Adam (Kingma & Ba, 2015) for 20 epochs. For the 5 repetitions we report the seed values are set to
0,1,2,3,4.

8.2 PERTURBATION ANALYSIS

We study the effect of image cropping, rotation, and jpeg compression on our classifiers in table 6.
We re-trained both classifiers on the perturbed data as described in section 4.2. The center crop
perturbation randomly extracts images centers while preserving at least 80% of the original width or
height. Both the pixel and packet approaches are affected by center cropping yet can classify more

Table 6: Perturbation analysis of the db3 wavelet-packet- and pixel- CNN classifiers on LSUN-
bedrooms.

Accuracy on LSUN[%]

Method Perturbation max µ± σ

CNN-loge-db3 (ours) center-crop 95.68 95.49± 0.26
CNN-Pixel (ours) center-crop 92.03 90.04± 1.18

CNN-loge-db3 (ours) rotation 91.74 90.84± 0.90
CNN-Pixel (ours) rotation 92.63 91.99± 0.97

CNN-loge-db3 (ours) jpeg 84.73 84.25 ± 00.33
CNN-Pixel (ours) jpeg 89.95 89.25 ± 00.48
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Figure 4: Fifth degree Daubechies and Symlet filters side by side.

than 90% of all images correctly. In this case, the log-scaled db3-wavelet packets can outperform
the pixel-space representation on average. For rotation and jpeg compression the picture changes.
The rotation perturbation randomly rotates all images by up to 15◦ degrees. The jpeg perturbation
randomly compresses images with a compression factor drawn from U(70, 90), without subsampling.
The wavelet-packet representation is less robust to rotation than its pixel counterpart. For jpeg-
compression, the effect is more pronounced. Looking at Figure 3 suggests that our classifiers rely
on high-frequency information. Since jpeg-compression removes this part of the spectrum, perhaps
explains the larger drop in mean accuracy.

8.3 THE PERFECT RECONSTRUCTION AND ALIAS CANCELLATION CONDITIONS

When using wavelet filters, we expect a lossless representation free of aliasing. Consequently, we want
to restrict ourselves to filters, which guarantee both. Classic literature like Strang & Nguyen (1996)
presents two equations to enforce this, the perfect reconstruction and alias cancellation conditions.
Starting from the analysis filter coefficients h and the synthesis filter coefficients f . For a complex
number z ∈ C their z-transformed counterparts are H(z) =

∑
n h(n)z

−n and F (z) respectively.
The reconstruction condition can now be expressed as

HL(z)FL(z) +HH(z)FH(z) = 2zc, (4)
and the anti-aliasing condition as

HL(−z)FL(z) +HH(−z)FH(z) = 0. (5)
For the perfect reconstruction condition in Eq. 4, the center term zl of the resulting z-transformed
expression must be a two; all other coefficients should be zero. c denotes the power of the center.
The effect of the alias cancellation condition can be studied by looking at Daubechies wavelets and
symlets, which we will do in the next section. The perfect reconstruction condition is visible too,
but harder to see. For an in-depth discussion of both conditions, we refer the interested reader to the
excellent textbooks by Strang & Nguyen (1996) and Jensen & la Cour-Harbo (2001).

8.4 DAUBECHIES WAVELETS AND SYMLETS

Figure 4 plots both Daubechies filter pairs on the left. A possible way to solve the anti-aliasing
condition formulated in equation 5 is to require, FL(z) = HH(−z) and FH(z) = −HL(−z) (Strang
& Nguyen, 1996). The patterns this solution produces are visible in for both the Daubechies filters
as well as their symmetric counterparts shown above. To see why substitute (−z). It will produce a
minus sign at odd powers in the coefficient polynomial. Multiplication with (−1) shifts the pattern
to even powers. Whenever FL and HH share the same sign FH and HL do not and the other way
around. The same pattern is visible for the Symlet on the right of figure 4.

The Daubechies wavelets are very anti-symmetric (Mallat, 2009). Symlets have been designed as an
alternative with similar properties. But, as shown in 4, Symlets are symmetric and centered.
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analysis Haar level 1 synthesis Haar level 1.tex

Figure 5: Sparsity pattern of the 2d level 1 Haar fast wavelet analysis and synthesis matrices.

analysis Haar level 2 synthesis haar level 2.tex

Figure 6: Sparsity pattern of the 2d level 2 Haar fast wavelet analysis and synthesis matrices.

8.5 SPARSE FAST WAVELET TRANSFORMATION MATRIX PLOTS

16



Under review as a conference paper at ICLR 2022

analysis db2 level 1 synthesis db2 level 1

Figure 7: Sparsity pattern of the 2d level 1 Daubechies-2 fast wavelet analysis and synthesis matrices.

analysis db2 level 2 synthesis db2 level 2

Figure 8: Sparsity pattern of the 2d level 2 Daubechies-2 fast wavelet analysis and synthesis matrices.

17



Under review as a conference paper at ICLR 2022

1,000 2,000 3,000

0.5

0.6

0.7

0.8

0.9

1

training steps

m
ea

n
ac

cu
ra

cy

Accuracy source identification

raw validation acc
loge-db4 validation acc
raw test acc
loge-db4 test acc

Figure 9: Mean validation and test set accuracy of 5 runs of source identification on CelebA for a
CNN trained on the raw images and loge-db4 wavelet packets, each using only 20 % of the original
training data. The shaded areas indicate a single standard deviation σ.
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Figure 10: Haar-Wavelet packet CNN training accuracy on the LSUN (left) and the CelebA (right)
datasets.
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