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Abstract
Knowledge Graph Completion (KGC) has001
emerged as a promising solution to address002
the issue of incompleteness within Knowledge003
Graphs (KGs). Traditional KGC research pri-004
marily centers on triple classification and link005
prediction. Nevertheless, we contend that these006
tasks do not align well with real-world scenar-007
ios and merely serve as surrogate benchmarks.008
In this paper, we investigate three crucial pro-009
cesses relevant to real-world construction sce-010
narios: (a) the verification process, which arises011
from the necessity and limitations of human012
verifiers; (b) the mining process, which iden-013
tifies the most promising candidates for verifi-014
cation; and (c) the training process, which har-015
nesses verified data for subsequent utilization;016
in order to achieve a transition toward more017
realistic challenges. By integrating these three018
processes, we introduce the Progressive Knowl-019
edge Graph Completion (PKGC) task, which020
simulates the gradual completion of KGs in021
real-world scenarios. Furthermore, to expedite022
PKGC processing, we propose two accelera-023
tion modules: Optimized Top-k algorithm and024
Semantic Validity Filter. These modules sig-025
nificantly enhance the efficiency of the mining026
procedure. Our experiments demonstrate that027
performance in link prediction does not accu-028
rately reflect performance in PKGC. A more029
in-depth analysis reveals the key factors influ-030
encing the results and provides potential direc-031
tions for future research.032

1 Introduction033

Knowledge Graphs (KGs) have wide-ranging appli-034

cations across diverse domains, including question035

answering (Mohammed et al., 2018), information036

extraction (Han et al., 2018), and recommender sys-037

tems (Zhang et al., 2016). Nevertheless, KGs fre-038

quently grapple with incompleteness, resulting in039

the absence of critical factual links (Galárraga et al.,040

2017). Consequently, Knowledge Graph Comple-041

tion (KGC) assumes a pivotal role in automating042

the enhancement of KGs (Sun et al., 2019b).043

In the past, tasks such as link prediction and 044

triple classification required predicting the tail en- 045

tity of a query and judging the correctness of the 046

proposed triples, respectively. However, where do 047

these effective queries come from in real-world sce- 048

narios? No previous work has explored this issue. 049

Furthermore, the performance of models in these 050

tasks falls short of the high accuracy requirements 051

of KG, as confirmed by prominent companies like 052

Google (Pan et al., 2023). Therefore, we advocate 053

for simulating a more realistic scenario in KGC. 054

To meet the requirements for stringent knowledge 055

precision, it is necessary to incorporate a verifica- 056

tion process to simulate human-machine collabo- 057

ration. Additionally, human verifiers face inherent 058

limitations in their daily data processing capacity, 059

underscoring the need for a mining process. Within 060

this process, KGC models curate a specific quota 061

of the most promising facts. These freshly acquired 062

facts, in turn, facilitate the iterative refinement of 063

KGC models through a training process. Finally, 064

we iteratively implement these three processes to 065

form a progressive completion. 066

Drawing from the above reasons, we introduce 067

the Progressive Knowledge Graph Completion 068

(PKGC) task. PKGC emulates the gradual pro- 069

cess of KG completion, as depicted in Figure 1. 070

It commences by training a model using a KG 071

and subsequently invokes the model to identify 072

the most promising facts. Thereafter, a limited ver- 073

ifier selects the true facts, integrating them into 074

the KG.Furthermore, we have made substantial 075

strides in expediting the mining process, particu- 076

larly vital given the exponential growth in potential 077

facts as KGs expand in size. To address this, we 078

introduce two modules: Optimized Top-k and Se- 079

mantic Validity Filter (SVF), both of which bring 080

about a significant reduction in both space and time 081

complexity. The former implements root filtering 082

within a heap structure and incorporates a batch 083

warm-up strategy, while the latter capitalizes on 084
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Figure 1: PKGC consists of training, mining and verification procedures. The knowledge proposed by the KGE
model will be added to the knowledge base after verification.

the semantic properties inherent to KGs.085

In the realm of PKGC, we propose two novel086

metrics specifically tailored to provide a more087

realistic evaluation of the model’s performance.088

It becomes apparent that relying on metrics de-089

rived from previous Surrogate Knowledge Graph090

Completion (SKGC) tasks inadequately guides the091

model’s performance in PKGC. Therefore, they092

are not suitable for selecting models in real sce-093

narios. In light of this observation, we initiate a094

discussion to delve into the underlying factors in-095

fluencing model performance in PKGC. We also096

explore opportunities to leverage verified knowl-097

edge in PKGC, as opposed to SKGC, which models098

entities and relations in a one-off manner. We lever-099

age two simple incremental learning approaches100

and throw light on them for future research.101

2 Related Work102

Knowledge Graph Embedding KGC encom-103

passes a diverse array of methods (Ji et al., 2021),104

including embedding-based (Bordes et al., 2013;105

Wang et al., 2014b; Sun et al., 2019a; Zhang106

et al., 2022), rule-based (Galárraga et al., 2013;107

Omran et al., 2021), and reinforcement learning-108

based (Xiong et al., 2017; Lin et al., 2018). Given109

the prevalence of the embedding-based approach,110

often referred to as Knowledge Graph Embedding111

(KGE), this article primarily centers its focus on112

this methodology. Notably, KGE methods have113

consistently dominated the leaderboards of compe-114

titions like ogb-wiki2 (Hu et al., 2020), a promi-115

nent fixture in the field of KGC. To streamline the116

scope, this paper confines its inquiry to the realm117

of structural information, excluding description-118

based approaches (Xie et al., 2016; Wang et al.,119

2014a; An et al., 2018; Wang et al., 2021; Yao120

et al., 2019) within KGE. The pioneering distance- 121

based model in KGE, TransE (Bordes et al., 2013), 122

conceptualizes each relation as a translation opera- 123

tion. TransR (Lin et al., 2015) and TransH (Wang 124

et al., 2014b) employ projections to handle com- 125

plex relations, while MuRP (Balazevic et al., 2019) 126

extends the modeling space to hyperbolic geometry 127

to capture hierarchical structures within KGs. In 128

addition to translation, RotatE (Sun et al., 2019a) 129

introduces rotation as a means to represent rela- 130

tions. RotH (Chami et al., 2020) further amalga- 131

mates these two operations into hyperbolic space. 132

RESCAL (Nickel et al., 2011) stands as the in- 133

augural bilinear-based model, while CP (Hitch- 134

cock, 1927) simplifies relation matrices to diagonal 135

representations. Deep learning-based models har- 136

ness convolutional neural networks (Dettmers et al., 137

2018; Nguyen et al., 2018), Transformers (Chen 138

et al., 2021; Vaswani et al., 2017), and graph neural 139

networks (Schlichtkrull et al., 2018; Wang et al., 140

2020; Liu et al., 2021; Tan et al., 2023) as encoders, 141

synergizing them with the aforementioned decoder 142

models. 143

3 Methodology 144

This section initiates with a comprehensive expo- 145

sition of the progressive completion task, which 146

is elaborated upon in Section 3.1. Following this, 147

in Section 3.2, we introduce two acceleration tech- 148

niques. 149

3.1 Progressive Knowledge Graph 150

Completion 151

To commence, PKGC initiates by partitioning a 152

KG, denoted as F , into two components: the 153

known portion, refered to as Fknown, and the un- 154

known portion, labeled Fun, based on a predefined 155
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ratio ρ. This procedure is in alignment with SKGC156

practices. Distinguishing itself from SKGC, PKGC157

systematically advances by expanding the known158

segment, Fknown, through a sequence of incremen-159

tal verifications executed by a verifier denoted as160

ψ, with the capability to authenticate nc candidate161

facts during each iteration. This process adheres to162

a cyclic routine that encompasses training, mining,163

and verification procedures, as elaborated in Algo-164

rithm 1. (Detailed comparison is in Appendix A)165

Algorithm 1 Progressive Knowledge Graph Com-
pletion

Input: KG F , ratio ρ, verifier ψ, maximum step
ns

Output: Updated KG Fknown, metricsM
1: Initialization: s(·) ← PretrainModel,
Fknown,Fun ← SplitKG(ρ),
i← 0, Fvisited ← Fknown

2: for i = 1, 2, . . . , ns do
3: if update condition then
4: s(·)← UpdateModel
5: end if
6: Fc ← KnowledgeMining
7: Fnew ← V erification
8: Fvisited ← Fvisited ∪ Fc

9: Fknown ← Fknown ∪ Fnew

10: end for
11: M ← CalculateMetrics

Within the training phase, we train a model de-166

noted as s(·) using Fknown, mirroring the method-167

ology employed in Surrogate Knowledge Graph168

Completion (SKGC). Given that the Knowledge169

Graph undergoes alterations following each step,170

s(·) can be subject to a range of update techniques171

to adapt to these modifications.172

The mining phase entails s(·) generating a set of173

nc candidate facts, Fc, derived from the entire spec-174

trum of conceivable facts, excluding those present175

in Fknown or validated within Fvisited.176

In the verification phase, the verifier ψ systemat-177

ically scrutinizes the authenticity of the candidate178

facts within Fc and subsequently incorporates the179

verified facts into the established KG, Fknown. In180

the context of our experiments, this process is em-181

ulated by verifying the existence of facts within182

Fun.183

To assess the performance of PKGC, we estab-184

lish a predefined maximum number of steps, de-185

noted as ns, and subsequently evaluate the metrics 186

detailed in Section 4.1 upon the completion of these 187

steps. 188

3.2 Acceleration for Mining Process 189

Given that the mining process can be fundamentally 190

likened to a top-k procedure, executing it without 191

optimization proves to be exceedingly impractical 192

due to the sheer volume of potential facts involved. 193

To illustrate the magnitude of this issue, consider 194

a KG housing |E| entities and |R| relations. Such a 195

KG spawns an astronomical |E|2|R| potential facts, 196

rendering the storage and effective sorting of these 197

facts unviable through conventional means. In re- 198

sponse to this formidable challenge, we introduce 199

two purpose-built modules: Optimized Top-k and 200

SVF. These modules are meticulously crafted to 201

achieve substantial reductions in the time and space 202

resources necessary for mining while preserving 203

efficiency and effectiveness. 204

3.2.1 Optimized Top-k algorithm 205

In order to obviate the necessity of retaining scores 206

for every conceivable triple, we have elected to 207

implement a heap structure, which entails only a 208

modest additional space of O(k). Nevertheless, the 209

unrefined heap-based top-k algorithm endeavors to 210

establish a min-heap and proceeds to insert each 211

potential triple into the heap contingent upon its 212

respective score. Notably, despite the algorithm’s 213

time complexity of O(n log(k)) (Cormen et al., 214

2022), its practicality is hampered by the vast scale 215

of |E|2|R|. 216

To address this issue, we introduce an optimized 217

top-k algorithm that builds upon the fundamental 218

approach. This algorithm comprises two intricately 219

interconnected components: the root filter and the 220

warm-up. 221

Root Filter In light of the impracticality of ac- 222

quiring scores for all conceivable facts in a single 223

sweep, we adopt a strategy of segregating them 224

into a sequence of incremental batches. This se- 225

quential approach offers us a unique opportunity 226

to refine the filtration process within each batch by 227

leveraging insights gleaned from previous batches. 228

As depicted in Figure 2a, we possess the capa- 229

bility to exclude facts with scores inferior to that 230

of the root element within the heap. This filtration 231

procedure can be executed in parallel, resulting 232

in a substantial acceleration in processing speed 233

without overlooking any candidate facts. 234
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(a) Root filter.

Batch Size

Warm-up Phase

…

First Batch Second Batch

(b) Batch warm-up.

Figure 2: Figure (a) depicts the Root filter process, where lower-scoring triplets are directly filtered out. On the right,
Figure (b) demonstrates Batch warm-up. In this process, the data from the initial batch undergoes decomposition,
and its size gradually increases until it reaches a predetermined limit. And subsequent batches maintain a consistent
size.

warm-up While the root filter significantly ex-235

pedites the processing of subsequent batches, its236

effectiveness does not extend to the initial batch.237

We have observed that when dealing with a sizable238

batch size, the execution of the first batch expe-239

riences notable delays. To address this challenge240

and to maximize the utility of the root filter, we241

have introduced a warm-up schedule for the batch242

size within each mining process. Specifically, we243

initiate with a batch size of 1 and systematically244

increase it exponentially until it aligns with the in-245

tended batch size, as illustrated in Figure 2b. This246

approach is designed to mitigate the performance247

issues associated with larger batch sizes during the248

initial stages of the mining process.249

3.2.2 Semantic Validity Filter250

In addition to delving into the mining process, we251

tackle the aspect of "what to mine" by introducing252

a pivotal component, the Semantic Validity Fil-253

ter (SVF), which efficiently trims down the search254

space. Our inspiration for this derives from the255

recognition that not all combinations of entities256

and relations are valid (Li and Yang, 2022). For257

instance, the head entity of the relation ’isCityOf’258

can only be the name of a ’city’, and not a ’human’.259

The SVF implementation entails acquiring class260

information for each entity and maintaining a set261

that documents each pairing of class and relation262

initially present in the initial known KG Fknown.263

Throughout the mining process, we exclusively264

entertain queries that align with the SVF criteria,265

effectively eliminating invalid queries and signifi-266

cantly reducing the search space. It’s worth noting267

that in cases where certain entities lack class in-268

formation during data collection, we abstain from269

imposing constraints on queries for these entities.270

Algorithm 2 Optimized Top-k with SVF

Input: Known Facts Fknown, Visited Facts
Fvisited, model s(·), mining maximum batch
size bmax

m , class dict D, number of candidate
nc

Output: Mined candidate knowledge Fmined

1: Initialization: Batch begin index bb ← 0,
Batch size bm ← 1, min-heap H with nc
dummy elements fd that s(fd)← −∞

2: ψ ← GetSV F (Fknown,D) // SVF
3: Q← GetV alidQueries(Fknown, ψ)
4: while bb ≤ Q.size do
5: q ← Q[bb : bb + bm]
6: Fc ← GetCandidateFacts(q)
7: F ′

c ← {f |f ∈ Fc, s(f) > s(H.root)} //
Root Filter

8: for triple f ∈ F ′
c do

9: if f /∈ Fvisited and s(f) > s(H.root)
then

10: H.replace(f)
11: end if
12: end for
13: bm ← max(bmax

m , 2 ∗ bm) // warm-up
14: bb ← bb + bm
15: end while
16: Fmined ← Set(H)

We present the operational details of these modules 271

within Algorithm 2. 272

4 Experiment 273

In this section, our discussion unfolds in a struc- 274

tured manner. We initiate by introducing the ex- 275

perimental setup, elaborated upon in Section 4.1. 276
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Dataset |E| |R| |Kknown| |Kun| ρ

FB15k 14,951 1,345 532,989 59,221 0.9
WN18 40,943 18 106,009 45,433 0.7

Table 1: Statistics of Two Benchmark Datasets.

Subsequently, we unveil the key findings in Sec-277

tion 4.2, culminating in a thorough analysis of the278

observed phenomena in Section 5.279

4.1 Experiment Setting280

Datasets Our datasets are meticulously crafted,281

rooted in FB15k and WN18 (Nickel et al., 2011).282

To maintain a consistent initial completion ratio,283

denoted as ρ, we partition the dataset into two dis-284

tinct categories: the initial triples, Kknown, and the285

unexplored triples, Kun. During this data partition-286

ing process, we impose stringent constraints to en-287

sure that undetermined entities and relations do not288

appear in Fun. Comprehensive dataset statistics289

are thoughtfully presented in Table 1. It’s note-290

worthy that we consciously opted against utilizing291

the FB15k-237 (Toutanova and Chen, 2015) and292

WN18RR (Dettmers et al., 2018) datasets, favoring293

a pursuit of more lifelike scenarios. Our primary294

research focus pivots not on the dataset’s inherent295

complexity, but rather on the nuanced exploration296

of basic model performance within the context of297

real-world scenarios.298

Partition In the process of partitioning the299

dataset, our primary objective is to ensure the com-300

prehensive inclusion of all entities and relations301

within Kknown. This goal guides a meticulous302

procedure, during which we thoroughly scrutinize303

each triple, diligently recording the entities and304

relations that make an appearance. In the event305

that a triple is encountered, containing components306

that have not yet found a place in our records, it is307

promptly added to the scaffold set. The remaining308

triples undergo a division into two distinct seg-309

ments, this division hinging on the predetermined310

ratio ρ. One segment becomesKun, while the other311

segment is integrated into the scaffold set to form312

Kknown. For an exhaustive and step-by-step eluci-313

dation of this partitioning process, we direct your314

attention to Algorithm 3.315

Baselines Our study encompasses a comprehen-316

sive comparative analysis between our task and the317

well-established traditional structure-based mod-318

els, which can be categorized into two primary319

groups: distance-based models and bilinear mod-320

Algorithm 3 Dataset Partition
Input: Total Facts Ftotal, initial ratio ρ
Output: Known Facts Fknown, Unexplored Facts
Fun

1: Initialization: Scaffold triples set S ← ϕ,
visited entity set Se ← ϕ, visited relation set
Sr ← ϕ

2: for (h, r, t) ∈ Ftotal do
3: if h /∈ Se or t /∈ Se or r /∈ Sr then
4: Se.add(h)
5: Se.add(t)
6: Sr.add(r)
7: S.add((h, r, t))
8: end if
9: end for

10: n← len(Ftotal) ∗ ρ
11: Sremain ← Ftotal − S
12: Fun ← Sremain[: len(Ftotal)− n]
13: Fknown ← Sremain[len(Ftotal)− n :] + S

els. The distance-based models considered in 321

this study are TransE (Bordes et al., 2013), Ro- 322

tatE (Sun et al., 2019a), and RotE (Chami et al., 323

2020). On the other hand, the bilinear models com- 324

prise RESCAL (Nickel et al., 2011), CP (Hitch- 325

cock, 1927), ComplEx (Trouillon et al., 2016), 326

QuatE (Zhang et al., 2019), and UniBi (Li et al., 327

2023). UniBi stands out for its unique approach of 328

normalizing both the modulus of the entity vector 329

and the spectral radius of the relational matrix to 1. 330

Training The PKGC training process consists of 331

three phases: (1) Hyperparameter optimization, (2) 332

Model training, and (3) Model update. During the 333

initial phase, we partition the set of known facts, 334

Fknown, into training and validation subsets to per- 335

form hyperparameter optimization, following the 336

approach established in prior SKGC research. In 337

the second phase, the model is trained using the 338

complete dataset of Fknown. In the final phase, the 339

model is updated based on verified facts. This paper 340

primarily focuses on the first two phases, with the 341

third phase introduced in Section 5.3. In these first 342

two phases, we adopt a reciprocal setting wherein 343

we generate a new reciprocal triple (t, r′, h) for 344

every (h, r, t) in Fknown. To enhance the model’s 345

expressiveness, we introduce the DURA and Frobe- 346

nius norm as regularization terms with a positive 347

weight parameter, denoted as λ > 0. Descriptions 348

about hyperparameters are in Appendix C. 349
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WN18 FB15K
Model MRR Hits@10 MOAR CR@50 MRR Hits@10 MOAR CR@200
TransE 0.399 0.590 0.223 0.803 0.487 0.731 0.083 0.913
CP 0.563 0.687 0.515 0.920 0.529 0.749 0.588 0.987
RotatE 0.595 0.699 0.768 0.935 0.543 0.756 0.621 0.987
RotE 0.596 0.705 0.765 0.935 0.540 0.761 0.317 0.945
ComplEx 0.561 0.692 0.630 0.927 0.547 0.765 0.623 0.986
QuatE 0.596 0.704 0.759 0.933 0.547 0.767 0.637 0.984
RESCAL 0.548 0.661 0.545 0.892 0.450 0.684 0.668 0.988
UniBi-O(2) 0.598 0.712 0.761 0.934 0.550 0.771 0.841 0.994
UniBi-O(3) 0.599 0.716 0.762 0.934 0.548 0.768 0.846 0.995

Table 2: Results of different models on both previous and progressive metrics. Best results are bold, second ones
are underlined.
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Figure 3: Illustration of how to calculate MOAR, which
is the ratio of the area enclosed by the actual curve and
the ideal curve, respectively.

L = −
∑

(h,r,t)∈Ftrain

log(
exp(s(h, r, t))∑

t′∈E exp(s(h, r, t′))
)+λ·Reg(h, r, t)

(1)350

In Equation 1, we include an additional scalar351

parameter γ > 0 after s(·) to inherit the setting352

from UniBi. We give details of the hyperparameter353

settings in Section C.354

During the mining and verification phases, a scat-355

ter chart is constructed to depict the relationship356

between the completion ratio and the number of357

steps, guided by Kun. We designate the ultimate358

completion ratio achieved at step k as the critical359

metric CR@k. Furthermore, we employ the Area360

Under the Curve (AUC) of the ideal and practical361

completion curves to quantify an additional indica-362

tor, the Model-to-Oracle Area Ratio (MOAR), as363

illustrated in Figure 3 and computed using Equa-364

tion 2.365

MOAR =
S1

S1 + S2
(2)366

367

368
We fix k at 200 for the FB15k dataset and at 50369

for the WN18 dataset, accounting for variations370

in the performance of the foundational models on371

these datasets.372

4.2 Main Result 373

The performance of the models on WN18 and 374

FB15k is presented in Table 2. Additionally, we 375

provide a detailed illustration of the dynamics of 376

the models on these datasets through Figure 4a 377

and Figure 4b to enhance our understanding of the 378

PKGC process. 379

Initially, we conduct separate analyses of the 380

models’ performance on SKGC and PKGC. Our 381

findings indicate that most models exhibit strong 382

performance on both datasets within the realm of 383

SKGC, whereas this extends to only one dataset 384

within PKGC. Notably, UniBi stands out as the sole 385

model demonstrating commendable performance 386

across all metrics and datasets. 387

Furthermore, we note that the performance of 388

models in link prediction does not consistently 389

align with their performance in PKGC. On one 390

hand, the models’ performance in link prediction 391

and PKGC sometimes diverges. For instance, 392

RESCAL exhibits the lowest Mean Reciprocal 393

Rank (MRR) on FB15k but secures the third-best 394

result in Completion Ratio (CR). On the other 395

hand, models that perform similarly in link pre- 396

diction may exhibit differences in PKGC perfor- 397

mance. A case in point is the closeness in MRR be- 398

tween UniBi-O(3) and ComplEx (0.548 vs. 0.547), 399

yet they demonstrate disparities in CR (0.995 vs. 400

0.986). Notably, QuatE and UniBi are the only 401

models performing well across all metrics in both 402

datasets. 403

5 Analysis 404

In this section, we mainly discuss: 1) What are 405

the key factors in PKGC, for which we have con- 406

ducted a discussion related to the regularization 407

term (RQ1); 2) The effectiveness of the accelera- 408

tion module we proposed (RQ2); 3) Improving this 409

task from the perspective of incremental learning, 410
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Figure 4: Figures illustrating the dynamic completion process for various models on the WN18 and FB15k datasets.
The closer the trend of the curve is to the upper left, the more efficient the model is in performing the dynamic
completion. It is evident that UniBi-O(2) and UniBi-O(3) maintain a significant advantage on both datasets, while
TransE performs poorly on both.
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Figure 5: Ablation studies of relation normalization
(RelNorm) on (a) WN18 and (b) FB15k. We utilize CP
and ComplEx as examples.

providing a feasible path for future research (RQ3);411

4) Whether PKGC can execute in low-resource sit-412

uation (RQ4).413

5.1 RQ1: How Normalization Work in414

PKGC?415

Given UniBi’s remarkable performance over other416

models, we delve into an investigation to uncover417

the factors contributing to its strength. UniBi’s418

unique feature lies in its normalization of both enti-419

ties and relations, which is unusual among bilinear-420

based models. We argue that UniBi’s performance421

enhancement primarily stems from its ability to422

make triples comparable. To illustrate, consider423

two triples: f1 = (h, r1, t) and f2 = (h, r2, t),424

with corresponding scores s(f1) = a and s(f2) =425

b, where a > b. Without normalization, deter-426

mining the relative plausibility of f1 and f2 is427

challenging due to the unaccounted score range.428

For instance, consider the case where |e| ≤ 1429

and s(·) = ρr · h⊤t, confined within [−ρr, ρr],430

with ρr1 = 2a and ρr2 = b. Here, s(f2) = b431

Module Efficiency
Root Filter warm-up SVF Time Speed-up

≈ 243d14h 1×
✓ ≈ 32d4h 7.6×

✓ 2h10m52s 2,698.7 ×
✓ ✓ 2h7m33s 2,763.7×
✓ ✓ 3m38s 92,337.2×
✓ ✓ ✓ 50s 421,057.6×

Table 3: Ablation studies on proposed acceleration mod-
ules. The results of first two rows are estimated.

achieves the highest score under relation r2, while 432

s(f1) < 2a still has potential for improvement. 433

Thus, f2 appears more plausible than f1. UniBi 434

distinguishes itself from other bilinear-based mod- 435

els by ensuring that s(·) falls within [−1, 1] for 436

any triple, enabling more rational comparisons be- 437

tween relations. We present CP and ComplEx as 438

case studies, showing that both models improve 439

their performance with relation normalization, as 440

shown in Figure 5. We suggest that this advantage 441

becomes more apparent when the number of triples 442

per relation is limited, shedding light on why UniBi 443

outperforms on FB15k but not on WN18. 444

5.2 RQ2: Ablation on Acceleration Modules 445

w.r.t. Time cost 446

We commence by demonstrating the efficacy of 447

two acceleration modules proposed for knowledge 448

mining. Results in Table 3 reveal that all three 449

modules contribute significantly to expediting the 450

mining process, with the root filter exhibiting the 451

most substantial speedup, exceeding 2,000 times. 452
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Origin Retraining Fine-tuning
Model MOAR CR@50 MOAR CR@50 MOAR CR@50
CP 0.515 0.920 0.570 0.921 0.570 0.920
RotatE 0.768 0.935 0.766 0.935 0.753 0.928
ComplEx 0.630 0.927 0.631 0.927 0.637 0.928
QuatE 0.759 0.933 0.765 0.935 0.764 0.933
UniBi-O(2) 0.761 0.934 0.766 0.936 0.758 0.931

Table 4: Results of different strategies on WN18 dataset.

More discussion are in Appendix D.453

5.3 RQ3: Incremental Aspect on PKGC454

In order to harness freshly validated knowledge,455

we employ the approach of incremental learning456

through retraining and fine-tuning, incorporating457

both existing and recently confirmed facts into the458

ongoing training process. We conduct incremental459

model training at a specified frequency denoted as460

∆s (∆s = 5 in our setting). During retraining,461

our training data encompasses Fknown, which com-462

prises the verified facts from the most recent ∆s463

steps denoted as Fnew. Conversely, during fine-464

tuning, our training is exclusively focused on the465

facts in Fnew from the recent ∆s steps. Addition-466

ally, we introduce an additional term to ensure that467

the previously acquired entity representations un-468

dergo moderate alterations (Formulated expression469

in Appendix B).470

The outcomes, as depicted in Table 4, pertaining471

to the WN18 dataset, reveal that retraining often472

proves effective in bolstering performance, whereas473

fine-tuning may have adverse consequences. Dur-474

ing progressive mining, at every stage, the recently475

acquired facts consistently receive high rankings.476

This implies that the model inherently possesses477

confidence in accurately identifying these factual478

triplets. Consequently, the impact of incorporat-479

ing these new data into incremental learning is480

relatively modest. As emphasized in the context481

of active learning (Ren et al., 2022), it is crucial482

to emphasize samples near the decision boundary,483

particularly those involving low-ranking factual484

triplets.485

5.4 RQ4: Low-resource PKGC486

In this section, we explore low-resource PKGC487

to showcase its extensive practical applications.488

To achieve this, we reduce ρ, resulting in train-489

ing the model on a smallerKknown while exploring490

the knowledge within a larger Fun.Table 5 demon-491

strates that even in a low-resource scenario, UniBi492

ultimately attains reasonably satisfactory comple-493

tion rates. On the WN18 dataset, when Kknown494

WN18 FB15K
Model ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.5 ρ = 0.7 ρ = 0.9

CP 0.510 0.758 0.920 0.841 0.934 0.987
RotatE 0.560 0.806 0.935 0.850 0.946 0.987
RESCAL 0.521 0.795 0.892 0.821 0.932 0.988
UniBi-O(2) 0.579 0.797 0.934 0.894 0.963 0.994
UniBi-O(3) 0.578 0.799 0.934 0.907 0.964 0.995

Table 5: CR@k of UniBi-O(2) and CP on low-resource
WN18 and FB15k. (k = 50 for WN18 and k = 200 for
FB15k, MOAR results are in Appendix E).

holds only 30% of the knowledge, UniBi achieves 495

nearly 60% completeness after 50 rounds of min- 496

ing. With an initial knowledge base comprising 497

50%, this figure increases to almost 80%. On the 498

FB15k dataset, after 200 completion rounds, UniBi 499

enhances a knowledge base with a 50% complete- 500

ness rate to nearly 90%. Similarly, concerning the 501

CR@k metric, UniBi consistently retains its rank- 502

ing position in comparison to the CP model.The re- 503

sults demonstrate that even in resource-constrained 504

settings, PKGC consistently yields favorable out- 505

comes, establishing it as a pragmatic experimental 506

framework. 507

6 Conclusion 508

In this paper, we introduce a novel task called 509

PKGC, which offers increased realism and a funda- 510

mental distinction by incorporating a finite verifier, 511

and shifts the status of the model to that of a candi- 512

date knowledge proposer.In order to make the task 513

more cost-effective, we have devised an optimized 514

top-k algorithm that integrates with the semantic 515

validity filter to significantly expedite the mining 516

process in PKGC. Furthermore, We conduct a com- 517

prehensive series of experiments to demonstrate 518

the performance of baseline models and to ana- 519

lyze factors that distinguish them. Our findings 520

indicate that previous metrics and knowledge are 521

insufficient for accurately predicting and explain- 522

ing phenomena within PKGC. Additionally, We 523

have preliminarily explored the effectiveness of 524

some incremental learning methods within the con- 525

text of PKGC, highlighting the potential for further 526

development of the task. 527

Therefore, we conclude that PKGC not only 528

serves as a novel benchmark but also represents a 529

valuable avenue for investigating models’ behavior 530

in a more direct reflection of real-world scenarios. 531

Future research directions include the pursuit of a 532

more effective model and the exploration of meth- 533

ods to adaptively integrate incremental learning 534

into the PKGC framework. 535
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7 Limitations536

This paper does not consider large KGs like ogb-537

wiki2 (Hu et al., 2020). We recognize that experi-538

mentation on large datasets is crucial. However, our539

focus was to propose a new task that reduces the540

threshold of experimentation, enabling researchers541

to quickly iterate on training methods, models, and542

so on. We believe that experimentation on large543

datasets can be conducted later.This paper only544

considers two simple continual learning methods.545

More advanced and sophisticated methods for con-546

tinual learning in PKGC should be explored.547
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Figure 6: Two perspectives are used to explain the differences between PKGC and SKGC. Figure (a) provides
clarification from the perspective of connectivity. Figure (b) presents it based on the scope of comparison. We use
columns to denote all possible facts, and mark facts to be compared with green.

A Comparison between PKGC and718

SKGC719

A.1 Connectivity Perspecitve720

In this section, we delve into an examination of the721

task disparities with a specific focus on their con-722

nectivity attributes. This analysis involves treating723

each fact as a vertex and each comparison between724

facts as an edge, thereby evaluating the connectiv-725

ity of the resultant graph. As elucidated in Figure726

6a, our findings reveal the following distinctions:727

(a) triple classification fails to establish any form of728

graph due to its exclusive reliance on comparisons729

between facts and a predefined threshold, (b) link730

prediction yields outcomes for distinct connected731

components associated with different queries, and732

(c) mining leads to the creation of a connected733

graph.734

It is essential to note that in cases where a735

Knowledge Graph regresses into a homogenous736

graph characterized by a single relation, there is in-737

evitably only one connected component, which en-738

sures the graph’s connectedness. This observation739

reinforces our belief that, link prediction emerges740

as a more suitable task in the context of Graph741

Neural Networks (GNN) instead of KGE.742

A.2 Comparison Perspective743

Within this section, our objective is to elucidate the744

disparities inherent in the evaluation tasks of SKGC745

and PKGC. We focus on the scope of comparison,746

in addition to recognizing the apparent distinction747

in progressiveness.748

SKGC encompasses two fundamental tasks:749

triple classification and link prediction. As de-750

picted in Figure 6b, triple classification entails the751

comparison of each fact with a predefined thresh-752

old, while link prediction involves juxtaposing facts 753

within the same query (h, r). However, what distin- 754

guishes these tasks is the absence of a mechanism 755

for comparing facts between different queries. Con- 756

sequently, in these tasks, facts remain isolated and 757

segmented in terms of comparison. 758

Conversely, the mining process within PKGC 759

mandates a global scope of comparison, permitting 760

the evaluation of any two facts during the process 761

of identifying the top-k facts. This expansive scope 762

is not an inherent feature of SKGC tasks but rather 763

arises as a necessity due to the involvement of re- 764

alistic verifiers. Given the constraints imposed by 765

limited verifiers1, a mining process becomes a vital 766

component, serving to deliver the most valuable 767

candidates. 768

In light of these considerations, we contend that 769

the scope represents another pivotal distinction be- 770

tween SKGC and PKGC, complementing the as- 771

pect of progressiveness. It is crucial to recognize 772

that this distinction cannot be overcome merely by 773

expanding the number of test samples in SKGC 774

tasks. Even in scenarios where these tasks undergo 775

exhaustive testing, encompassing all possible facts, 776

their comparisons would continue to be confined to 777

individual or partial assessments, failing to adopt a 778

holistic perspective. 779

B Supplementary Details in Incremental 780

Training 781

It is noteworthy that we do not apply a uniform 782

regularization term for relation representations, as 783

1In cases where verifiers are limitless, they could exhaus-
tively enumerate all possible facts, rendering the need for any
model obsolete.
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WN18 FB15K
Model 0.001 0.003 0.005 0.01 0.001 0.003 0.005 0.01
RotatE + F2 0.763 0.764 0.768 0.766 0.597 0.599 0.609 0.621
RotatE + DURA 0.759 0.760 0.760 0.763 0.616 0.614 0.607 0.571
QuatE + F2 0.757 0.759 0.757 0.757 0.637 0.628 0.605 0.583
QuatE + DURA 0.758 0.757 0.752 0.756 0.629 0.582 0.560 0.509

Table 6: Results of MOAR obtained from RotatE and QuatE in different regularization weights.

different models handle relations in diverse ways.784

Regc(h, r, t) = ||hnew − hold||+ ||tnew − told||,
(3)785

In this context, enew denotes the updated entity786

embedding, whereas eold signifies the entity em-787

bedding prior to the update.We have detailed the788

exact loss equations for retraining and fine-tuning789

in Equations 4 and 5.790

Lretrain = −
∑

(h,r,t)∈Fknown

log(
exp(s(h, r, t))∑

t′∈E exp(s(h, r, t′))
)

+ λ ·Reg(h, r, t) + µ ·Regc(h, r, t)
(4)791

Lnew = −
∑

(h,r,t)∈Fnew

log(
exp(s(h, r, t))∑

t′∈E exp(s(h, r, t′))
)

+ λ ·Reg(h, r, t) + µ ·Regc(h, r, t)

(5)792

C Hyperparameters in Training793

To fully demonstrate the model’s potential, we sys-794

tematically explore hyperparameters, as listed in795

Table 7, utilizing the verification data. Of partic-796

ular significance are the hyperparameters related797

to regularization, where weights are chosen from798

a range of values, specifically 0.0, 0.001, 0.003,799

0.005, 0.01. The ultimate selection of certain hy-800

perparameters is documented in Table 8. Table801

6 displays the MOAR results for the RotatE and802

QuatE models, achieved through the utilization of803

DURA and F2 regularization techniques.804

Table 7: Details of hyperparameters.

Hyperparameters Values
Batch size(Pretrain) 1000
Learning rate(Pretrain) 0.001
Learning rate(Retrain & Finetune) 0.001
Embedding dimension 500
Regularization weight {0.0, 0.001, 0.003, 0.005, 0.01}
Update frequency(Retrain & Finetune) ∆s 5
Max epoch(Pretrain) 100
Epoch(Retrain & Finetune) 20
Max batch size of Root Filter bmax

m 10000
Regularization Term {F2, DURA}

Table 8: Optimal hyperparameter setting after search.

WN18 FB15K
Model Regularization Weight Regularization Weight
TransE F2 0.003 F2 0.003
CP F2 0.001 F2 0.0
RotatE F2 0.005 F2 0.01
RotE F2 0.01 F2 0.01
ComplEx DURA 0.001 DURA 0.001
QuatE F2 0.003 F2 0.001
RESCAL F2 0.001 F2 0.003
UniBi-O(2) DURA 0.01 DURA 0.01
UniBi-O(3) DURA 0.01 DURA 0.01
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Figure 7: Ablation studies on (a) maximum mining
batch size bmax

m and (b) number of candidate nc in min-
ing process.

D Supplementary Details of Proposed 805

Modules Ablation Study 806

D.1 Ablation on Hyperparameters in Mining 807

In this section, we examine the influence of hyper- 808

parameters on the mining process, with a particular 809

focus on the maximum batch size for mining, de- 810

noted as bmax
m , and the number of candidates, repre- 811

sented as nc. Our results, as depicted in Figure 7a, 812

demonstrate that an increase in bmax
m leads to accel- 813

erated completion. Nevertheless, we also note that 814

this acceleration effect saturates as the batch size 815

reaches a specific threshold. We attribute this satu- 816

ration to the interplay between CPU computations 817

and communication with the GPU. 818

D.2 Detailed Ablation Studies w.r.t Time Cost 819

we observe that the root filter alone does not suf- 820

fice to optimize the process. Furthermore, we have 821

12
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Figure 8: Ablation studies of (a) root filter and (b) warm-
up modules. The dot lines is estimated.

discovered that the SVF module fails to yield signif-822

icant improvements in the absence of the warm-up823

module. This limitation is attributed to the fact that824

the naive root filter consumes the majority of time825

in the initial batch, as depicted in Figure 8a. To826

address this, Figure 8b illustrates how the warm-up827

module effectively mitigates congestion in the first828

batch, thus highlighting its importance.829

D.3 Efficiency of Optimized Top-k830

Due to the accumulation of visited facts suggested831

by Algorithm 1 line 6, the speed of the algorithm832

decreases with the number of steps. Specifically, as833

the number of steps increases, the amount of known834

knowledge increases correspondingly, while the835

heap decreases its update frequency. Consequently,836

the efficiency of our algorithm decreases with the837

number of steps.838

As depicted in Figure 9a, the pass rate, represent-839

ing the percentage of triples retained and sorted,840

exhibits two distinct trends. On one hand, the pass841

rate declines with the progression of mining in each842

step, influenced by the growing heap root that filters843

more triples. Conversely, the pass rate increases844

with the number of steps, as a substantial number845

of triples have been visited in prior steps, resulting846

in less frequent heap updates. Notably, the algo-847

rithm’s effectiveness persists despite the declining848

pass rate.849

Despite a decrease in the quantity of filtered850

triples with increasing steps, the algorithm’s execu-851

tion time demonstrates a linear growth, maintaining852

an acceptable range of performance, as depicted853

in Figure 9b. Furthermore, our algorithm exhibits854

superior performance compared to the naive and855

incomplete implementation reliant on torch.topk.856

In summary, our experiments provide com-857

pelling evidence for the algorithm’s effectiveness.858
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Figure 9: Ablation studies on pass rate and time con-
sumption in different step. (a) Pass rate in different
progresses and steps. The color represents the step,
more small the step, more red the line, and more large
the step, more blue the line. (b) Mining time during the
steps. Here we also demonstrate that the combination
of root filter (RF) and warm-up is faster than the imple-
mentation of topk on torch.

It is crucial to acknowledge that the observed varia- 859

tions with the number of steps are contingent upon 860

the assumption that the number of candidates nc is 861

considerably larger than the size of the knowledge 862

graphs. In the context of a larger knowledge graph 863

with the same nc, these variations would be less 864

pronounced. 865

D.4 Performance after SVF 866

Initially, we establish a theoretical basis to affirm 867

the feasibility of SVF. Figure 10a illustrates the 868

coverage of SVF at various proportions represented 869

by ρ. We examine two scenarios: the conservative 870

case, where entities lacking class information are 871

excluded from the coverage rate calculation, and 872

the actual case, which includes these entities in the 873

calculation. Both curves exhibit relatively minor 874

variations across different values of ρ. In the actual 875

case, the coverage rate is notably high, with an 876

average of 0.99, a level of accuracy suitable for real- 877

world applications. As an example, at ρ = 0.8, the 878

data missed amounts to only 0.08%, a negligible 879

fraction. 880

In preceding sections, we have established the 881

effectiveness of SVF in terms of time efficiency. 882

In this section, we assess SVF’s effectiveness with 883

regard to performance, focusing on the ComplEx 884

and TransE models. Figure 10b demonstrates a sig- 885

nificant enhancement in the models’ performance 886

resulting from the application of SVF. By using 887

the ComplEx and TransE models for testing, we 888

observe a significant improvement in both filtering 889

efficiency and final completion rates following the 890

integration of SVF. Clearly, without semantic fil- 891
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Figure 10: (a) The cover rate of SVF in different initial ratio ρ. Since there are entities missing the class information,
we consider two extreme situations. up: c means conservative, which excludes all these entities. a means actually,
which includes these entities and is the case in real situation. (b) SVF ablation on performance.

Table 9: MOAR of UniBi-O(2) and CP on low-resource
WN18 and FB15k.

WN18 FB15K
Model ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.5 ρ = 0.7 ρ = 0.9

CP 0.189 0.343 0.515 0.428 0.510 0.588
RotatE 0.307 0.364 0.768 0.513 0.610 0.621
RESCAL 0.237 0.458 0.545 0.419 0.533 0.668
UniBi-O(2) 0.296 0.428 0.761 0.603 0.711 0.841
UniBi-O(3) 0.275 0.451 0.762 0.630 0.720 0.846

tering, numerous intrinsically unreasonable triples892

disrupt the model’s filtering operations during each893

mining round, leading to reduced efficiency.894

E Supplementary Results of895

Low-resource PKGC896

In addition to the CR@k results presented in Ta-897

ble 5, we show the results for the MOAR metric in898

Table 9.899
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